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Abstract: Radar Imaging is developed using a colored and non isotropic bright
points model. The study of the response of this model to simple
transformations (space shift, scale change, rotation) allows to define a
wavelet analysis which depends on the physical dimension of the problem. This
analysis gives the position of bright points versus the frequency and the
angle at and under which they reflect. It has been implemented using an
original tool, the Mellin transform

1. GENERAL PRINCIPLES OF RADAR IMAGING

The radar imaging techniques are powerful analysis tools which allow to
characterize the backscattering properties of illuminated targets in order, if
necessary, to mask or, on the contrary, to amplify the echo of some parts of
the targets. Illuminating a target by a plane wave using a coherent radar in
anechoic chamber, the values of the complex backscattering coefficients H(ﬁ)
are collected for each frequency and each angles of presentation of the
target. The square modulus of H(k) obtained for the wave vector R in the
target coordinates system:
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is called the Radar Cross Section (RCS) of the target for the frequency f and
the illumination angle Q

2. CLASSICAL RADAR IMAGING

The most popular model developed in radar imaging is the model of white and
isotropic bright points [1]l. The target is modelized by a set of white and
isotropic bright points which respond in a_same way for all the frequencies
and for all the illumination angles. Let a(x) be the amplitude of bright point
X, the vector which defines its position in the target coordinates system. The
complex backscattering coefficient for the set of bright points becomes:
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Performing the Fourier transform of H, we obtain the density of the
repartition of bright points for a mean frequency (center frequency of the
emited bandwidth) and for a mean angle (center angle of the angular analysis
extent). The classical and fast techniques of radar imaging are based on the
Fourier transform. In this case, only small angular extent around the target
is possible in order that sin6=8 and cosf8=1 in the relation (2). The new radar
imaging technique allows to avoid this problem while keeping a fast and
discrete computation algorithm. Moreover, the bright points of the target does
not respond in the same way for all the frequencies (colored points) and all
the illumination angles (non isotropic points). By removing the classical
assumptions, the density a(x) of the repartition of bright points must depend
on the wave vector K. This operation makes the inversion of the integral
transform impossible by classical Fourier transformation techniques:



The group theory, dimensional analysis and wavelet analysis allow to
define a radar image for each frequency and angle of illumination [2].

3. RADAR IMAGING BY DIMENSIONALIZED WAVELET TRANSFORM

The group to consider in radar imalging is the similarity group in space
{rotations X, dilations a, translations &x%). This group transforms the bright
points model in the following way:
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The complex backscattering coefficient of the target can be considered as
the ratio between the reflected field Er, which can be assimilated to a

spherical wave and the incident field El which will be always assimilated to a

plane wave. This coefficient can be written as [3]:

H(F) = lim v4nR® E /E, HafR/c (4)
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The square modulus of the coefficient H has the dimension of an area. In
a clock change (dilation or contraction of the time), any physical quantity
must be corrected in order that any observer who puts up with this clock
change has the same measure of this quantity. In our particular case, the SER
of the different bright points must be at the same level if the model is
reduced by any scale factor and the frequencies increased in the inverse
ratio. Thus, in a transformation of the affine group, the complex
backscattering coefficient H must be corrected by some power of the
compression factor in order to keep coherence between all the observers. The
transformation of H by the similarity group leads to:
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The scale change of length does not change only the coordinates of bright
points but also the unit used for the evaluation of H.

The spatial repartition Im of bright points in the space R™ (which

depends on their spatial localization and on their wave vector), can be viewed
as a density, such that its integral crv(k) over a space volume V represents

the partial contribution of SER of the elements of V. If the dimension §_f the
problem is noted by m (m=1,2,3), then Im must have the dimension L“™" (L

stands for a length), in order that crv('l?) has an area dimension which
characterizes the square modulus of H (SER dimension). Acting with the
similarity group, these images must be transformed according to the scheme:
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The factor az-m is always a dimensional factor which ensures the
coherence of the measure of the images. Among all the images Im, the

distributions Lz > localized in (;t)o,f()o) which remain localized after
0’7o



similarity transformation are of the form:
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let ®(k,Q) be a backscattering function of a reference target. Let this

function be localized around the origin x=0, reflect essentially in the

direction of the unit vector n which defines the unit wave ve_)ctor k for the

frequency f=1 and be invariant by all the rotations around R axis. By the

similarity group and following the transformation scheme g1ven by (3) with

a—l/ko 6x—x0, R= rotation of angle Qo a family \p.; (k) called wavelet
X o

basis can be generated from the mother wavelet ¢(k,Q) in the following way:
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This construction process makes the wavelet basis identical for all the
observers and depends only on the mother wavelet of the reference target. We
have hence obtained a set of coherent states for the similarity group which
can be used for wavelet analysis [5]. The wavelet coefficient C(zo,ko) is

therefore introduced as the invariant scalar product between the complex
backscattering coefficient H and each element of the wavelet basis:
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with J‘ dQ = 1 in dimension one, dQ2 = d6 in dimension two and d = cos¥ d¥ de

in dlmensmn m=3. This invariant scalar product plays an important part
because the wavelet coefficient becomes without dimension. This coefficient is
therefore the same for all the observers. The main approach of the
construction of the images is to interpret, thanks to isometry relation, the
square modulus of the wavelet coefficient over its admissibility coefficient
as a probability density without dimension in the whole space (x,k). These
. . . 3D .
images can be therefore viewed as a mean of localized states Lg 2 (x,k) with
0’0
the density p(?o,fgo) = IC(i)o,l_c)o)Iz/ Km(¢). This approach gives:
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We obtain, for each analysis frequency and each illumination angle, the
repartition map of bright points of the target under analysis. We can study
the behaviour of the localization of these bright points when frequency and
111um1nat10n angle change. Finally, for a given frequency and_angle,
I (x B) a% represents the SER level of the % element in a vinicity A% of %.

