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Abstract— This paper suggests a supervised classification pro-
cess based on polarimetric time-frequency signatures by neural
networks. Polarimetric time-frequency signature is obtained by
multi-dimensional continuous wavelet transform and polarimet-
ric coherent decomposition. This signature is sent to the neural
networks which classifies scatterers in canonical target. The
learning basis of the neural network is a set of canonical targets
and the classification process is applied on anechoic chamber
data. The results show different advantages but it is limited
by the learning basis, the angular excursion and the frequency
bandwith.

Conventional radar imaging techniques consider targets as a
set of bright points. Indeed, it considers scatterers as isotropic
for all the directions of presentation and white in the frequency
band[1]. Recent studies showed, using time-frequency analy-
sis, the angular and frequency behavior of the spatial distri-
bution of all image scatterers [2], [3]. These representations,
called hyperimages, showed that some scatterers were neither
isotropic nor white. For example, this is the case with modern
high-resolution SAR sensors using wide bandwidth and wide
azimut beam width. This non-stationary behavior of scatterers
can be explained by their material (dispersive), their geometry
(anisotropic and dispersive) or their orientation (anisotropic).
These studies show that some scatterers are non-stationnary in
the energetic way.

Polarimetry is another information source about the ge-
ometry and the orientation of scatterers in radar imaging.
Recent studies showed, using time-frequency analysis and
polarimetric coherent decompositions, the polarimetric angular
and frequency behavior of the spatial distribution of all image
scatterers [4], [5]. These representations, called polarimetric
hyperimages, showed that some scatterers were not polarimet-
ric stationnary.

The aim of this paper is to classify scatterers according to
their energetic or polarimetric behaviors. This paper presents
the construction of polarimetric time-frequency signatures.
Then, the signature of canononical targets is extracted and
a process of classification is designed by neural networks to
discriminate data from anechoic chamber.

I. CLASSICAL RADAR IMAGING

The backscattering coefficient H(k) for a given object
illuminated by a radar is characterized, for a distance R going
to infinity, as the ratio between the incoming field Er and the
emitted field Ei (spherical waves):

|H(k)| = lim
R→∞

√
4πR2

Er
Ei
. (1)

The squared modulus of H(k) is called the Radar Cross
Section (RCS) of the object for the wave vector k and is
expressed in squared meter. Wave vector k is related to the
frequency f and to the direction θ of illumination by |k| =
k = 2f/c and θ = arg(k) in two-dimensional approximation.

The model usually used in radar imaging is the model of
bright points [6]. The object under analysis can be seen as a
set of bright points, i.e. a set of independent sources which
reflect in the same way for all frequencies (white points) and
all directions of presentation (isotropic points). Let I(r) be the
amplitude of the bright point response located at r = (x, y)T

in a set of cartesian axes related to the object. Under far field
conditions (decomposition into planes waves), the complex
backscattering coefficient for the whole object is then given
by the in-phase summation of each reflector contribution:

H(k) =
∫
I(r) e−2iπk.r dr. (2)

After a Fourier Transform of (2), one can obtain the spatial
repartition I(r) of the reflectors for a mean frequency (the
center frequency) and for a mean angle of presentation:

I(r) =
∫
H(k) e2iπk.r dk. (3)

When a target is illuminated by a broad-band signal and/or
for a large angular extent, it is realistic to consider that the
amplitude spatial repartition I(r) of the reflectors depends on
frequency f and on aspect angle θ. This repartition depending
on the wave vector k, it will be noted in the following by
Ĩ(r,k).



II. EXTENDED RADAR IMAGING

A. Contruction of the hyperImage based on the continuous
wavelet

Let φ(k) be a mother wavelet supposed to represent the
signal reflected by a reference target. This target is supposed
located around r = ~0 and backscatters the energy in the
direction θ = 0 and at the frequency f given by k = 2f

c = 1. A
family of function is built Ψr0,k0 from φ(k) by the similarity
group S [2], [3] :

Ψro,ko(k) =
1
ko

e−j2πk.roφ

(
1
ko
R−1
θo

~k

)
(4)

=
1
ko

e−j2πk.ro φ

(
k

ko
, θ − θo

)
. (5)

The wavelet coefficient CH(ro,ko) is defined as the scalar
product between the complex backscattering coefficient H and
the wavelet Ψro,ko :

CH(ro,ko) =< H,Ψro,ko
> (6)

The scalar product is defined following [7]:

CH(ro,ko) =
∫ 2π

0

dθ

∫ +∞

0

k H(k, θ)
1
ko

e+j2πk.roφ∗
(
k

ko
, θ − θo

)
dk (7)

The scalogramm which is the square modulus of the wavelet
coefficients defines the hyperImage ĨH(r,k).

