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ABSTRACT

This paper presents a detailed theoretical analysis of a recently
introduced covariance matrix estimator, called the Fixed Point Es-
timate (FPE). It plays a significant role in radar detection applica-
tions. This estimate is provided by the Maximum Likelihood Es-
timation (MLE) theory when the non-Gaussian noise is modelled
as a Spherically Invariant Random Process (SIRP). We study in
details its properties: existence, uniqueness, unbiasedness, consis-
tency and asymptotic distribution. We propose also an algorithm
for its computation and prove the convergence of this numerical
procedure. These results will allow to study the performance anal-
ysis of the adaptive CFAR radar detectors (GLRT-LQ, BORD,...).

1. PROBLEM STATEMENT AND BACKGROUND

Non-Gaussian noise characterization has gained many interests sin-
ce experimental radar clutter measurements showed that these data
are correctly described by non-Gaussian statistical models. One of
the most tractable and elegant non-Gaussian model comes from the
so-called Spherically Invariant Random Process (SIRP) theory. A
SIRP is the product of a Gaussian random process - called speckle
- with a non-negative random variable - called texture. This model
leads to many results [1, 2, 3, 4].

The basic problem of detecting a complex signal corrupted by
an additive SIRP noise c in a m-dimensional complex vector y al-
lowed to build several Generalized Likelihood Ratio Tests like the
GLRT-Linear Quadratic (GLRT-LQ) in [1, 2] or the Bayesian Op-
timum Radar Detector (BORD) in [3, 4].

Let us recall some SIRP theory results. A noise modelled
as a SIRP is a non-homogeneous Gaussian process with random
power. More precisely, a SIRP [5] is the product of a positive ran-
dom variable τ (texture) and a m-dimensional independent com-
plex Gaussian vector x (speckle) with zero mean covariance matrix
M = E(xx†) with normalization tr (M) = m, where † denotes the
conjugate transpose operator :

c =
√

τ x .

The SIRP PDF expression is:

pm(c) =

Z +∞

0

gm(c, τ ) p(τ )dτ , (1)

where

gm(c, τ ) =
1

(π τ )m |M| exp

„
− c† M−1 c

τ

«
. (2)

In many problems, non-Gaussian noise can be characterized
by SIRPs but the covariance matrix M is generally not known
and an estimate bM is required. Obviously, it has to satisfy the
M-normalization: tr ( bM) = m.

In the literature [6, 7], the Normalized Sample Covariance Ma-
trix Estimate (NSCME) defined as follows is usually used:

bMNSCME =
m

N

NX
i=1

 
ci c†i
c†i ci

!
=

m

N

NX
i=1

 
xi x†

i

x†
i xi

!
, (3)

where 1 ≤ i ≤ N , ci =
√

τi xi are m-dimensional indepen-
dent complex SIRP vectors and xi are m-dimensional independent
complex Gaussian vectors with zero mean and normalized covari-
ance matrix M.

This estimate is remarkably independent of the texture statis-
tics. However, despite of this interesting property, the NSCME (3)
suffers the following drawbacks:

• it is a biased estimate;

• the resulting adaptive Generalized Likelihood Ratio (GLR)
is not independent of matrix M characteristics.

In the next sections, we propose to introduce and analyze an
improved estimator of M: the FPE estimator.

2. THE FIXED POINT ESTIMATOR bMF P

Conte and Gini in [8, 9] have shown that the Maximum Likelihood
estimator bM of M is a solution of the following equation:

bM =
m

N

NX
i=1

 
cic†i

c†i bM−1
ci

!
. (4)

Existence and uniqueness of the above equation solution have
been investigated in a previous paper [10] and we briefly recall
here the main results in Theorem 1.