4. BIDIMENSIONAL RADAR IMAGING

In two dimensions, the complex backscattering coefficient is collected
for each frequency and each illumination angle. The repartition map of bright
points represents the evolution of their SER level when frequency and
illumination angle vary. The chosen wavelet ¢(f,0) has the form:
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where A is a real parameter of the Klauder wavelet which controls its spread

in frequency and %9 is the standard deviation which controls its spread in

angle. Using the powerful tool of the Mellin transform, all operations to
compute numerically (10) for m=2 only need the Fast Fourier Transform
algorithm. For a number NfNe of computed radar images, the whole complexity of

this algorithm can be given by 2NxNy + 1 FFT of Nf points and 2NxNy + 1 FFT of

Ne points, if we note N the number of points in the radial space, N the
x v

number of points in the transversal space, Nf the number of points of H

collected in frequency space and Ne the number of points of H in angular space

We now present simulations made in anechoic room on a small target. This
one has a length of 60cm and a width of 40cm (Fig. 3) and is illuminated by
plane waves. The analysis bandwidth is 8.2-12.4Ghz between -30 and 30 degrees.
The complex backscattering coefficient is collected for each geometrical
frequency on the analysis bandwidth and for each angle of target presentation.
Figures 1 and 2 represent the results obtained with the technique described

before for different values of parameters A and Tg For each series of

parameters A and ¢_, we have chosen to display only three images among all the

e)
foNe computed. For each image, one can distinguish the nose, the wings, the

air intake and the bottom of the missile which are reflecting most of the
energy.

The first images series (analysis on [8.2, 12.4] Ghz and [-20°, 20°]) of
Fig.l1 is obtained for a large frequency width of the wavelet (A=10) and a

large angular width of the wavelet (a‘e=20°). The three images (a), (b) and (c)

are given for the set of parameters (f°=9Ghz, 6°=0°), (fo=10.3Ghz, 60=0") and
(fo=11.3, 6=0°) . It can be noted that the three images are not fundamentally

different in frequency (the wavelet has a wide bandwidth) with nevertheless a
better range resolution at high frequency. The second images series of Fig.l

represents the same analysis but with narrow-band wavelet (A=100, ce=30°) on

(8.2, 12.4] Ghz and [-10, 10] degrees. Hence, the range resolution is not as
good as in the previous series but the bright points localization changes with
frequency. These two examples show the duality between good range resolution
and good resolution frequency. The third images series of Fig.2 shows the
behaviour of the radar images for different angle of target presentation. With
a wide angular and frequency extent (A=10, T5= 20°) wavelet on [8.2, 12.4] Ghz

and [-30, 30] degrees, the three images (a), (b) and (c) are obtained for the
same frequency fo=10.30hz but for different angles of analysis e°=—25°, Go=0°

and 90=25°. It can be noted that the right wing has disappeared for 6°=-25°
and the left one has disappeared for e°=25°. The last images series of the
figure 2 obtained for A=10 and 0‘6=5° with analysis on [8.2, 12.4] Ghz and

[-20, 20] degrees shows the duality between good angular resolution and good
cross-range resolution. The three images (a), (b) and (c) are given for the
same frequency f 0=10.3 and different angles of analysis -15°, 0° and 15°
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Figure 1: Two dimensional radar images of a missile
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Figure 2: Two dimensional radar images of a missile
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Figure 3: Reduced model of the analysed missile

5. CONCLUSION

This radar imaging technique is interesting for several raisons. The
model of bright points is improved. First, the bright points are viewed as
colored and non isotropic and their space localization changes with frequency
and illumination angle. The dimensional constraints play an important role in
wavelet analysis. The measure of the different physical quantities in use must
be perfectly coherent for all the observers. Secondly, all the acquisitions of
the complex backscattering coefficient are made using a polar discretization.
This one is based on a geometric frequency sampling of H and an arithmetic
angle sampling. All the transformations used for the images computations need
only the Discrete Mellin Transform and only the Discrete Fourier Transform
(which need both only a FFT algorithm) and avoid the classical procedure of
interpolation between polar space coordinates and cartesian space coordinates.
Finally, the Mellin transform has been used successfully in problem concerning
wide band signal analysis: fast computation of wide-band ambiguity function,
wavelet transform, affine time frequency representation, wide-band radar
imaging and theorical computation of the Cramer-Rao bounds in the broad-band
case of the velocity estimate [8].
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