B. Properties

The continuous wavelet transform has three interesting
properties. The first is the reconstruction.

It is possible to build the complex backscattering coeffi-
cient H(k) from the wavelet coefficient CH(ro,ko):

H(k) =
1
Kφ

∫
S

dro

∫
CH(ro,ko) Ψro,ko

(k) dko (8)

with Kφ defined as the admissibility coefficient of the
mother wavelet which must, to build H(k) from the wavelet
coefficients, check:

Kφ =
∫
|φ(k)|2 dk

k2
< +∞ (9)

The second property is the isometry.

1
Kφ

∫
S

dro

∫
|CH(ro,ko)|2 dko = ‖H‖2 (10)

The third property is the covariance law. The principle of
the extended radar imaging is based on a physical group
of transformations, the similarity group S that acts on the
physical variables r and k through rotations [R]α, dilations a
in length (or time) and translations δr as:

r −→ r′ = a [R]α r + δr
↓ ↓
k −→ k′ = a−1 [R]α k .

(11)

The transformation law of the reflected signal H(k) and its
extended image Ĩ(r,k) is therefore given by:

H(k) −→ H ′(k) = a exp(−2iπk · δr)H(a[R]−1
α k)

↓ ↓
Ĩ(r,k) −→ Ĩ ′(r,k) = Ĩ(a−1 [R]−1

α (r− δr), a [R]−1
α k) .

(12)
This covariance law is the invariance of the form of physical
laws under arbitrary differentiable coordinate transformations.
The essential idea is that coordinates do not exist a priori in
nature, but are only artifices used in describing nature, and
hence should play no role in the formulation of fundamental
physical laws.

So, in radar imaging, the change of reference coordinates
usually is an origin change (translations δr), the orientation
of axis change (rotations [R]α), and a scale change (dilations
a in length (or time)). For two different observers A and B
connected by the transformation law (11) (r is the coordinates
of A and r′ is the coordinates of B), the coordinates of
the wave vector are achieved according to (11). H(k) is
the backscattering coefficient measured by A and H ′(k)
is the backscattering coefficient measured by B, these two
coefficients are connected by the law (12). To respect the
covariance law, the extended image must follow the relation
(12).

III. POLARIMETRIC HYPERIMAGES

A full polarimetric radar is generally designed to transmit
and receive microwave radiations horizontally (h) or vertically
(v) polarized. The polarimetric generalization of the scattering
coefficient is called the scattering matrix [S] or Sinclair matrix:

[S] =
[
Shh Shv
Svh Svv

]
. (13)

The wavelet transform (6) is applied on each of the four
polarimetric channels. The resulting Sinclair scattering matrix
now depends on the frequency and on the illumination angle
and is called hyper-scattering matrix:

[S](r,k) =
[
Shh(r,k) Shv(r,k)
Svh(r,k) Svv(r,k)

]
. (14)

By applying the polarimetric coherent decompositions to the
hyper-scattering matrix, we obtain, on one hand, a polarimetric
evolution of the scatterers versus emitted frequency and obser-
vation angle, on the over hand a polarimetric spatial response
for each frequency and angle of illumination. This defines the
polarimetric hyperimage concept [4], [5] see 1.

A. Extended Span

The span is generally defined as the sum of the squared
modulus of each element of the matrix (13). The extended
span is now defined as the sum of the squared modulus of
each element of the hyper-scattering matrix (14).
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Fig. 1. Algorithm process to obtain polarimetric hyperimages

B. Pauli Hyperimages

By applying the Pauli decomposition [8] to the hyper-
scattering matrix, we obtain three interesting coefficients. For
each k0, (i.e. for an emitted frequency and for an observa-
tion angle), |α(r,k0)|2 (respectively |β(r,k0)|2, |γ(r,k0)|2)
represents the spatial repartition of the targets characterized
by single or odd-bounce (respectively double or even-bounce,
volume scattering).

