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Although pulsed coherent laser radar vibrometry has been introduced as an improvement over its con-
tinuous wave (CW) counterpart, it remains very sensitive to decorrelation noises, such as speckle, and
other disturbances of its measurement. Taking advantage of more polyvalent polypulse waveforms, we
address the issue with advanced signal processing. We have conducted what we believe is the first ex-
tensive comparison of processing techniques considering CW, pulse-pair, and polypulse emissions. In this
framework, we introduce a computationally efficient maximum likelihood estimator and test signal
tracking on pseudo-time-frequency representations (TFRs), which, respectively, help deal with speckle
noise and fading of the signal in harsh noise conditions. Our comparison on simulated signals is validated
on a 1:55 μm all-fiber vibrometer experiment with an apparatus simulating vibration and strong speckle
noise. Results show the advantage of the estimators that take into account actual noise statistics, and call
for a wider use of TFRs to track the vibration-modulated signal. © 2010 Optical Society of America
OCIS codes: 280.0280, 280.3340, 120.7280.

1. Introduction

Coherent laser radars (lidars) are able to sense the
small amplitude vibrations of remote surfaces,
thanks to the Doppler effect. Long-range laser Dop-
pler vibrometry has been successfully applied to an
increasing number of situations where the goal is
to determine the vibration characteristics of an inac-
cessible target. These applications range from struc-
tural assessment of potentially damaged buildings [1]
to target identification for military purposes [2,3].
Although vibration frequencies and velocities are
very different in magnitude, in both cases, the aim
is to identify the modal frequencies of the target.

The measurement is performed as shown in Fig. 1.
First, coherent heterodyne detection, done by mixing
the Doppler-shifted backscattered laser wave and

part of the emission (LO, local oscillator) on a detec-
tor, is the source of a heterodyne signal with an
instantaneous frequency (IF) linked to the instanta-
neous velocity of the target surface. This heterodyne
signal is frequency demodulated to retrieve the vi-
bration velocity time series. Then the velocity time
series is Fourier transformed and a vibration spec-
trum is obtained, which is analyzed to extract vibra-
tional features. Interesting features include the
modal frequencies of the target, appearing as peaks
on the spectrum if the signal-to-noise ratio (SNR), be-
tween the peak power spectral density (PSD) and the
noise floor PSD, is high enough.

In addition to continuous emission, a pulsed emis-
sion has been considered [3]. The simplest and most
usual waveform is the pulse-pair, inherited from me-
teorological radars, processed by estimating the
phase shift between the two consecutive pulses. At re-
ception, each waveform provides one velocity sample
of the time series. Polypulses were also tested [4].
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Pulsed vibrometry directly benefits from existing
techniques in radar, for waveform design as well as
signal processing.

The advantages of pulsed vibrometry have been
discussed in [5,6]. First, a monostatic configuration
of the vibrometer is easier to implement with static
targets, because returns from the target can be tem-
porally separated from parasitic reflections on the
optics; having a single collimating optic in the instru-
ment eases its pointing and focusing and might be
required for compactness. Also, simultaneous tele-
metry by time-of-flight measurement becomes possi-
ble, allowing a time gating of the reception and the
separation of multiple targets in the laser beam.
Finally, higher peak power is available for the same
average laser power, resulting in higher signal de-
tectability and even slightly more accurate instanta-
neous Doppler shift estimation at a very long range.

Yet, as was shown by the comparison of CW and
pulse-pair operation modes led by Hill et al. [6], the
latter suffers from several drawbacks. When com-
pared with the same mean emitted laser power, in
normal noise conditions, the pulse-pair does not per-
form better than CW in obtaining good SNR on the
final vibration spectrum. Each pulse-pair can yield
slightly more accurate velocity estimates at a long
range, thanks to a higher peakpower, butwith consid-
erable averaging over numerous samples, CW mode
still gets better results. Furthermore, strong phase
noise, originating from speckle or laser phase noise,
greatly decreases the pulsed mode performance,
and pulse-pairs have an unambiguous velocity range
only a few times larger than their velocity resolution.

In summary, past studies have concluded that
despite its unique potential for very long range,
multifunction, and monostatic instruments, pulsed
vibrometry is impaired by its sensitivity to the distur-

bances of the measurement channel. However, the
wide diversity of waveforms and signal processing
available, compared to simple pulse-pair operation,
indicates that performance improvement is possible.
In this article, we investigate the potential of ad-
vanced signal processing techniques, applied to the
polypulse waveforms already introduced in [4], which
benefit from supplementary degrees of freedom. In
the unfavorable conditions of strong speckle noise,
we conduct an extensive performance comparison be-
tween CW, pulse-pair, and polypulse operation, pro-
cessed by various classical and new processing
techniques. The objective is to show how and to what
extent pulsed vibrometry can bemademore robust to
harsh noise conditions.

Section 2 introduces the signal model and hypoth-
esis. The characteristics of polypulse waveforms and
known signal processing methods for CWand pulsed
mode are recalled in Section 3. In Section 4, we pro-
pose and qualify new signal processing techniques
for polypulse waveforms. We compare them to exist-
ing techniques, for the various waveforms, through
simulation in Section 5. An experimental validation
of this comparison, using an all-fiber vibrometer, is
presented in Section 6. Section 7 concludes.

2. Signal Model

The photocurrent, downshifted from the carrier fre-
quency f 0 to the null frequency, either analogically
(I=Qdemodulation) ordigitally, is expressed, in a com-
plex form:

iSðtÞ ¼ μðtÞihetðtÞ þ ibðtÞ
¼ μðtÞi0mðtÞ expðjφvibðtÞÞ þ ibðtÞ; ð1Þ

where μðtÞ is the amplitudemodulation applied to the
laser emission in pulsed mode [μðtÞ ¼ 1 in CWmode];
ihetðtÞ is the heterodyne current, with a mean ampli-
tude i0;mðtÞ is a complexmultiplicativenoise, circular
and centered, with a variance set to 1; and φvibðtÞ ¼
4π:xvibðtÞ=λ is the phase modulation for the laser
wavelength λ (1:55 μm) caused by xvibðtÞ, the targeted
surface vibration displacement projected along the la-
ser line of sight. In case of a sinusoidal vibration,
xvibðtÞ ¼ a sinð2πf vibtþ φÞ and vvibðtÞ ¼ 2πaf vib cos
ð2πf vibtþ φÞ ¼ Vmax cosð2πf vibtþ φÞ. Lastly, ibðtÞ is
anadditive complexnoise (detector andphotonnoise),
white, Gaussian valued, circular, and centered, with
variance σb2. The time-averaged carrier-to-noise ratio
(CNR) is defined as hCNRi ¼ hjihetj2i=hjibj2i ¼ i02=
2σb2.

