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Introduction and Motivations

Let us consider a hyperspectral image of Gaussian independent and identically distributed data, N spatial dimension and m spectral dimension

GOAL: Detecting and Estimating the number of anomalies on a Hyperspectral Image

•Large number of data: N and m are of same order
with possibly N > m

⇒ If (N ,m) → ∞
Then Law of Large Number not valid anymore

Statistical Model :

•Detect K independent anomalies among N observations

xi independent gaussian noise vectors
yi observation vectors
∗ For the K ′ =

∑

Ki observations with anomalies:

yi =

Ki
∑

j=1

αj√
m

pj + xi ∼ CN
(

αj√
m

p,M

)

∗ For the others:
yi = xi ∼ CN (0,M)

Example

Hyperspectral image DSO National
Laboratories.

Contribution : Using techniques of random matrix theory for hyperspectral images.

White Gaussian Noise

•Sample Covariance Matrix (SCM): M̂ = 1
N−1

N
∑

n=1

yiy
H
i

• SCM : Distribution of the eigenvalues → Marchenko-Pastur Law
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Marchenko−Pastur Distribution

Theorem : [1] WN ∈ C
m×N with independent identically distributed

entries p mean=0 p variance=1
If N,m → ∞, x ∈ compact set, λ0,N =maxSpectre( 1

NWNW
H
N )

Then

P

(

m2/3
λ0,N − bN

σN
≥ x

)

→ FTW (x),

FTW Tracy-Widom distribution

cN = m/N < 1, bN =
(

1 +
√
cN
)2
, σN =

(

1 +
√
cN
)

c
4/3
N

•Hypothesis Test [2]
H0 : at most k anomalies
H1 : at least k anomalies

λ̂k,N

H1

≷
H0

{

σ̂2(k)

(

bN +
σN

m2/3

(

F−1
TW (1− α)

)

)

= ζN

}

K̂N = argmink

(

λ̂k,N < ζN

)

− 1.
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Correlated Gaussian Noise

•Noise Sample Available (Anomaly free)

∗ Whiten the signal
∗ Same Test, bN and σN different

•No Noise Sample Available

∗ Find a gap between distance of two consecutive eigenvalues [2]

K̂N = argmaxk∈{1,...,L−1}
(

λ̂k−1,N

λ̂k,N
> 1 + threshold

)

with L > K and λ−1 = +∞

Experimental Results

•Gaussian noise anomaly free sample avail-
able

SNR 44 45 46 46.4 47

K̂estimean 0 1.2 3.1 4 4
V ar 0 0.16 0.16 0 0

K̂AIC 0 0 2 2.9 4
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•No non-gaussian noise sample available

∗ PFA-threshold relationship obtained with
simulated data
⇒ Choice of the threshold

•Real image with a car to detect

First eigenvalues ratios
with car 37 3.4 4.3 3.6 1.1 2.0

without car 16 3.1 4.3 3.3 1.3 2.0

Threshold = 34.7 ⇒ Car detected .

Conclusion

•Classical methods for anomaly detection → not adapted for large m and N

•Monte-Carlo simulations→ illustrates improvement of this methods compared to AIC and
MDL.

•Further works will address the problem of correlated and non-Gaussian noise.
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