For each r0, |α(r0,k)|2 (respectively |β(r0,k)|2,
|γ(r0,k)|2) represents the single or odd-bounce response
(respectively double or even-bounce response, volume
scattering response) relative to the illumination angle and to
the emitted frequency of the scatterer located at r0.

-0.200.2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

R
a

n
g
e

 
X

,
 
m

e
t
e

r
s

Pauli Decomposition

Cross-range Y, meters

Angle Theta ( ) 

F
r
e

q
u

e
n

c
y
 
(
H

z
)

Legend (RGB)

| S
hh

-S
vv 

|
 

| S
hv 

|

| S
hh

+S
vv 

|

Fig. 2. Time-frequency polarimetric signatures extracted from the Pauli
Hyperimage

C. Krogager Hyperimages

By evaluating the hyper-scattering matrix with the Krogager
decomposition [9],[10], we obtain three interesting coeffi-
cient. For each k0, the coefficients |ks(r,k0)|2, |kd(r,k0)|2,
|kh(r,k0)|2 are interpreted as the power scattered by the
sphere, the diplane and the helix components, for an emitted
frequency and for an observation angle. The phase parameter
ϑ(r,k0) stands for the orientation angle of the diplane and
helix components. The phases ϕ(r,k0) and ϕs(r,k0) have no
signification.

For a given r0, the parameters |ks(r0,k)|2, |kd(r0,k)|2,
|kh(r0,k)|2 express the sphere, diplane, helix responses ver-
sus emitted frequency and observation angle of the scatterer
located at r0. The phase parameter ϑ(r0,k) is interpreted as
the evolution of the orientation angle of the diplane and helix
components.

D. Cameron Hyperimages

By analyzing the hyper-scattering matrix with the Cameron
decomposition [11], [12], we obtain a new classification hyper-
image W (r,k) and allows to extract the Huynen orientation
ψ(r,k).

For each k0, the classification hyperimage and the Huynen
orientation represent the classification and the orientation of
the target around the line of sight for an illumination angle
and for an emitted frequency.

For each r0, the classification hyperimage and the Huynen
orientation express the polarimetric behavior evolution and the
angle in the vertical plane of the scatterer located at r0.

IV. CLASSIFICATION PROCESS

All in all, for each reflector located at r0 = (x0, y0)T ,
we can extract its feature Ĩ(x0, y0, f, θ) for each frequency
f and for each angle θ. This aspect is the one we have
decided to point out in order to see if this quantity can be
interpretable in terms of target characteristics. This signature
is called polarimetric time-frequency signature.

A. The multi-layer Perceptron

A multi-layer perceptron is a feedforward artificial neural
network model that maps sets of input data onto a set of
appropriate output. The structure of our multi-layer perceptron
is described figure (3). It is composed of nodes whose the
processing is :

a
(1)
j =

d∑
i=1

w
(1)
ij xi + b

(1)
j (15)

Where a(1)
j associated input with each hidden unit. Here w(1)

ij

represents the elements of the fisrt-layer weight matrix and bj
are the bias parameters associated with the hidden unit. The
variables a(1)

j are then transformed by the non-linear activation
function of the hidden layer. The activation function is tanh.
The outputs of the hidden units are given by :

zj = tanh(a(1)
j ) (16)
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Fig. 3. Architecture of the multi-layer perceptron

which has the property that :

dzj

da
(1)
j

= 1− z2
j (17)

The zj are then transformed by the second layer of wheights
and biases to give second-layer activation values a(2)

k :

a
(2)
k =

M∑
j=1

w
(2)
ij zj + b

(2)
k (18)

Finally, these values are passed throught the output-unit
activation function to give output values yk. For the more usual
kind of classification problem in which we have of c mutually
exclusive classes, we use the softmax activation function of
the form :

yk =
exp(a(2)

k )∑
k′ a

(2)
k

(19)

Our multi-layer perceptron is a three layers whose the
number of nodes of the input layer is equal to the number
of input, the output layer is equal to the number of class to
obtain a probability density whose the maximum defines the
class which the scatterer is and the number of nodes of the
hidden-layer is calculated following :