Complex multiplicative noise mðtÞ contains ampli-
tude and phase fluctuations terms and is the result of
several phenomena [7]: speckle noise, laser phase
noise, and the effect of atmospheric turbulence.

The random speckle pattern backscattered by the
target is not static if the illuminated surface is mov-
ing, and as a consequence, the amplitude and phase
of the received wave will vary, a phenomenon either
called “speckle noise” or “target decorrelation noise”

Fig. 1. (Color online) Diagram of a heterodyne coherent lidar
vibrometer with a MOPA configuration, convenient for emitting
arbitrary waveforms using the same AOM as for the frequency
shift.

3968 APPLIED OPTICS / Vol. 49, No. 20 / 10 July 2010



in the literature [8]. The resulting multiplier has a
complex normal distribution and autocorrelation
function ΓmðτÞ ¼ expð−τ2=τc2Þ ¼ expð−Bspeckle

2τ2Þ.
This means its phase and amplitude are roughly
stable over durations shorter than τc ¼ 1=Bspeckle
and that its frequency width is about 2 Bspeckle=π.
Depending on target distance and movement (target
rotation has the largest impact), speckle bandwidth
Bspeckle varies in the 100Hz–100kHz range.

Laser phase noise is due to the finite spectral line-
width of the laser: as theemitted frequency is random,
the frequency spread of the beat signal between the
received wave and the LO increases as the target is
further away and the waves become decorrelated.
The result is a random phase term, of which the
PSD can be predicted given the optical path differ-
ence. It can, however, be greatly mitigated by using
a well-chosen delay line in the LO path.

Last, atmospheric turbulence, as an index distribu-
tion pushed across the beam by transverse wind, can
also produce a complex multiplicative noise that af-
fects both phase and amplitude; the characteristics
of which have been inferred by Ishimaru [9]. Yet
the phase term due to the turbulence piston is rather
slow. Unless the laser beam is low above the ground,
the amplitude fluctuations are slower than those due
to target speckle, and turbulence noise is negligible in
applications that involve moving targets.

Complexmultiplicative noise impacts themeasure-
ment through signal fading (temporarily lowCNR), as
well as spectral broadening because of phase fluctua-
tions, which directly lowers the accuracy of the velo-
city estimation.

The signal model of Eq. (1) is based on several sim-
plifying hypotheses: (i) it is assumed that any bulk
Doppler shift due to target global velocity has pre-
viously been removed; (ii) the illuminated surface vi-
brates as a whole, and no separate vibrators generate
signals with various IFs; (iii) the target distance is
known precisely (by means of simultaneous teleme-
try); (iv) the emitted mean laser power is equal for
all operating modes, which implies taking hμðtÞ2i ¼
1; and (v) lastly, we neglect the phase effects of atmo-
spheric turbulence and laser phase noise and only
consider speckle noise.

In that case, the noise parameters are the speckle
bandwidthBspeckle and theCNR.Bspeckle is set to5kHz
(as induced by the parallax of a target with a
500km=h velocity perpendicular to the line of sight
of a laser radar with a 100mm pupil). The vibration
amplitude is chosen so that the modulation band-
width is of the same order. Such values are consistent
with the actual parameters expected for long-range
moving vehicle identification (previous studies [6,8]
considered speckle noise with lower bandwidth, a
few hundred hertz). The CNR, averaged in time, is
a common parameter for all operating modes, given
the hypothesis of equal mean laser power in every
case. It is calculated in the full sampling band
of 1MHz.

3. Background

A. Polypulse Waveforms

Pulsed waveforms are created by modulating the
photocurrent amplitude by a square wave μðtÞ.

Because of the poor ambiguity-to-resolution ratio
(i.e., measurement dynamic) offered by pulse-pair
waveforms, we considered more general polypulse
waveforms as was already done by Gatt et al. [4].
Though staggered polypulses present the highest
measurement dynamic, in theory, their velocity ambi-
guities are difficult to solve in harsh noise conditions,
and we focus, rather, on regular polypulses. As shown
in Fig. 2, we define polypulses as a finite succession of
Np pulses of short duration tp. These trains of pulses
are repeatedwithperiodT, i.e., at pulse repetition fre-
quency: PRF ¼ 1=T. The pulses in the train are
equally separated by durationTS, and the total wave-
form duration is Tm ¼ ðNp − 1Þ:TS.

We now discuss the constraints that apply on
waveform parameters in order to choose a waveform
best suited to given vibration and noise conditions.

One IF estimation (i.e., a velocity estimate) is per-
formed for each polypulse. Its general principle is to
differentiate the phase of singular pulses along the
train, in order to obtain the IF, which is supposed
constant during the short waveform duration Tm,
chosen accordingly. The precision on this estimation
is Fourier limited at approximately 1=Tm, and, as a
consequence, longer waveforms allow for better pre-
cision. But, when compared to a continuous wave of
same effective duration, a polypulse waveform has
the advantage that the energy is concentrated in
pulses and the signal can be temporally separated
from most of the noise affecting the measurement.
In case of strong additive noise with the same energy,
slightly better velocity precision is obtained in the
pulsed mode. The downside is that Doppler ambigu-
ities exist: velocity is known only within the ambigu-
ity interval Va ¼ λ=ð2TSÞ.

The constraints for waveform design are the fol-
lowing: (i) the waveform repetition frequency PRF
has to match the Nyquist criterion for the correct
sampling of the vibration itself, PRF > 2f vib;max, with
f vib;max being the maximum significant vibration fre-
quency of the target. (ii) TS should be a function of
the maximum velocity Vmax, to remain in ambiguity
interval Va: TS ≤ λ=ð4VmaxÞ. (iii) Depending on the

Fig. 2. (Color online) Parameters of polypulse waveforms in am-
plitude modulation μðtÞ: tp, pulse duration; TS, pulse separation;
Tm, polypulse duration; PRF, waveform repetition frequency;
Np, pulse number per waveform; and μmax, maximal amplitude
of μðtÞ.
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required velocity accuracy, Np should then be chosen
so that the effective duration of the waveform
σt ¼

R
t2:μðtÞdt, roughly proportional to Np, allows

a small enough velocity resolution δV ¼ λ=8πσt, while
satisfying the hypothesis of a stationary IF during
the waveform duration. Polypulses indeed provide
a larger measurement dynamic (linear) D ¼ Va=δV
than pulse-pairs: D2pulses ≈ 9, while D4pulses ≈ 28, for
instance.

