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ABSTRACT

Previously, the Generalized Likelihood Ratio Test - Linear
Quadratic (GLRT-LQ) has been extended to the Multiple-
Input Multiple-Output (MIMO) case where all transmit-
receive subarrays are considered jointly as a system such
that only one detection threshold is used. The new MIMO
detector is Constant False Alarm Rate (CFAR) with respect
to the clutter power fluctuations. In this paper, the adaptive
version of this detector is considered, as well as a fluctuat-
ing target model similar to that of the Swerling Target. The
degradation of the detection performance due to the estima-
tion of the covariance matrix and the fluctuation of the target
is studied through simulations for both the well-known Opti-
mum Gaussian Detector (OGD) and the new MIMO detector
under Gaussian and non-Gaussian clutter.

Index Terms— MIMO Radar, Non-Gaussian Clutter,
SIRV, Detection Performance, Fluctuating Targets

1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) is a technique used
in communications which has recently been adopted for radar
applications [1]. In the context of radar, a MIMO radar is
one where both the transmit and receive elements are suffi-
ciently separated so as to provide spatial diversity which can
be used to improve the probability of detection and resolu-
tions. On top of that, each transmit element sends a different
(orthogonal) waveform and this waveform diversity increases
the separation between clutter and target returns and hence
enhancing the suppression of the clutter.

We consider here non-Gaussian heterogeneous and im-
pulsive clutter since experimental clutter measurements [2]
have been found to fit non-Gaussian statistical models. Non-
Gaussian models also better reflect the clutter power fluc-
tuations (called texture) from one sub-system to another in
the case where these sub-systems are widely separated. The
Spherically Invariant Random Vector (SIRV) [3] is chosen as
the clutter model as it can model different non-Gaussian clut-
ter depending on the distribution of the texture. It also has a
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Gaussian kernel which means that certain classical results can
still be applied.

A new MIMO non-Gaussian detector has been derived
previously in [4] for non-fluctuating targets. In this paper, we
consider a fluctuating target model similar to that of Swerling
target. This is more realistic as different target aspects are
seen by each sub-system due to the wide separation between
the sub-systems. The detection performance of the detector
when the target is fluctuating is compared to that when the
target is stationary.

We also consider the adaptive version of this new detec-
tor where the covariance matrix is unknown and has to be
estimated. This is done by using the Fixed Point Estimate
(FPE) [5, 6, 7] as the classical Sample Covariance Matrix
(SCM) is no longer the Maximum Likelihood (ML) estimate
under non-Gaussian clutter. This adaptive detector is shown
to be Constant False Alarm Rate (CFAR) with respect to the
texture. Moreover, it is matrix-CFAR as it does not depend on
the unknown covariance matrix. The detection performance
now depends on an additional parameter, L,.: the number of
secondary data to obtain the FPE.

This paper is organized as follows. Firstly, we consider
a general signal model for MIMO (Section 2). Section 3
presents the adaptive version of the MIMO non-Gaussian de-
tector and also the estimation of the covariance matrix. The
effects on detection performance due to the fluctuation of the
target and the estimation of the covariance matrix are then an-
alyzed through Monte-Carlo simulations under both Gaussian
and non-Gaussian clutter (Section 4). Finally, conclusions are
presented in Section 5.

2. SIGNAL MODEL

In this section, we consider a target located at (z,y). Let
there be N transmit subarrays and M receive subarrays. The
n-th transmit and m-th receive subarray contain N,, and M,,
elements respectively, forn = 1,..., Nandm =1,...,M.
The configuration can be seen in Fig. 1.