NHidden−Layer =
√
NinputNoutput (20)

B. The learning Basis

The learning basis is composed of seven canonical targets
: trihedral, dihedral, head of weapon, plate, two cylinders,
and cone. The backscattering coefficient is measured for a
frequency bandwith between 12 GHz and 18 GHz with a
sampling step of 7.50 MHz and for an angular excursion
between −20 and 20 with a sampling step of 0.5. From the
image the polarimetric time-frequency signatures are extracted
and selected manually. Then, the signature is translated in the
angle domain to release the orientation phenomena. Indeed,
two scatterers of same nature with different orientation must
have the same classification.This learning basis is sent to the
neural network for a supervised learning based on the scaled
conjugate gradiant algorithm.
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Fig. 4. Learning basis of time-frequency polarimetric signatures extracted
from the Pauli Hyperimage

V. RESULTS

The target under study is a ”Cyrano” weapon model in steel.
The backscattering coefficient is measured for a frequency
bandwith between 12 GHz and 18 GHz with a sampling step of
7.50 MHz and for an angular excursion between −20 and 20
with a sampling step of 0.5. From the image the polarimetric
time-frequency signatures are extracted and sent to the neural
network.

A. Extended Span results

The results of the extended span are represented on the
figure (5). The head of ”Cyrano” is classified as a head of
weapon. The trailing edges of wing are identified as dihedral.
It can be explained by the fact the responses of the edges
and of diplane are directive responses. The closed air exit is
classified as a specular plate because the response is directive.
The open air intake is identified as a head of weapon because
the polarimetric time-frequency signature is isotropic and non-
dispersive. For the stabilizers the classification is a melting pot
of cylinder, head of weapon and cone contribution.

B. Pauli time-frequency signatures results

The results of the Pauli hyperimage are represented on the
figure (6). The head of ”Cyrano” is classified as a head of
weapon. The trailing edges of wing are identified as dihedral
or plate. It can be explained by the fact the responses of the
edges are directive responses with a melting pot of simple
bounce and double bounce contribution. The closed air exit is
classified as a specular plate because the response is directive.
The open air intake is identified as a cylinder because the
polarimetric time-frequency signature is isotropic and non-
dispersive. For the stabilizers the classification is a melting
pot of cylinder, head of weapon and plate.
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C. Krogager time-frequency signatures results

The results of the Krogager hyperimage are represented
on the figure (7). The head of ”Cyrano” is classified as a
head of weapon. The trailing edges of wing are identified as
dihedral or plate. It can be explained by the fact the responses
of the edges are directive responses with a melting pot of
simple bounce and double bounce contribution. The closed
air exit is classified as a specular plate because the response
is directive with a simple bounce behavior. The open air
intake is identified as a cylinder because the polarimetric time-
frequency signature is isotropic and non-dispersive. For the
stabilizers the classification is a melting pot of cylinder, head
of weapon and plate.

D. Cameron time-frequency signatures results

The results of the Cameron hyperimage are represented on
the figure (8).These results are not convincing. Indeed, the
Cameron hyperimage is composed by a set of polarimetric
classes and our learning basis is not sufficient.

VI. CONCLUSION

Usually, radar imaging considers scatterers as a set of
”bright points”. However new applications using a wide band-
with and a large angular excursion does not make this assump-
tion. Multi-dimensional time-frequency highlights this point of
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Fig. 8. Classifications results obtained by the multi-layer perceptron in using
the Cameron Hyperimage

view. Polarimetry gives some informations on the geometry
and on the orientation. The joint using multi-dimensional
analysis and polarimetric coherent decomposition allow to
extract polarimetric time-frequency signatures.

These polarimetric time-frequency signatures explain the
non-stationnary behaviors of scatterers and are an information
source. The goal of this paper is to use the polarimetric time-
frequency signatures to classify scatterers.

In this paper, a supervised classification is proposed. The
learning basis is a set of canonical targets whose the backscat-
tering center is selected manually. So, a neural network is
trained by the learning basis. The anechoic chamber data are
feedforward to the multi-layer perceptron.

The results show that polarimetric time-frequency signatures
allow to characterize scatterers. However, our learning basis
is not sufficient to compare these results to the coherent
decomposition.
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