Those three fundamental constraints are set ac-
cording to the expected vibration, for which coarse as-
sumptions can be made by knowing the nature of the
target. Beyond this essential adaptation to the vibra-
tion, actually optimizing waveform parameters relies
on other variables, such as the noise conditions. In
fact, the optimal pulse number Np is very dependent
on the relative power of the signal andnoise, aswell as
the correlation time of the phase of the signal, due to
phase noise. Indeed, the duration of the polypulse
should remain shorter than this correlation time.
Suchas in [6],we choose to comparewaveformsby set-
ting the same mean laser power for all, in order to
avoid taking into account the evolving limitations
of lasers and benefit from a common ground to eval-
uate the efficiency in spending a given energy for the
measurement. This hypothesis implies that, this en-
ergy being equally divided into the Np individual
pulses, their peak power decreases asNp is increased.
Simple considerations led us to chooseNp ¼ 6 (above
which velocity resolution stalls because of IF nonsta-
tionarity) andPRF ¼ 500Hz (just aboveNyquist’s cri-
terion for a 200Hz maximum vibration frequency) in
our study.

B. Signal Processing for Coherent Laser Radar
Vibrometry

In this subsection, we recall signal processing strate-
gies for vibrometry and present the estimators that
are compared in Section 6.

The goal of the measurement is to determine the
vibration velocity by IF estimation, in order to eval-
uate modal frequencies of vibration, whereas detec-
tion noise, phase noise, and fading disturb this
estimation. Two main strategies stand out: (i) phase
differentiation over samples (in CW) or pulses, such
as in conventional frequency demodulation, (ii) spec-
tral maximum estimation or time-frequency proces-
sing, which works by determining the frequency
localization of the maximum of energy along time,
on a time-frequency representation (TFR), such as a
spectrogram [10]. Parametric estimation, based on a
full signal model, is a third possible way, supposedly
optimal [6,11], but never applied it because of its
complexity. We have not considered this approach
in this paper.

The vibration velocity is usually Fourier trans-
formed to identify peaks at potential modal frequen-
cies, which are the actual data of interest. A relevant
performance indicator is then the SNR, the PSD ra-
tio between the peak and the noise spectrum. For
completeness, we mention there are variations for

this last step of the process, such as the parametric
estimation of the vibration modes given the preeval-
uated noise variance [12].

1. Instantaneous Frequency Estimators in CW
Mode

The sliding “coherent average” of phase differences
between K consecutive samples is an enhancement
of pulse-pair processing [6]. This estimator, presented
in Table 1, belongs to the phase differentiation family
defined earlier and is called autocorrelation first
lag (AFL).

The following two techniques use a TFR; the spec-
trogram is here preferred to better performing ker-
nels, such as the Born–Jordan [11], because of its
much shorter computation time. First, we implement
the centroid of the spectrogram columns [7], with a
circular sum in order to avoid bias from the non-
zero-mean noise background [spectrogram centroid
(SGC)]. But the spectrogram can also be processed
using a spectral equivalent of the phase-based esti-
mator originally given by Lee, as explained in
[13,14]. Lee’s spectral matching (LSM) consists of
finding the bestmatch in position between a reference
spectrum Sref ðf Þ (Gaussian spectrum induced by the
speckle noise) and the short-term spectra composing
the spectrogram.

Centroid-based (SGC) and Lee (LSM) estimators
allow a large improvement over the simplemaximum
detection over time on a TFR, especially when strong
complex multiplicative noise is involved and when
compared to other frequency estimators [10,14].
The AFL estimator is also interesting, as calculation
and comparison show that it is, in fact, equivalent to
SGC, without, however, the advantages of time-
frequency analysis introduced in Section 4.

2. Instantaneous Frequency Estimators in Pulsed
Mode

In the pulse-pair mode, the fourth estimator of
Table 1 uses the phase difference between each pair
of pulses [pulse-pair (PP) estimator]. Telemetry data
or previously performed pulse detection is necessary
in order to properly window the signal. This method
is straightforwardly extended to polypulse wave-
forms: the phase difference between consecutive
pulses is coherently averaged [polypulse pair (PPP)
estimator]. This estimator is the fastest of those ap-
plied to polypulses. But several authors, as in [14,15],
insist on the benefit of phase differentiation over
nonconsecutive pulses.

The autocorrelation Fourier transform (AFT) esti-
mator thus performs a linear regression of the auto-
correlation function phase, i.e., the search of the
Fourier transform (FT)maximum, after a properwin-
dowing. In order to take into account thedecorrelation
induced by speckle noise, and to avoid using uncorre-
lated pairs of pulses, the windowing function hðτÞ is
set to the modulus of Γis;kðτÞ, averaged on all poly-
pulses.
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The matched filter (MF) approach, as in radar
processing, equivalent to the previous one when
hðτÞ ¼ 1, uses the spectrum of the received waveform
multiplied by the emitted waveform (MF). It can be
applied to any waveform. With only additive white
noise, this estimator is the maximum likelihood
(ML) estimator, asymptotically optimal at high CNR.

4. Advanced Instantaneous Frequency Estimation
with Polypulse Waveforms

A. Maximum Likelihood Instantaneous Frequency
Estimation

In coherent laser radar multiplicative noise is also
present. We thus propose the actual ML estimator of
the IF of a received polypulse, given the signal model
of Eq. (1). We assume stationary waveforms and prior
knowledge of the noise parameters.

