

On the Recursions of Robust COMET Algorithm for Convexly Structured Shape Matrix

B. Mériaux¹, C. Ren¹, A. Breloy², M.N. El Korso², P. Forster³ and J.-P. Ovarlez^{1,4}

¹SONDRA, CentraleSupélec, France ²LEME, Paris-Nanterre University, France ³SATIE, Paris-Nanterre University, France ⁴DEMR/ONERA, Paris-Saclay University, France

Context and Objectives Shape Matrix: Robust framework: Structured estimation: • normalized version of the covariance matrix • impulsive noise, heterogeneous environment, • improves the estimation accuracy high resolution systems • robust framework: RCOMET [1], COCA [2], ... • plays a central role in adaptive signal processing

- often exhibits a particular structure (e.g., Toeplitz for ULAs or AR processes)
- non-Gaussian distributions \rightarrow outliers rejection

Purposes: * introduce a recursive version of RCOMET and conduct asymptotic performance analysis * analyze the recursion convergence for the Hermitian persymmetric structure

Statistical framework and data model

Complex Elliptical Symmetric distribution [3]:
$$\mathbf{x} \stackrel{d}{=} \sqrt{Q} \mathbf{A} \mathbf{u} \sim \mathbb{C} \mathcal{E} \mathcal{S}_m \left(\mathbf{0}, \mathbf{M} \triangleq \mathbf{A} \mathbf{A}^H, g \right)$$

 $\mathbf{u} \sim \mathcal{U}_q (\mathbb{C} \mathbb{S}^q)$, random variable $Q \ge 0$ such that $\mathbf{u} \perp Q \checkmark$ unknown in practice \checkmark
Complex Angular Elliptical distribution [2]: $\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|} \sim \mathcal{U}_m (\mathbf{M}), \ \mathbf{x} \ne \mathbf{0}$

- free from density generator function
- probability density function: $p_{\mathbf{Y}}(\mathbf{y}; \mathbf{M}) \propto |\mathbf{M}|^{-1} \left(\mathbf{y}^H \mathbf{M}^{-1} \mathbf{y} \right)^{-m}$

• shape matrix **M** defined up to a scale factor \rightsquigarrow needed constraint, e.g., $\text{Tr}(\mathbf{M}) = m$

Fyler's *M*-estimator [4]:
$$\widehat{\mathbf{M}}_{\text{FP}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\mathbf{y}_n \mathbf{y}_n^H}{\mathbf{y}_n^H \widehat{\mathbf{M}}_{\text{FP}}^{-1} \mathbf{y}_n} \triangleq \mathcal{H}\left(\widehat{\mathbf{M}}_{\text{FP}}\right) \text{ with } \mathbf{y}_n \sim \mathcal{U}_m\left(\mathbf{M}\right) \text{ i.i.d.}$$

- existence for N > m, uniqueness up to a scale factor \rightsquigarrow no ambiguity with $\text{Tr}(\widehat{\mathbf{M}}_{\text{FP}}) = m$
- Maximum Likelihood estimator of the shape matrix
- convergence of the iterative algorithm $\mathbf{M}_{k+1} = \mathcal{H}(\mathbf{M}_k)$ towards \mathbf{M}_{FP} for any \mathbf{M}_0
- statistical performance: consistency, unbiasedness, asymptotic Gaussian distribution [5]

Recursive RCOMET Procedure

Algorithm: let be $1 \leq K < \infty$ and $\hat{\mu}_0$ the RCOMET estimate

Let be $\mathbf{y}_n \sim \mathcal{U}_m \left(\mathbf{M}_e \triangleq \mathcal{M} \left(\boldsymbol{\mu}_e \right) \right)$, $n = 1, \ldots, N$, i.i.d. such that N > m. We assume:

- $\mathbf{M}_{e} \in \mathcal{S}$ convex subset of Hermitian positive-definite matrices
- there exists a one-to-one differentiable mapping $\mu \mapsto \mathcal{M}(\mu)$ from \mathbb{R}^P to \mathcal{S}