Let function f be defined as:

f( bM) =
m

N

NX
i=1

 
cic†i

c†i bM−1
ci

!
, (5)

and notice that f can be rewritten as follows, which shows that bM
is also texture statistics independent:

f( bM) =
m

N

NX
i=1

 
xix†

i

x†
i
bM−1

xi

!
. (6)

Theorem 1

1. the function f admits a single fixed point, called bMfp, which
verifies

f( bMfp) = bMfp. (7)

2. Let us consider the recurrence relation

bMt+1 =
m

tr
“
f( bMt)

”f( bMt) (8)

Then bMt −−−→
t→∞

bMfp.

The point one of the theorem shows that the Maximum Like-
lihood estimate bMfp exists and is unique.
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Fig. 1. Illustration of the convergence to the fixed point.

Figure 1 illustrates the second point of the above theorem. On
this figure, the relative error ‖f( bMt) − bMt‖/‖ bMt‖ has been plot-
ted versus t with initial value bM0 = bMNSCME (3).

Other simulations have been performed with different initial
values bM0 (ex : sample Gaussian covariance estimate, matrix with
uniform PDF, deterministic Toeplitz matrix), each of them con-
ducting to the same value with an extremely fast convergence :

‖f( bMt) − bMt‖ −−−→
t→∞

0

But bMfp is only given in (7) as an implicit function of the data:
there is no closed form expression for bMfp. So, it is a significant
feature to characterize bMfp by its properties. The statistical prop-
erties have never been investigated. The purpose of this paper is

to fill these gaps by establishing the bias, the consistency and the
asymptotic distribution of this random matrix: this is the aim of
the next section.

3. bMF P PROPERTIES

In order to simplify the notations in the proofs, let us define the
following quantities:

• bM = bMfp;

• ∆ = M−1/2 bM M−1/2 − Im where Im is the m×m iden-
tity matrix;

• X = vec(∆) where X is the vector containing all the el-
ements of ∆ and vec denotes the operator which reshapes
the m × n matrix elements into a mn column vector;

• � denotes the transpose operator.

3.1. Bias and consistency

Proposition 1 bMfp is unbiased and it is a consistent estimator.

Proof 1 This proof will appear in a forthcoming journal paper.
It is too long to fit here and we decided to detail the proof of the
next proposition.

3.2. bMfp covariance matrix

Proposition 2 We have the following original results with the above
notations:

1.
√

N

»
Re(X)
Im(X)

–
law−−−−−→

N→+∞
N `

02m2 , C
´

, where
law−−→ rep-

resents the convergence in distribution;

2. N E
`
XX�´ =

„
m + 1

m

«2

C1 where

C1 =
m

m + 1

„
P − 1

m
vec(Im)vec(Im)�

«
; (9)

3. N E
`
XX†´ =

„
m + 1

m

«2

C2 where

C2 =
m

m + 1

„
Im2 − 1

m
vec(Im)vec(Im)�

«
. (10)

Notice that C, which is the covariance matrix of

»
Re(X)
Im(X)

–
,

is fully characterized by the two quantities E
`
XX�´ and E

`
XX†´.

Proof 2 First, let us define bM = M + ∆1 . Notice that

∆1 = M1/2∆M1/2 . (11)

For large N , ∆1 � 0m×m because of the bM consistency.

We suppose N to be large enough to ensure the validity of the
first order expressions.



We can write

bM−1
=

`
M
`
Im + M−1∆1

´´−1

=
`
Im + M−1∆1

´−1 M−1

� `
Im − M−1∆1

´
M−1

� `
M−1 − M−1∆1M−1

´
.

