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Context and Objectives

Shape Matrix:
• normalized version of the covariance matrix
• plays a central role in adaptive signal processing
• often exhibits a particular structure (e.g., Toeplitz for ULAs
or AR processes)

Robust

p

framework:
• impulsive noise, heterogeneous environment,

p

high resolution systems
• non-Gaussian distributions  outliers rejection

Structured

p

estimation:
• improves the estimation accuracy
• robust framework: RCOMET [1], COCA [2], . . .

Purposes: ∗ introduce a recursive version of RCOMET and conduct asymptotic performance analysis
∗ analyze the recursion convergence for the Hermitian persymmetric structure

Statistical framework and data model

Complex Elliptical Symmetric distribution [3]: x d=
√
QAu︸ ︷︷ ︸ ∼ CESm

(
0,M , AAH, g

)
u ∼ Uq (CSq), random variable Q ≥ 0 such that u |= Q

�

unknown in practice

�

Complex Angular Elliptical distribution [2]: y = x
‖x‖
∼ Um (M) , x 6= 0

• free from density generator function
• probability density function: pY(y; M) ∝ |M|−1

(
yHM−1y

)−m
• shape matrix M defined up to a scale factor  needed constraint, e.g., Tr (M) = m

Tyler’s M -estimator [4]: M̂FP = 1
N

N∑
n=1

ynyHn
yHn M̂−1

FPyn
, H

(
M̂FP

)
with yn ∼ Um (M) i.i.d.

• existence for N > m, uniqueness up to a scale factor  no ambiguity with Tr
(
M̂FP

)
= m

• Maximum Likelihood estimator of the shape matrix
• convergence of the iterative algorithm Mk+1 = H (Mk) towards M̂FP for any M0

• statistical performance: consistency, unbiasedness, asymptotic Gaussian distribution [5]

Problem setup and RCOMET algorithm

Let be yn ∼ Um
(
Me ,M (µe)

)
, n = 1, . . . , N , i.i.d. such that N > m.

We assume:
• Me ∈ S convex subset of Hermitian positive-definite matrices
• there exists a one-to-one differentiable mapping µ 7→M (µ) from RP to S
Unknown parameter: µ ∈ RP giving a structured estimate M (µ̂) and with exact
value µe

RCOMET algorithm [1]: 2-step procedure

• µ̂0 = arg min
α>0,µ

Tr
[ {(

M̂FP − αM (µ)
)

M̂−1
FP

}2 ]
such that Tr [M (µ̂0)] = m.

• Asymptotic performance: µ̂0
P→ µe and

√
N (µ̂0 − µe)

L→ N
(
0, [F (µe)]

−1)
Fisher Information matrix

�

• Substantial sample support to reach its asymptotic regime
• M̂FP plays both the role of a target together with a metric specification
through M̂−1

FP  splitting these roles leads to a recursive formulation

Recursive RCOMET Procedure

Algorithm: let be 1 ≤ K <∞ and µ̂0 the RCOMET estimate

For k ∈ [[1, K]] µ̂k = arg min
α>0,µ

Tr
[{(

M̂FP − αM (µ)
)

M (µ̂k−1)
−1}2]

(1)

R-RCOMET estimate: µ̂K such that Tr [M (µ̂K)] = m

Asymptotic performance: µ̂K
P→ µe and

√
N (µ̂K − µe)

L→ N
(
0, [F (µe)]

−1)
Comments: 3 same asymptotic performance as RCOMET

3 empirical improvement of low sample support performance in most cases
7 convergence for K →∞ difficult to conduct in general  case by case study

Practical stopping rule: combination of k ≤ Kmax and ‖µ̂k+1 − µ̂k‖ ≤ εtol ‖µ̂k‖.
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Example for Hermitian Toeplitz structure
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R-RCOMET allows for an interesting performance-computational cost trade-off
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Example for Hermitian persymmetric structure

Tr (CRB)
PFP [6]
RCOMET [1]
R-RCOMET, K = 1
R-RCOMET, K = 2

Case: Hermitian persymmetric structure

Hermitian persymmetric matrices set:
HPm =

{
A ∈ Cm×m|A = AH and A = JmATJm

}
exchange matrix

�

Natural parameterization:
↪→ real and imaginary parts
of Mr,s satisfying s ≥ r and
s ≤ m + 1− r


a1 a2 a3 a4
a∗2 a5 a6 a3
a∗3 a

∗
6 a5 a2

a∗4 a
∗
3 a
∗
2 a1

 µ =

a1
...
...

 ∈ RP

with P = m(m + 1)/2

∃J ∈ Rm2×P full-rank column, such that η (µ) , vec (M (µ)) = J µ

Surprising results for this particular case

Let µ̂K be the R-RCOMET estimate of µe. Then,
µ̂K = J †η̂FP ( 6= µ̂0 ) ∀K ≥ 1  R-RCOMET converges in only one step

= arg min
α>0,µ

‖η̂FP − αJ µ‖2
2 s.t. Tr [M (µ)] = m  Euclidean projection of M̂FP onto HPm

= J †
(
TT ⊗TH

)
vec

(
1
2

[
TM̂FPTH + T∗M̂T

FPTT
])
 Persymmetric Fixed-Point estimate from [6]

with J † left inverse of J , η̂FP = vec
(
M̂FP

)
and T unitary matrix, defined in [6, Proposition 1]

Perspectives

• Justification of the low sample support performance improvement
• R-RCOMET convergence study for other structures
• Investigate links with estimators on Riemannian manifolds
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