Unknown parameter: $\boldsymbol{\mu} \in \mathbb{R}^{P}$ giving a structured estimate $\mathcal{M}(\hat{\boldsymbol{\mu}})$ and with exact value $\boldsymbol{\mu}_{\rm e}$

RCOMET algorithm [1]: 2-step procedure

- $\widehat{\boldsymbol{\mu}}_{0} = \arg\min_{\alpha > 0, \boldsymbol{\mu}} \operatorname{Tr} \left[\left\{ \left(\widehat{\mathbf{M}}_{\mathrm{FP}} \alpha \boldsymbol{\mathcal{M}} \left(\boldsymbol{\mu} \right) \right) \widehat{\mathbf{M}}_{\mathrm{FP}}^{-1} \right\}^{2} \right] \text{ such that } \operatorname{Tr} \left[\boldsymbol{\mathcal{M}} \left(\widehat{\boldsymbol{\mu}}_{0} \right) \right] = m.$
- Asymptotic performance: $\widehat{\boldsymbol{\mu}}_{0} \xrightarrow{\mathcal{P}} \boldsymbol{\mu}_{e}$ and $\sqrt{N} \left(\widehat{\boldsymbol{\mu}}_{0} \boldsymbol{\mu}_{e} \right) \xrightarrow{\mathcal{L}} \mathcal{N} \left(\mathbf{0}, \left[\mathbf{F} \left(\boldsymbol{\mu}_{e} \right) \right]^{-1} \right)$ Fisher Information matrix \leftarrow
- Substantial sample support to reach its asymptotic regime
- $\widehat{\mathbf{M}}_{\mathrm{FP}}$ plays both the role of a target together with a metric specification through $\widehat{\mathbf{M}}_{\mathrm{FP}}^{-1} \rightsquigarrow$ splitting these roles leads to a recursive formulation

For
$$k \in [\![1, K]\!]$$
 $\widehat{\boldsymbol{\mu}}_k = \arg\min_{\alpha > 0, \, \boldsymbol{\mu}} \operatorname{Tr}\left[\left\{\left(\widehat{\mathbf{M}}_{\mathrm{FP}} - \alpha \mathcal{M}\left(\boldsymbol{\mu}\right)\right) \mathcal{M}\left(\widehat{\boldsymbol{\mu}}_{k-1}\right)^{-1}\right\}^2\right]$

R-RCOMET estimate: $\hat{\boldsymbol{\mu}}_{K}$ such that $\operatorname{Tr}\left[\boldsymbol{\mathcal{M}}\left(\hat{\boldsymbol{\mu}}_{K}\right)\right]=m$

Asymptotic performance: $\widehat{\boldsymbol{\mu}}_{K} \xrightarrow{\mathcal{P}} \boldsymbol{\mu}_{e}$ and $\sqrt{N} (\widehat{\boldsymbol{\mu}}_{K} - \boldsymbol{\mu}_{e}) \xrightarrow{\mathcal{L}} \mathcal{N} (\mathbf{0}, [\mathbf{F}(\boldsymbol{\mu}_{e})]^{-1})$

<u>Comments</u>: \checkmark same asymptotic performance as RCOMET \checkmark empirical improvement of low sample support performance in most cases \checkmark convergence for $K \to \infty$ difficult to conduct in general \rightsquigarrow case by case study

Practical stopping rule: combination of $k \leq K_{\max}$ and $\|\widehat{\mu}_{k+1} - \widehat{\mu}_k\| \leq \varepsilon_{\text{tol}} \|\widehat{\mu}_k\|$.