For faster computation, the likelihood is calculated
by applying a variable change proposed by Ghogho
et al. in [16]. It uses the fact that if the phase of
the signal can be factored, what remains is the
sum of multiplicative and white additive noises,
which have known statistics. The resulting polypulse
IF ML estimator is

f̂ instðt ¼ k=PRFÞ ¼ argmax
f

ðð~s0ÞTQ−1
s0 ð~s0ÞÞ; ð9Þ

with

~s0ðpÞ ¼ hisik;p expð−j2πf :pTSÞ for p ¼ 1;…;Np;

Qs0 ¼ CNRpeakQm þ INp
; ð10Þ

whereQs0 is the sum of the noise covariance matrices,
as sampled by the pulses; Qm is the covariance ma-
trix of multiplicative noise m; and INp

is the identity
matrix. Element ðp; qÞ of Qm is given by the autocor-
relation function of the considered multiplicative
noise, in our case, speckle:

Qmðp; qÞ ¼ Qspeckleðp; qÞ ¼ Γspeckleððp − qÞTSÞ
¼ e−B

2
speckleT

2
Sðp−qÞ2 for p; q ¼ 1;…;Np: ð11Þ

ML is the equivalent of the LevinML estimator de-
veloped for CW laser radar, explained in [13], but ap-
plied to polypulse waveforms. As the Levin estimator
does in the spectral domain, when the phase modula-
tion of the signal is suppressed assuming the IFwas f ,
this likelihood quantifies howmuch the result is close
to having the same covariance matrix as the suppo-
sedly remaining multiplicative and additive noises.
Like the MF, it can also be seen as a linear regression
of the phase: the scalar product with expð−j2πf tÞ is
calculated on a series of correlated pulses selected
byQs0

−1, andaveragedover the considered series.Note
that, in fact, when Bspeckle tends toward zero, the ML
estimator becomes equivalent to the MF.

The ML estimator is theoretically optimal if the
signal model of Eq. (1) is verified, but it might not
perform as well under strong noise conditions (low
CNR or very high Bspeckle) or in the case of deviations
from the model. Also, knowledge of the noise para-
meters CNR and Bspeckle is necessary in order to
use this estimator. Both of them can be evaluated
by studying the amplitude of the signal: CNR via
the ratio of power in and out of the pulses and
Bspeckle by calculating the width of the autocorrela-
tion function of amplitude fluctuations. A third, more
direct, method is to evaluate Qs0 from the signal, de-
modulated by a quick coarse IF estimate. This can be
written as

Q̂s0 ¼
XK
k̂¼1

~s0k:~sk0T with ~s0kðpÞ

¼ hisik;p expð−j2πf̂ k:pTSÞ for p ¼ 1;…;Np;

ð12Þ

Table 1. Implemented Instantaneous Frequency Estimators

CW mode AFL
f̂ instðtÞ ¼

1
2πΔt

arg
�XNm

n¼1

isðtþ n:ΔtÞis�ðtþ ðn − 1Þ:ΔtÞ
�

ð2Þ Δt, sampling period; n, sample index;
Nm, number of samples

for IF estimation

SGC f̂ instðtÞ ¼
Ba

2π arg
�Z

Ba
jSTFTðt; f Þj2: exp

�
j2π f

Ba

�
df

�
ð3Þ Ba, analysis bandwidth;

jSTFTðt; f Þj2, spectrogram
LSM f̂ instðtÞ ¼ argmax

f
ðSref ðf Þ ⊗ jSTFTðt; f Þj2Þ ð4Þ Sref ðf Þ, reference spectrum

Pulsed mode PP f̂ instðt ¼ k=PRFÞ ¼ 1
2πTS

argðhisik;2hisi�k;1Þ ð5Þ k, waveform index; hisik;p,
signal average over pulse

#p of waveform #k
PPP

f̂ instðt ¼ k=PRFÞ ¼ 1
2πTS

arg
�XNp

p¼2

hisik;phisi�k;p−1
�

ð6Þ

AFT f̂ instðt ¼ k=PRFÞ ¼ argmax
f

�����
Z

argðΓis ;kðτÞÞ:hðτÞ: expð−j2πf τÞdτ
����
�

ð7Þ Γis;kðτÞ, autocorrelation of polypulse
#k; hðτÞ, weighting function

MF f̂ instðt ¼ k=PRFÞ ¼ argmax
f

�����
Z
Polypulse #k

isðt0Þ:μðt0Þ: expð−j2πf t0Þdt0
����
�

ð8Þ

Radar MF
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where K is the total number of waveforms during the
measurement and f k is the coarse estimate pre-
viously obtained for waveform #k. The PPP estimator
is fast enough to provide this estimate.

The proposed ML estimator can be modified in
case the noise characteristics differ from those of
our primary model; for instance, if there is laser fre-
quency noise in addition to the speckle noise in mðtÞ,
then Qm becomes the elementwise product of Qspeckle
and Qlaser, also given by the autocorrelation function
of the laser phase noise, found in [17].

B. Performance of Maximum Likelihood Estimator

In order to assess the performance of the ML estima-
tor, theCramér–Rao lowerbound (CRB) of thevelocity
estimation over each received polypulse waveform is
calculated from the likelihood function, without vari-
able change and pulse average:

σv ≥
λ
2

�
Tr

��
∂Q
∂f

Q−1

�
2
��

−1=2
; ð13Þ

in which TrðÞ designates the matrix trace operation
andQ is the covariancematrix of the nonzero samples
of the signal, with elements

Qðu; vÞ ¼ μ2maxi20Γmððu − vÞΔtÞej2πf ðu−vÞΔt þ σ2bδðu − vÞ;
ð14Þ

foru, v ¼ 1;…;Nw so that μðuÞμðvÞ ≠ 0, whereΔt is the
sampling period and Nw is the number of samples in
the total duration of one polypulsewaveform:Tm þ tp.

This CRB can be evaluated numerically and is
found to agree with the analytical expression in case
of only additive noise [13]:

σv ≥
λ

4π
ffiffiffi
2

p
σt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNRwf þ 1

p
CNRwf

; ð15Þ

in which CNRwf is the CNR taken in terms of wave-
form energy: CNRwf ¼ Ewaveform=PSDnoise (Ewaveform,
waveform energy; PSDnoise, power spectral density
noise).

As described in [7], error saturation and fading
have to be taken into account. The resulting error
after fading is, indeed, the quadratic sum of the CRB
at given CNRs weighted by the probability of this
CNR occurring (Rayleigh law). This probabilistic in-
clusion of fading helps better predict the error but
may affect the lower bound property.

Figure 3 shows velocity error as a function of CNR
with PP, PPP, and ML estimators and CRBs on simu-
lated signals, assuming a nonvibrating target and a
5kHz bandwidth speckle noise. We inject the real va-
lues of CNR and Bspeckle in the ML estimator.

In the pulse-pair mode, theory predicts a limit for
the velocity precision at high CNR, due to the
predominant complex multiplicative noise. PP pro-
cessing on a simulated signal shows the expected pla-
teau related to this phenomenon, but much higher

than expected. For this reason, we can suspect PP
processing may not be optimal.