Let v(0; ,,) and a(6, ,,) be the steering vectors and 6 ,
and 0, ,, be the angular location for the target for the n-th
transmit and m-th receive subarray respectively. Assuming
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Fig. 1. The configuration where N = M = 3.

that orthogonal waveforms are transmitted such that the re-
ceived signal after matched filtering can be expressed as:

Ymn = B(m, n)a(@rym) X V(Qt’n) —+ Zm.n
= B(m, n)pm,n + Zm.n (D)

where B is the M x N matrix containing the RCS of the target.
Pm,n 18 the M, N, x1 bistatic angular steering vector which
is equal to a(6, ) ® v(6;,,) and ® stands for the Kronecker
product.

2.1. Clutter Model

Zm,n 18 @ My, NpX1 vector containing the clutter returns and
it is modelled by SIRV:

Zm,n = \/Tm,nXm,n, (2)

where 7, ,, (texture) is a positive random variable which
models the variation in power that arises from the spatial
variation in the backscattering of the clutter. x,, ,, is a com-
plex circular Gaussian vector with zero mean and covariance
matrix M,,, ,,, denoted by CN (0, M, ,).

2.2. Target Model

Consider the well-known Swerling I target model where the
RCS of the target fluctuates from scan to scan according to
a Gaussian distribution. In the MIMO configuration where
the subarrays are widely separated, the RCS of the target seen
by each subarray pair can also be represented by a Gaussian
distribution, i.e. each element of B is independent and identi-
cally distributed (i.i.d.) and B(m,n) ~ CN(0,0?) where o2
is the power of the target. This is consistent with the target
model given in [8]. Hence the MIMO-version of Swerling |
target is one which is modeled as a Gaussian process which
fluctuates independently from subarray to subarray and also
from scan to scan.

3. ADAPTIVE MIMO NON-GAUSSIAN DETECTOR

In [4], a new MIMO non-Gaussian detector has been derived
and is given by:
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where M,,, ,, is the covariance matrix for the m-n receive-
transmit pair. The adaptive version of this detector is obtained
by replacing the true covariance matrix by an estimate.

Proposition 3.1

The adaptive version of the non-Gaussian detector given in
Eqgn. (3) is texture- and matrix-CFAR when the covariance
matrices are estimated using the FPE [5, 6, 7] which is defined
as the unique solution of the equation:

Lv L
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where y,,, » (1) are the secondary data and L, is the number
of secondary data used to estimate the FPE.

Proof 3.1

The secondary data is assumed to contain only clutter returns
as modeled by Eqn. (2). Due to the normalizing term in the
denominator, the contribution of the texture in the FPE can-
cels out and the FPE does not depend on the texture of the
clutter, i.e. it is texture-CFAR [5, 6].

On top of that, the FPE can be computed according to
an iterative algorithm which converges towards the FPE irre-
gardless of the choice of the initial matrix [9]. i.e. it is also
matrix-CFAR.

The original detector derived in [4] has been shown to
be both texture- and matrix-CFAR. Consequently, when its
adaptive version is used with the FPE, it remains texture- and
matrix-CFAR.

Moreover, the FPE is the ML estimate when the texture is
deterministic but unknown [7] and the approximate ML esti-
mate when the texture is a random variable [5, 6].

4. SIMULATION RESULTS

To study the effect of the fluctuating target model on the de-
tection performance, as well as the estimation of covariance
matrix, Monte-Carlo simulations are carried out. M = 3 re-
ceive subarrays are considered, each containing 4 elements.
N = 2 transmit subarrays, containing 3 elements each, are
considered.

Due to space constraints, we consider only 2 types of clut-
ter: Gaussian and K-distributed (Gamma-textured). In order



to keep the clutter power, o2, constant, the two parameters of
the gamma distribution are set such that the statistical mean of

the texture remains the same and is equal to o2 which is the
clutter power for each element. In this simulation, c2 = 1.
The parameters used to simulate the texture are shown in Ta-
ble 1. The parameters are chosen such that there is one in-

stance of impulsive clutter and one which is more similar to

the Gaussian case.

