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Context and Objectives

Shape Matrix: Robust framework: Structured estimation:
e normalized version of the covariance matrix e impulsive noise, heterogeneous environment, e improves the estimation accuracy
e plays a central role in adaptive signal processing high resolution systems e robust framework: RCOMET [1], COCA 2], ...

e often exhibits a particular structure (e.g., Toeplitz for ULAs ~ ® non-Gaussian distributions ~ outliers rejection

or AR processes
) Purposes: * introduce a recursive version of RCOMET and conduct asymptotic performance analysis

* analyze the recursion convergence for the Hermitian persymmetric structure

Statistical framework and data model Problem setup and RCOMET algorithm
Complex Elliptical Symmetric distribution [3]: x < \/éAu ~ CES,, (0, M £ AAY g) Let be y,, ~ U, (Me =M (Me)) ,n=1,...,N, 1id. such that N > m.
N ——
u ~ U, (CS?), random variable @ > 0 such that u_L Q 4 unknown in practice o We assume:
Complex Angular Elliptical distribution [2]: y = ﬁ ~ U, (M), x#0 o M, € S convex subset of Hermitian positive-definite matrices
X

o there exists a one-to-one differentiable mapping g — M () from R to S
e free from density generator function

e probability density function: py(y; M) o< |M| ™! (YHM_1Y) -

e shape matrix M defined up to a scale factor ~» needed constraint, e.g., Tr (M) = m

Unknown parameter: p € RY giving a structured estimate M (j1) and with exact
value p,

RCOMET algorithm [1]:  2-step procedure
; : N A 1 al Ynylej A N A : .. (o~ 1) 2
Tyler's M-estimator [4]: Mpp=—=) ——=t—=H (MFP> with y, ~ U, (M) i.i.d. ® [i,=arg min Tr|« (MFP —aM (u,)) MFP} such that Tr [M (f1y)] = m.
N = yIMppy, a>0, \

_ . 7P _ s 1
e existence for N > m, uniqueness up to a scale factor ~» no ambiguity with Tr (MFP) =m ° Asymptotic performance: fy = p, and VN (o — pe) = N (O’ F (hee) )

e Maximum Likelihood estimator of the shape matrix Fisher Information matrix

— e Substantial sample support to reach its asymptotic regime
o convergence of the iterative algorithm My, = H (M) towards Mgp for any M P PP yp &

o , , , ' o o K\/IFP plays both the role of a target together with a metric specification
o statistical performance: consistency, unbiasedness, asymptotic Gaussian distribution [5) through m—l s splitting these roles leads to a recursive formulation
FP

Example for Hermitian Toeplitz structure
Recursive RCOMET Procedure |
O ‘
Algorithm: let be 1 < K < oo and f1, the RCOMET estimate . AN b — Tr(CRB)
For & e - T N M M % =5 N\ sk Euclid. proj. Tyler
Of < [[ ) ]] M = arg @Ii%ynli [ [{( Fp — & (“’)) ( -~ : 7 ' B COCA [2]
| R R X R AUE S N 7 — RCOMET [1]
R-RCOMET estimate: fiy such that Tr[M (fiz)] = m i - ~ 2 RCOMET. K — 1
. _ _ _ = Y lx — R T K =
Asymptotic performance: i L p. and VN ([t — ) 5N ((), F(u,)] 1) —~ 2_32i f f \ QCOME__' A=
s e — R-RCOMET, K = 20
Comments: v/ same asymptotic performance as RCOMET BNk
v/ empirical improvement of low sample support performance in most cases _or B I
X convergence for K — oo difficult to conduct in general ~» case by case study 10 o 103
Practical stopping rule: combination of k < K. and ||t — Bl < €tol || 1| Number of samples NV

R-RCOMET allows for an interesting performance-computational cost trade-off

Example for Hermitian persymmetric structure . : :
5 \ P I P \ S Surprising results for this particular case

Let py be the R-RCOMET estimate of p,. Then,
b =T e (# 0y) VK> 1 ~~ R-RCOMET converges in only one step

— arg Iil(i)ﬂ e — T |§ s.t. Tr[M ()] =m ~ Euclidean projection of Mpp onto HP,,
a>0, p

I r = .
— J! (TT ® T ) vec (5 TMpp T T*MFPTTD ~» Persymmetric Fixed-Point estimate from |6

—10 | — Tr (CRB)
% PFP [6]
— RCOMET [1]
R-RCOMET, K =1

ORRCOMET, K =2 e
10! 107 10°

with J7T left inverse of J, Npp = Vec (mpp) and T unitary matrix, defined in |6, Proposition 1]

Tr{MSE (1)} (dB)

Perspectives

e Justification of the low sample support performance improvement

Number of samples NV /
. i o R-RCOMET convergence study for other structures /
Case: Hermitian persymmetric structure . . . . . . .
e Investigate links with estimators on Riemannian manifolds DGA
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s<m+1—r

3J € R™*F full-rank column, such that n (u) £ vec (M () = T