For six-pulse waveforms, Fig. 3 shows a globally
lower velocity error. At high CNR, the CRB does
not saturate and decreases, which is not the case with
PPP processing, as decorrelation between pulses im-
pacts the velocity estimation. On the other hand, ML
processing follows the bound and achieves velocity
precision of about 0:2mm=s instead of 0:5mm=s with
PPP and 2mm=s with pulse pairs, at high CNR.
Indeed, when the measurement is predominantly af-
fected by complex multiplicative noise, i.e., at a high
CNR, theML estimator performs better than PPP, for
any value of Bspeckle.

The ML estimator is robust to the CNR and Bspeckle
parameters. For signals with CNR ¼ 20 dB and
Bspeckle ¼ 5kHz and varying parameter inputs for the
ML estimator, performance is not significantly
affectedunlessBspeckle orCNR ismisestimatedby sev-
eral kHz and tens of dB, respectively. As the estima-
tion of these parameters on the amplitude of the
signal provides very accurate values compared to
such requirements, in the conditions where the ML
estimator is useful (Bspeckle of a fewkHz,CNR > 0dB),
no problem should arise from the strategy of preesti-
matingnoise parameters. If it should prove difficult in
practice, we are still able to evaluate the covariance
matrix of the noise, after a fast PPP demodulation
of the signal that would allow us to reconstitute a vi-
bration-suppressed signal containing only noise.

Finally, we have investigated the modification of
the ML estimator for laser phase noise incorporated
in the signal model, using the autocorrelation pre-
dicted by [17] for a narrow linewidth laser [18]. In
that case, we notice that while six-pulse waveforms
still bring general precision improvement over pulse
pairs, ML processing does not provide much smaller
velocity error than PPP, except for predominant

Fig. 3. (Color online) Comparison of velocity errors of PP, PPP,
and ML estimators and theoretical CRB for the velocity error,
as a function of average CNR, for the pulse pair (2p) and six-pulse
(6p). Two thousand simulated waveforms with TS ¼ 50 μs and tp ¼
2 μs at Bspeckle ¼ 5kHz. Only the ML estimator reaches the CRB.
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speckle noise as we have already seen, and moderate
decorrelations (optical path difference well below la-
ser coherence length). When the correlation time of
the signal is under pulse separation TS, the CRB
quickly rises and both PPP and ML estimators stick
to that bound.

We conclude that theML estimator is interesting to
implement in order to make pulsed vibrometry less
sensitive to decorrelation, such as that produced by
target speckle. The remaining velocity error ap-
proaches the CRBwhen CNR is high, which indicates
it is close to optimal for the signal model of Eq. (1).
Noise parameters are required as inputs and can
be previously estimated on the signal amplitude.
The impact of laser phase noise cannot be mitigated
as much, certainly because the correlation time of the
signal easily falls below TS. We must finally stress
that deviations from the signal model are well known
to affect ML estimators. For instance, high-frequency
vibrations cause the IF to drift even within the short
duration Tm of the polypulse, in which case ML pro-
cessingaswedesigned it herewill not performaswell.

This preliminary qualification is, however, incom-
plete without a thorough comparison to other estima-
tors from literature on actual vibration signals,
which is presented in Section 5.

C. Time-Frequency Representation in Pulsed Mode

Another way of improving signal processing in pulsed
vibrometry is to perform signal tracking on a TFR, in
order to compensate for the small number ofmeasure-
ments. A great gain over nontracking methods is ex-
pected. At low CNR, it will avoid outlying values of
velocity due to a temporarily weak signal. Also,multi-
ple components caused by several vibrating parts of
the target could be separated. The downside is that
TFR processing is more demanding in computation
time and memory.

In the pulsed mode, a TFR can be drawn for the
three estimators we proposed in this article. MF
(radar matched filter), AFT (see Table 1), and the
ML estimator all rely on the search of a frequency
maximum,whether it is a spectrumora log-likelihood
function, for each received waveform. We propose to
track the frequency localization of the maxima of
energy for noise mitigation at low CNR. We build a
two-dimensional representation with, as coordinates,
frequency andwaveformnumber, which can be linked
to instants in time. Figure 4 shows examples of what
can be obtained on simulated signals.

From a five-tone vibration with maximum velocity
of about 6mm=s, we simulate the heterodyne signal
according to the model of Eq. (1). The average CNR
(in the 1MHz bandwidth) is chosen as low as −20dB
to show the phenomenon of spurious peaks that come
from temporarily strong noise or weak signal, and
strong speckle noise of bandwidth Bspeckle ¼ 5kHz is
applied. Six-pulse waveforms with tp ¼ 2 μs, TS ¼
50 μs, and PRF ¼ 500Hz are used. For ML we choose
a 1=3Tm frequency step, and for MF and AFT, which
are based on fast FTs, zero-padding is applied to pro-

vide a similar resolution. Also, for better visibility, the
plotted function is the normalized likelihood function,
instead of the log-likelihood of Eq. (9). The functions
for each waveform are plotted within the ambiguity
range ½−1=2TS; 1=2TS� ¼ ½−10kHz; 10kHz�. On the
left side of these charts, there is no additional proces-
sing. The frequency-modulated signal is seen as a dis-
continuous trace,which produces a verynoisy velocity
time series if processed by maximum picking or even
by centroiding.

The interest of TFR is highlighted here, as the cor-
rect vibration trace is still visible, despite isolated
peaks originating from the noise, whereas standard
algorithms give a velocity time series corrupted by
many outliers. We use an IF continuity hypothesis
on the pseudo-TFR in order to better extract the vi-
bration in case of strong noise conditions, which
should especially benefit our ML processing, inher-
ently inclined to be affected in such a case.

A number of techniques are available that take ad-
vantage of the continuity of the signal trace [19,20].
We choose, rather, a simple temporal smoothing of
the TFRs, as is done on the right side of Fig. 4. The
lines of the TFR have been low-pass filtered, with a
bandwidthpreserving thehigher frequencies of vibra-
tion. If a few consecutive waveforms detect slowly
drifting IF, due to the frequency spread the energy
is integrated,whereas transitorypeaks fromthenoise
are smoothed. Such regularization allows a better
recovery of the vibration velocity time series by a sub-
sequent maximum picking or centroiding, especially
in the case ofMLprocessing, aswill be seen in thenext
section.

In our comparative simulations of processingmeth-
ods and waveforms, we applied temporal smoothing
to MF-, AFT-, and ML-generated TFRs, and also to
TFRs inCWmode, for a fair comparison. Themethods
are then annotated accordingly (with smoothing):
MF-s, AFT-s, ML-s, SGC-s, LSM-s.