For N large enough, this implies that:

bM � m

N

NX
i=1

xix∗
i

x∗
i

`
M−1 − M−1∆1M−1

´
xi

. (12)

Hence,

∆1 � m

N

NX
i=1

„
xix∗

i

x∗
i

`
M−1 − M−1∆1M−1

´
xi

«
− M . (13)

Let us define yi = M−1/2xi where yi are gaussian iid com-
plex vectors with identity covariance matrix. Then,

M−1/2∆1M−1/2 � m

N

NX
i=1

yiy
∗
i

y∗
i

`
Im − M−1/2∆M−1/2

´
yi

−Im ,

(14)
or equivalently using expression (11),

∆ � m

N

NX
i=1

yiy
∗
i

y∗
i yi

„
1 − y∗

i ∆yi

y∗
i yi

«− Im . (15)

We obtain at the first order, for large N,

∆ � m

N

NX
i=1

„
yiy

∗
i

y∗
i yi

„
1 +

y∗
i ∆yi

y∗
i yi

««
− Im . (16)

To find the explicit expression of ∆ in terms of data, the above
expression can be reorganized as:

∆ − m

N

NX
i=1

„
yiy

∗
i

y∗
i yi

y∗
i ∆yi

y∗
i yi

«
� m

N

NX
i=1

„
yiy

∗
i

y∗
i yi

«
− Im . (17)

To solve this m2-system, the above equation has to be rewrit-
ten as:

B X � vec

 
m

N

NX
i=1

„
yiy

∗
i

y∗
i yi

«
− Im

!
, (18)

where

• X = vec(∆) ,

• B = Im2 − m

N

NX
i=1

Di

(yiy
∗
i )

2
,

• Di is the m2 ×m2 matrix defined by Di = (dkl)
(i)

1≤k,l≤m2

with
dkl = yp yq yp′ yq′

and


k = p + m(q − 1) with 1 ≤ p, q ≤ m
l = p′ + m(q′ − 1) with 1 ≤ p′, q′ ≤ m

.

Notice that the vec operator reorganizes the matrix elements
as follows: if H =

`
hij

´
1≤i,j≤m

and vec(H) = (vk)1≤k≤m2 ,

then hij = vk for k = (j − 1)m + i .

Let us set in equation (18):

A = vec

 
m

N

NX
i=1

„
yiy

∗
i

y∗
i yi

«
− Im

!
. (19)

Using the Central Limit Theorem (CLT), the right hand side of
equation (18) satisfies:

√
N

»
Re(A)
Im(A)

–
law−−−−−→

N→+∞
N `

02m2 , G
´

, (20)

where G is the covariance matrix of

»
Re(A)
Im(A)

–
,

while B at the left hand side, by the Strong Law of Large Num-
bers (SLLN), has the following property:

B a.s.−−−−−→
N→+∞

C2 = Im2 − m E

„
Di

(y∗
i yi)

2

«
. (21)

Thus, from standard probability convergence considerations,
we obtain the first point of proposition 2. Moreover, for large N ,
we have the following equations:

E
`
XX�´ = C−1

2 E
`
AA�´C−1

2

E
`
XX†´ = C−1

2 E
`
AA†´C−1

2

. (22)

Let us now turn to the closed form expression of C2 .

C2 = Im2 − m E

„
D

(y∗y)2

«
, (23)

where D is the m2×m2 matrix defined by D = (dkl)1≤k,l≤m2

with dkl = yp yq yp′ yq′ .

Now, as we have y =
`
y1, . . . , ym

´� ∼ N (0m, Im) , we can

rewrite yj =
p

rj/2 exp(iθj) where ∀j ∈ {1 . . . m} , rj and θj

are independent variables, with rj ∼ χ2(2) and θj ∼ U([0, 2π]) .

Then, ∀ 1 ≤ p, q, p′, q′ ≤ m , let us set for the elements of

E = E

„
D

(y∗y)2

«
in (23):

Ekl = E

„
yp yq yp′ yq′

(y∗y)2

«
.

Thus, with the above notations, we have:

Ekl = E

 √
rp rq rp′ rq′`Pm

j=1 rj

´2
!

E
`
exp(i(θp − θq + θq′ − θp′))

´
We can notice that E

`
exp(i(θp − θq + θq′ − θp′))

´ 
= 0 if
and only if

1. p = q = p′ = q′ ,

2. p = q , p′ = q′ et p 
= p′ ,

3. p = p′ , q = q′ et p 
= q ,

which is equivalent to:

1. k = l = p + m(p − 1) ,



2. k = p + m(p − 1) , l = p′ + m(p′ − 1) and p 
= p′ , i.e.
k 
= l

3. k = p + m(q − 1) , l = p + m(q − 1) and p 
= q .