Number of samples N

R-RCOMET allows for an interesting performance-computational cost trade-off

Surprising results for this particular case Let $\hat{\boldsymbol{\mu}}_{K}$ be the R-RCOMET estimate of $\boldsymbol{\mu}_{e}$. Then, $\widehat{\boldsymbol{\mu}}_{K} = \boldsymbol{\mathcal{J}}^{\dagger} \widehat{\boldsymbol{\eta}}_{\mathrm{FP}} (\neq \widehat{\boldsymbol{\mu}}_{0}) \quad \forall K \geq 1$ \sim R-RCOMET converges in only one step $= \arg\min_{\alpha>0, \boldsymbol{\mu}} \|\widehat{\boldsymbol{\eta}}_{\mathrm{FP}} - \alpha \boldsymbol{\mathcal{J}} \boldsymbol{\mu}\|_{2}^{2} \text{ s.t. } \mathrm{Tr} [\boldsymbol{\mathcal{M}}(\boldsymbol{\mu})] = m$ \rightsquigarrow Euclidean projection of $\widehat{\mathbf{M}}_{\mathrm{FP}}$ onto \mathcal{HP}_m $= \mathcal{J}^{\dagger} \left(\mathbf{T}^{T} \otimes \mathbf{T}^{H} \right) \operatorname{vec} \left(\frac{1}{2} \left[\mathbf{T} \widehat{\mathbf{M}}_{\mathrm{FP}} \mathbf{T}^{H} + \mathbf{T}^{*} \widehat{\mathbf{M}}_{\mathrm{FP}}^{T} \mathbf{T}^{T} \right] \right) \quad \rightsquigarrow \text{Persymmetric Fixed-Point estimate from [6]}$ with \mathcal{J}^{\dagger} left inverse of \mathcal{J} , $\hat{\boldsymbol{\eta}}_{\text{FP}} = \text{vec}\left(\widehat{\mathbf{M}}_{\text{FP}}\right)$ and \mathbf{T} unitary matrix, defined in [6, Proposition 1]

Case: Hermitian persymmetric structure

Hermitian persymmetric matrices set:

$$\mathcal{HP}_m = \left\{ \mathbf{A} \in \mathbb{C}^{m \times m} | \mathbf{A} = \mathbf{A}^H \text{ and } \mathbf{A} = \mathbf{J}_m \mathbf{A}^T \mathbf{J}_m \right\}$$

Natural parameterization:

 \hookrightarrow real and imaginary parts of $M_{r,s}$ satisfying $s \geq r$ and $s \le m + 1 - r$

exchange matrix
$$\checkmark$$

 $\begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ a_2^* & a_5 & a_6 & a_3 \\ a_3^* & a_6^* & a_5 & a_2 \\ a_4^* & a_3^* & a_2^* & a_1 \end{pmatrix} \rightsquigarrow \mu = \begin{pmatrix} a_1 \\ \vdots \\ \vdots \end{pmatrix} \in \mathbb{R}^P$
with $P = m(m+1)/2$

 $\exists \mathcal{J} \in \mathbb{R}^{m^2 \times P} \text{ full-rank column, such that } \boldsymbol{\eta}(\boldsymbol{\mu}) \triangleq \text{vec } (\mathcal{M}(\boldsymbol{\mu})) = \mathcal{J}\boldsymbol{\mu}$

Perspectives

- Justification of the low sample support performance improvement
- R-RCOMET convergence study for other structures
- Investigate links with estimators on Riemannian manifolds

[1] B. Mériaux, C. Ren, M. N. El Korso, A. Breloy, and P. Forster, "Robust-COMET for covariance estimation in convex structures: algorithm and statistical properties," in Proc. of IEEE CAMSAP, 2017.

[2] I. Soloveychik and A. Wiesel, "Tyler's covariance matrix estimator in elliptical models with convex structure," IEEE Trans. Signal Process., vol. 62, no. 20, pp. 5251–5259, Oct. 2014.

[3] E. Ollila, D. E. Tyler, V. Koivunen, and H. V. Poor, "Complex elliptically symmetric distributions: Survey, new results and applications," IEEE Trans. Signal Process., vol. 60, no. 11, pp. 5597–5625, Nov. 2012.

[4] D. E. Tyler, "A distribution-free M-estimator of multivariate scatter," The Annals of Statistics, vol. 15, no. 1, pp. 234–251, 1987.

[5] F. Pascal, P. Forster, J.-P. Ovarlez, and P. Larzabal, "Performance analysis of covariance matrix estimates in impulsive noise," IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2206–2217, Jun. 2008.

[6] G. Pailloux, P. Forster, J.-P. Ovarlez, and F. Pascal, "Persymmetric adaptive radar detectors," IEEE Trans. on Aerosp. and Electron. Syst., vol. 47, no. 4, pp. 2376–2390, Oct. 2011.