Fig. 4. TFRs obtained for simulated signals (six-pulse wave-
forms, PRF ¼ 500Hz, TS ¼ 50 μs, and tp ¼ 2 μs) with matched fil-
tering, AFT, and ML at low CNR (−20dB in 1MHz) and
Bspeckle ¼ 5kHz. On the right side, temporal smoothing of the
TFRs brings out the vibration trace.
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5. Comparative Simulation of Processing Methods in
Pulsed and Continuous Wave Mode

We now study the performance of the advanced pro-
cessing techniques that were introduced in Section 4,
relative to the existing methods presented in
Section 3. This comparison is conducted on realistic
signals with additive detection noise and complex
multiplicative speckle noise and with a vibration
comprising several modes. In this section, the study
is based on simulated signals.

The simulation relies on the model developed in
Section 2. Subroutines generate the complex phasor
inducedby the vibrationaswell as additive andmulti-
plicative noises, which are resampled as suitable for
each type of waveform and used to produce the signal.
The same mean power hypothesis is taken into ac-
count as a normalization of the signal amplitude.

Using simulated heterodyne signals, we qualify all
presented processing methods on the criterion of
SNR, which is evaluated on the vibration spectrum,
as the ratio of the PSD at the peak frequency of in-
terest over the PSD of the noise floor. The PSD is
estimated using the periodogram. The simulated vi-
bration has five peak frequencies between 8 and
120Hz, and the maximum velocity is over 5mm=s.
The retained SNR value is the average of the five in-
dividual SNRs. For each given result, we average the
SNR values obtained in 200 signal realizations.

Thewavelength is λ ¼ 1:55 μm;measurement dura-
tion is Tmes ¼ 1 s, with sampling frequency f ech ¼
1MHz in CW, and 2MHz in pulsed mode. In pulsed
mode, the modulation parameters are Np ¼ 2 (pulse
pairs) or Np ¼ 6 (six-pulse), tp ¼ 2 μs, TS ¼ 50 μs and
PRF ¼ 500Hz, which is a little above the Nyquist cri-
terion for the correct sampling of the vibration. The
analysis bandwidth in which the IFestimation is per-
formed, both in CWand pulsed mode, is Ba ¼ 20kHz,

corresponding to �7:75mm=s at our working wave-
length. Ba is thus closely adapted to the signal band-
width induced by vibration and speckle. The
spectrogram and autocorrelation window duration
in CW mode is chosen as 1=PRF ¼ 2ms. The CNR
is still given in average in a 1MHz bandwidth for
CW mode (noted hCNRi); for comparison, the peak
CNR in pulsed mode, in the reduced analysis band-
width, is greater by 17dB (6p) or 27dB (2p). The
speckle noise bandwidth is Bspeckle ¼ 5kHz.

Figure 5 shows vibration spectra averaged over
200 runs, obtained at a high CNR: 30dB. Only the
best results for each waveform are plotted. The five
vibration peak frequencies are visible on each curve
and can be identified. However, the noise floor is
much lower with polypulse waveforms and the ML
estimator with smoothing (ML-s), or with CW and
SGC-s, than with pulse pairs, which remain the most
sensitive to the strong speckle noise applied in this
simulation. In that case, pulse-pair operation cannot
detect vibration modes with peak velocities under

Fig. 5. (Color online) Average vibration spectra simulated at a
high CNR (30dB in 1MHz) processed by the estimators giving
the best SNR for CW, pulse pairs (2p), and six-pulse waveforms
(6p). The noise floor is much lower with the ML estimator than
with the PPP estimator.

Fig. 6. Average SNRs obtained in simulation at Bspeckle ¼ 5kHz
and high CNR [(top)30dB] or low CNR [(bottom) −25dB] for CW,
pulse pairs (2p), and six-pulse waveforms (6p). The suffix “-s” de-
notes smoothing is applied on the pseudo-TFR obtained using the
preceding estimator.
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0:1mm=s, contrary to polypulses with advanced
processing.

A more detailed comparison in terms of SNR re-
sults for all processing methods is presented in
Fig. 6 at a high CNR (top) and at a very low CNR
(bottom). The mean SNR of each method is plotted
as well as its standard deviation over the 200 runs.

At a highCNR (hCNRi ¼ 30dB)when speckle noise
is predominant, all processing methods in CW mode
perform equivalently well, whereas important differ-
ences appear between the various techniques applied
to the pulsed mode. First, pulse-pair SNR is more
than 10dB worse than the best results obtained with
six-pulse waveforms or in the CWmode. Better aver-
aging of the phase noise with “longer” waveforms is
the reason of such a difference. We also find an aver-
age 5dB higher SNR given by the ML estimator
proposed here, compared to the other estimators, in-
cluding the commonly used radar MF. However, it
should be noted that CNRs over 15dB are scarcely
encountered, and, in practice, this gain may remain
limited (see Section 6). The PPP estimator offers re-
latively good performance (on top of a low computa-
tional load) because it only relies on pairs of
consecutive samples, which have less chance of being
decorrelated, whereas standard spectral estimators
look for a global phase trend, more easily corrupted
when ambiguities are possible.

At a very low CNR (hCNRi ¼ −25dB in 1MHz), it
is known that without speckle noise, high peak power
waveforms (such as pulse pairs) allow slightly better
SNR on the measured vibration spectrum. In this si-
mulation, however, because speckle noise is strong,
there is no such gain. In CW mode, spectrogram cen-
troiding allows the best SNR, while LSM is badly
affected by strong detection noise. With polypulse
waveforms, all estimators are roughly equivalent.
Temporal smoothing benefits more to spectrogram
processing in CW (5dB gain) than toML andMF pro-
cessing with polypulses (3dB gain). This is because of
the lesser number of averaged columns of the pseu-
do-TFR in pulsed mode. We also note that ML and
MF are equivalent when the effects of speckle noise
are not predominant.

The results obtained at a medium CNR are inter-
mediary. The usual plateau at a higher CNR starts at
hCNRi ¼ −5dB. However, ML performance does not
stall and increases slowly with CNR.

The computational load of the various processing
methods is summarized in Table 2. Attention is
called to the following results: pulse-pair-based esti-
mators are practically immediate compared to all
other estimators and can provide an initial estimate
of the vibration velocity; for more complex estimators

that would be employed afterward. The ML estima-
tor is the fastest spectral estimator used here. MF is
equivalently fast. SGC remains the best but also the
heaviest estimator in this study. As expected, pulsed
vibrometry is faster to process in general, due to a
fewer number of samples.