Finally, the non zero elements of the matrix E are:

1. Ep+m(p−1),p+m(p−1) = E

 
r2

p`Pm
j=1 rj

´2
!

=
2

m(m + 1)

2. Ep+m(p−1),p′+m(p′−1) = E

 
rp rp′`Pm
j=1 rj

´2
!

=
1

m(m + 1)

3. Ep+m(q−1),p+m(q−1) = E

 
rp rq`Pm
j=1 rj

´2
!

=
1

m(m + 1)

In summary, we obtain the closed form expression of C2 given
by (10). In a similar way, we have derived the following results:

• C1 =
m

m + 1

„
P − 1

m
vec(Im)vec(Im)�

«
where P is the

m2 × m2 nilpotent matrix defined as follows:

Pij = 0 and for 1 ≤ p, p′ ≤ m :

- Pp+m(p−1), p+m(p−1) = 1 ,

- Pp+m(p′−1), p′+m(p−1) = 1 ,

• NE
`
AA�´ = C1 and NE

`
AA†´ = C2.

4. APPLICATIONS

In radar detection, the following test is used to detect, in an m-
vector observation z, a complex known signal s whose Doppler
characteristics are represented here by its steering vector p:

Λ̂( bM) =
|p† bM−1

z|2
(p† bM−1

p)(z† bM−1
z)

H1
≷
H0

λ . (24)

In a previous paper [10], we have derived the closed form expres-
sion of the relation between the Probability of False Alarm (PFA)
and the detection threshold λ, under Gaussian noise assumption
and for bM equal to the sample covariance matrix (Wishart dis-
tributed).

As illustrated on the Figure 2, results obtained in this paper
allowed us to show that the previous relation is surprisingly still
valid under any SIRP noise and for bM equal to the FPE. Indeed,
the covariance matrix of the Wishart matrix (not done in this pa-
per) is the same near to a multiplicative scalar factor as the FPE
covariance matrix established in this paper. Then, the asymptotic
behavior of the previous estimates is the same near to a multiplica-
tive scalar factor.

5. CONCLUSIONS AND OUTLOOK

We have established in this paper the theoretical statistical prop-
erties (unbiasedness, consistency, asymptotic distribution) of the
MLE SIRP kernel covariance matrix estimate. Simulation results
have confirmed the validity of this work.

These properties will be of practical use in radar detection for
establishing the statistics of the GLRT-LQ or BORD radar detec-
tors. These adaptive detectors built with the FPE will have the fol-
lowing significant feature: they will be SIRP-CFAR (independent
of the texture statistics as well as the structure of the covariance
matrix M of the SIRP gaussian kernel).

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−4

10
−3

10
−2

10
−1

threshold λ

P
F

A

Curves "PFA−threshold" − CFAR property

Gaussian
K−distribution
Student−t
Cauchy
Laplace
M estimated with N=20
M Theoretic

N = 20;

m = 10; 

Fig. 2. Relation ”PFA-threshold” for different SIRP noises

6. REFERENCES

[1] E. CONTE, M. LOPS AND G. RICCI, ”Asymptotically Op-
timum Radar Detection in Compound-Gaussian Clutter”,
IEEE Trans.-AES, 31(2) (April 1995), 617-625.

[2] F. GINI, ”Sub-Optimum Coherent Radar Detection in
a Mixture of K-Distributed and Gaussian Clutter”, IEE
Proc.Radar, Sonar Navig, 144(1) (February 1997), 39-48.

[3] E. JAY, J.P. OVARLEZ, D. DECLERCQ AND P. DUVAUT,
”BORD : Bayesian Optimum Radar Detector”, Signal Pro-
cessing, 83(6) (June 2003), 1151-1162
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