Texture distribution | a b
Gamma 05| o%/a=2
Gamma 2 [0%/a=05

Table 1. Texture parameters used for Monte-Carlo simulations

4.1. Effects of Fluctuating Target

The covariance matrices are assumed to be known so as to

better study the effect of the fluctuations of the target returns.
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The fluctuating target model described in Sec. 2.2 is consid-
ered. For comparison, we include the case of a stationary

isotropic target.
For comparison, the MIMO Optimum Gaussian Detector

(OGD) which is optimum under Gaussian clutter is consid-
ered [10, 11]:

zz'

In Fig. 2, we see the detection performance of the MIMO
GLRT-LQ and MIMO OGD for the case where the target is
stationary and fluctuating under Gaussian and non-Gaussian
clutter. Under Gaussian clutter, both MIMO GLRT-LQ and
MIMO OGD are almost equally affected by the fluctuations
of the target. However, under non-Gaussian clutter, MIMO
GLRT-LQ is more affected than MIMO OGD when the clut-
ter is impulsive and the difference becomes small when the

clutter is less impulsive. The detection performance of MIMO

GLRT-LQ remains better under non-Gaussian clutter.
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4.2. Effects of Estimation of Covariance Matrix

In order to study the effect of the estimation of the covariance
matrix, we consider that the target is stationary. Here, we
consider 2 cases: L, = 2L and L, = 20L to compute l\A/L
using the Fixed Point algorithm, and compare them to the case
where M; are known. As expected, when L, is large, the
detection performance of the adaptive detector tends towards
that of the detector where the covariance matrices are known

(Fig. 3).

the classical SCM replaces M,, ,, in Eqn. (5).

Fig. 2. P, against SCR for Monte-Carlo simulations, considering
both the stationary and fluctuating targets and both MIMO GLRT-

LQ and MIMO OGD. Py, = 0.001.

For comparison, we consider the MIMO Adaptive Matched

Filter (AMF), the adaptive version of the MIMO OGD where
In Fig. 4,
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Fig. 3. P, against SCR for Monte-Carlo simulations for K-
distributed clutter, a = 2, considering the adaptive MIMO GLRT-

LQ with the FPE.

we have the detection performance, under Gaussian and non-
Gaussian clutter, of both the adaptive MIMO GLRT-LQ using
FPE and the MIMO AMF using SCM.

Under Gaussian clutter, the estimation of the covari-
ance matrix does not affect the performance of the adaptive
MIMO GLRT-LQ much and it remains comparable to that
of the MIMO AMF. Under non-Gaussian clutter, the adap-
tive MIMO GLRT-LQ performs much better than the MIMO
AMF when the clutter is impulsive. When the clutter is less
impulsive, the detection performance of both detectors are
more similar but the adaptive MIMO GLRT-LQ still works

better. Moreover, the MIMO AMF is more affected by the



estimation of the covariance matrix as the SCM is no longer
the ML estimate under non-Gaussian clutter.
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Fig. 4. P, against SCR for Monte-Carlo simulations, considering
both the adaptive MIMO GLRT-LQ with FPE and the MIMO AMF
with SCM. Py, = 0.001.

5. CONCLUSIONS

We consider here the MIMO non-Gaussian detector derived
previously where all transmit-receive subarrays are consid-
ered jointly as a system such that only one detection thresh-
old is used. With this background, we have further analyzed
this detector to include a fluctuating target model similar to
that of the Swerling I target, as well as the adaptive version
of the detector. The degradation of the detection performance
due to the fluctuations of the target and the estimation of the
covariance matrix is studied through simulations for both the
new MIMO detector and the MIMO OGD under Gaussian
and non-Gaussian clutter.

The main conclusion is that it is always preferable to use
the adaptive GLRT-LQ with the FPE, whatever the clutter dis-
tribution, because of the robustness of these tools with respect
to the covariance matrix and the texture. Even in the case
where the clutter is Gaussian for all subarrays, the covariance
matrix and clutter power for each subarray is expected to be
different. Hence it is still better to use the new non-Gaussian
detector.
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