We now conduct another performance simulation
with a varying analysis bandwidth Ba, that was pre-
viously fixed at 20kHz to match the vibration band-
width. This assumption was, in fact, very restrictive
because, in practice, the bandwidth of the vibration is
unknown, so TS and thus Ba ¼ 1=TS have to be cho-
sen large enough so that no velocity ambiguity is
possible. Yet bandwidth adaptation is important at
low CNR so as to avoid letting too much additive de-
tection noise in the IF estimators.

All other simulation parameters remaining the
same, in Fig. 7, we plot SNR results obtained at a
low CNR (−20dB) when bandwidth adaptation
matters themost as a function of the bandwidth adap-
tation parameter α ¼ Ba=Bvib, whereBvib is the vibra-
tion-induced frequency excursion. It shows that SNR
is very dependent of the analysis bandwidth. When
α < 1, as expected, signal losses andDoppler ambigu-
ities deteriorate the measurement, especially in
pulsed mode, for which an α slightly above one is pre-
ferable to avoid ambiguities. But for α > 1, the various
estimators react differently to the more important
noise accepted in the analysis bandwidth. Temporal
smoothing in both the CWand pulsed modes is neces-
sary to avoid a fall of SNR beyond α ¼ 2. For instance,

Table 2. Computation Times for Implemented Estimators`

Method AFL SGC LSM PP PPP AFT MF ML

Computation time (s) 0.9 1.5 1.1 10−3 10−3 0.97 0.18 0.17
aThese results were obtained with MATLAB on a 2:13GHz CPU.

Fig. 7. (Color online) Average SNRs at low CNR (−20dB) plotted
as a function of the ratio between analysis bandwidth Ba and
vibration bandwidth Bvib, for CW, pulse pairs (2p), and six-pulse
waveforms (6p).
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for a 100kHz analysis bandwidth, i.e.,TS ¼ 10 μs and
α ¼ 5, only pulsed mode with polypulse waveforms
processed by ML or MF and pseudo-TFR temporal
smoothing is able to retain around 10dB SNR. In
some conditions, even with strong speckle noise,
pulsed mode as enhanced by the methods described
in this article can be preferable because of its robust-
ness to additive noise.

6. Experimental Validation

A. Apparatus

In order to confirm the results of Section 5, an all-fiber
1:55 μm vibrometer was implemented, with the con-
figuration described in Fig. 8. Fibered systems with
a master oscillator power amplifier (MOPA) config-
uration are an interesting choice in this case because
of their compactness, ease of use, and versatility;
switching from CW emission to pulsed emission only
requires applying a modulation on the driving signal
of the acousto-optic modulator (AOM) used for
frequency shifting of the emitted laser wave.

Separate optics were used for emission and recep-
tion, which is essential in CWmode on static targets.
The output waveforms were monitored because the
amplifier distorts the input impulsions and the mod-
ulating signal needs to be adjusted in compensation.
The laboratory experiment also includes an appara-
tus to create the same vibration as the one used in
Section 5 and to produce speckle noise with the con-
trollable characteristic Bspeckle, while the CNR can be
acted upon via a tunable attenuator placed before the
emission optics.

The optical beam from a Koheras laser injector de-
livering 10mW with 90kHz linewidth is split into a
signal beamandaLObeam.The signalwave ismodu-
lated by an IntraAction AOM frequency shifter at
70MHz. Its driving signal can be amplitude modu-
lated in pulsed mode by a digital gating signal that
provides the waveform frame and an analog signal,
generated by a Wavetek arbitrary waveform genera-
tor, which allows the fine tuning of the emitted power
over time. Both signals are necessary to ensure cor-
rect extinction of the emission. Themodulated optical
wave is then fed into a Keopsys 1W erbium-doped fi-
ber amplifier (EDFA) operatedat100mWoutput.The
power is sent to the emission telescope but can be at-
tenuated to vary the CNR. The emitted wave reflects
on the vibrating mirror, a few meters away, and is
scattered by a rotating diffuse target. The rotation
rate of the target sets the speckle bandwidth Bspeckle.
A second telescope receives this backscattered wave,
which is mixed with the LO on aHamamatsu InGaAs
detector with a 100MHz bandwidth.

The heterodyne signal, around 70MHz, is ampli-
fied and frequency downshifted by mixing it with
the 67:5MHz output of a HF generator. The resulting
signal, with 2:5MHz intermediate frequency, is low-
pass filtered at 5MHz and digitized on 16 bits at a
15MHz sampling frequency, by a National Instru-
ments 5922 acquisition card (ADC).

Signal processing is then implemented on
MATLAB, for 1 s duration acquisitions. The analytic
signal (complex signal around null frequency) is de-
rived by a Hilbert transform of the acquisition and
is either decimated to 1MHz sampling frequency in
CWmode, or pulse averaged in the pulsedmode. Both
of these methods allow useful data reduction. Finally,
theprocessingmethodsdiscussed in this studyareap-
plied to determine the vibration spectrum of the mir-
ror, and performance in terms of SNR is calculated by
the same means as in Section 5.

The parameters tp, TS, and PRF of the waveforms
are also roughly identical to the ones chosen
previously. As expected, the amplitude modulation
applied on the AOM driving signal has to be precom-
pensated in order to obtain a suitable waveform am-
plitude function μðtÞ, because of EDFA-related
phenomena [21]. In order to avoid having to retune
this precompensation as we switch from one wave-
form type to another, the pulse-pair mode is imple-
mented by simply taking the first two pulses of the
six-pulse waveforms. After a preliminary calibration
of average CNR in regard to output power in the sev-
eral emission modes, we vary the power attenuation
at the emission in order to study the SNR given by
each estimator at various CNR values. The speckle
bandwidth induced by the rotating disk is set to
approximately 5kHz, as verified by fitting the auto-
correlation function of the signal, without vibration.

Two main difficulties had to be resolved. In the
pulsed mode, we had to overcome the saturation of
the electrical amplification chain for high signal peak
power, which originally saturated the CNR at 10dB.
Also, parasitic vibrations of the speckle generating
disk (including a broadband component that particu-
larly impacted on the ML estimator, which assumes

Fig. 8. (Color online) Diagram of experimental apparatus allow-
ing CW and polypulse operations. A rotating scatterer is used to
create speckle noise with bandwidth Bspeckle ¼ 5kHz: EDFA, er-
bium-doped fiber amplifier; ATT, attenuator; Det, detector; HF,
high frequency; ADC, analog-to-digital converter).
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stationary IF during the waveform) had to be mini-
mized, which was done by using lower rotation rates
and larger spot sizes and, thus, a larger vibratingmir-
ror. These parasitic vibrations were reduced by a fac-
tor of 2 but could not be entirely suppressed; the
following experimental results include this artifact.

B. Results

Figure 9 summarizes the results of this experimental
comparison of waveforms and signal processing
methods, with SNR versus CNR curves for the best
methods found in the previous section (top) and aver-
age vibration spectra at high CNR (bottom).

Figure 9 (bottom) shows the vibration spectra
averaged on 20 to 40 runs of 1 s each at the highest
CNR achieved for each waveform. We see the vibra-
tion is fine-tuned to be almost identical to that used
in the simulations (see Fig. 5).

The SNR versus CNR curves on Fig. 9 (top) follow
the typical increasing trend with a plateau at high
CNR, when velocity precision becomes speckle lim-

ited. However, parasitic vibrations cause this SNR
saturation to occur about 3dB lower than in the si-
mulation. At a low CNR, we find the expected SNR
fall as CNR2 for SGC and as CNR for pulse-pair vi-
brometry, as demonstrated in [7].

Overall, the simulation results are corroborated,
including the better performance of the ML estima-
tor at a high CNR, compared to the more classical
PPP or MF processing. Six-pulse waveforms are
clearly more successful than pulse pairs in these con-
ditions. This is also seen by comparing the vibration
spectra obtained at a high CNR in Fig. 9 (bottom).
However, experimental artifacts make the gain in
SNR of the ML estimator less important than in si-
mulation. It is also noticeable that this gain does not
become interesting unless the CNR is above 5dB,
and after that threshold it increases linearly, as
simulations showed. Unfortunately, as a CNR over
20dB is difficult to obtain, very important gains
due to the use of ML over regular IF estimators can-
not be relied upon in practice.

Yet the SNR increase due to TFR smoothing, which
nears 5dB in some cases, was not expected to persist
at such high CNR values in the pulsedmode. It is still
measurable when the signal is fairly strong, which
means that the impact of signal fading is underesti-
mated in our simulation and that TFR smoothing is
indeedhelpful in the pulsedmode,whenvelocitymea-
surements are few.

7. Conclusion

Wehavepresented andqualified advanced signal pro-
cessing techniques applicable to pulsed laser vibro-
metry with polypulse waveforms, to enhance the
determination of the modal frequencies of a remote
target in harsh noise conditions. This work focuses
on what we believe is the first extensive comparison
between these waveforms and processing methods,
particularly in the case when this measurement is
made difficult by strong decorrelation noise such as
target speckle noise. It can, indeed, reduce the inter-
est of pulsed vibrometry, for instance when compared
to classicalCWvibrometry,which averagesnumerous
velocity measurements. An additional hypothesis is
taken: an equal mean laser power to be distributed
between emitted waveforms.

In this framework, polypulsewaveformsdonothave
peak power as high as the first employed pulse pairs
andwill not present asmuchgain at a very long range.
Butbecauseof their longereffectivedurationwhenthe
pulse separation is set to avoid Doppler ambiguities,
every test presented here has proved them more ro-
bust in the said noise conditions. Because it did not ex-
ist in pulsed mode, a specific processing based on ML
IFestimation,which takes into accountwhatweknow
of the noise statistics, has been developed. By compar-
ing the velocity precision of this processing method to
its theoretical limits (CRB), it hasbeen shownthat it is
closer to optimal than that of simple polypulse-pair
processing. Also, we have proposed TFRs, already ap-
plied in CW vibrometry, and show that they can be of

Fig. 9. (Color online) Experimental SNR plotted as a function
of CNR (top) and experimental spectra at high CNR (bottom),
averaged over 20 to 40 measurements, for CW, pulse pairs (2p),
and six-pulse waveforms (6p).
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use for noise regularization in pulsed vibrometry, for
instance, by temporal smoothing.

A comprehensive comparison of the SNR perfor-
mance of the described processing to that of classical
methods, for vibrometry with pulsed and CW emis-
sion, has been conducted on simulated signals and
later confirmed by experimentation. The first conclu-
sion is that advanced processing, based on the TFR of
the likelihood as a function of the IF for each wave-
form, with an additional temporal smoothing of this
TFR, gives the best result in pulsed vibrometry, espe-
cially with dominant speckle, with no additional com-
putational cost. Secondly, in case of weak signals (low
CNR), at long range for instance, temporal smooth-
ing of TFR proved useful as a noise regularization.
Moreover, in the case of mismatched analysis band-
width, pulsed vibrometry with polypulse waveforms
and matched filtering was finally shown to be more
robust than CW vibrometry with SGC demodulation.
This is in spite of the strong speckle noise that was
impacting the signal.

However, these results are tempered by the high
CNR required for the developed estimator to obtain
a gain in SNR and its sensitivity to deviations from
the model assumed in Section 2 of this article. As has
been proven by our experiment, high-frequency vi-
brations are enough to decrease its performance, be-
cause it assumes stationary IF during the velocity
measurement time Tm. This defect could neverthe-
less be acted upon by including the possibility of
IF drift in the model. Another issue of the current
study is that, by assuming the same average laser
power for each emission mode, it allowed a general
comparison but failed to take into account technolo-
gical limitations. For instance, fiber lasers at 1:55 μm
with a MOPA configuration, such as the one we used,
are instead limited by the peak power or the energy
accumulated in the amplifying fiber. A direct sequel
of this study will be to evaluate the actual optimal
performance of such a fibered vibrometer.

The results of this work still push toward the use of
longer waveforms, of estimators that take into ac-
count signal statistics, and of TFR regularization in
pulsed vibrometry. Further advances can be made
in each of these three directions. With sufficiently re-
silient ambiguity resolving algorithms, and assuming
suitable emission architecture, staggered polypulses
can achieve very large measurement dynamics. Also,
ML based parametric estimators, including a com-
plete model of the vibration, remain the optimal pro-
cessing method if the computational load is not
prohibitive, despite the many parameters required
for it to be robust. Finally, if the latter improvements
are not possible, the vibration can still be better esti-
mated from a TFR, by taking advantage of the signal
continuity in the time-frequency space.

Our future workswill involve studying such techni-
ques for IF tracking on TFRs and developing para-
metric estimation forotherapplicationsofvibrometry.
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