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Abstract—This paper presents an application of the recent ad-
vances in the field of spherically invariant random vector (SIRV)
modeling for coherency matrix estimation in heterogeneous clut-
ter. The complete description of the polarimetric synthetic aper-
ture radar (POLSAR) data set is achieved by estimating the span
and the normalized coherency independently. The normalized
coherency describes the polarimetric diversity, while the span
indicates the total received power. The main advantages of the
proposed fixed-point (FP) estimator are that it does not require
any a priori information about the probability density function of
the texture (or span) and that it can directly be applied on adaptive
neighborhoods. Interesting results are obtained when coupling this
FP estimator with an adaptive spatial support based on the scalar
span information. Based on the SIRV model, a new maximum-
likelihood distance measure is introduced for unsupervised
POLSAR classification. The proposed method is tested with both
simulated POLSAR data and airborne POLSAR images provided
by the Radar Aéroporté Multi-Spectral d’Etude des Signatures
system. Results of entropy/alpha/anisotropy decomposition, fol-
lowed by unsupervised classification, allow discussing the use of
the normalized coherency and the span as two separate descriptors
of POLSAR data sets.

Index Terms—Estimation, heterogeneous clutter, polarimetry,
segmentation, synthetic aperture radar (SAR).

NOMENCLATURE

BN Boxcar neighborhood.
[C] Generic covariance matrix.
FP Fixed point.
i.i.d. Independent and identically distributed.
LLMMSE Locally linear minimum mean-squared error.
[M ] Generic normalized polarimetric coherency

matrix.
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ML Maximum likelihood.
MPWF Multilook polarimetric whitening filter.
P Generic span.
PDF Probability density function.
PWF Polarimetric whitening filter.
SCM Sample covariance matrix.
SDAN Span-driven adaptive neighborhood.
SIRP Spherically invariant random process.
SIRVs Spherically invariant random vectors.
[T ] Generic polarimetric coherency matrix.

I. INTRODUCTION

A SYNTHETIC aperture radar (SAR) measures both the
amplitude and phase of a backscattered signal, producing

one complex image for each recording. With the sensors being
able to emit or receive two orthogonal polarizations, fully
polarimetric SAR (POLSAR) systems describe the interactions
between the electromagnetic wave and the target area by means
of the Sinclair matrix [1]. Among the difficulties encountered
when using POLSAR imagery, one important feature is the
presence of speckle. Occurring in all types of coherent imagery,
the speckle is due to the random interference of the waves scat-
tered by the elementary targets belonging to one resolution cell
[2]. In general, POLSAR data are locally modeled by a multi-
variate zero-mean circular Gaussian PDF, which is completely
determined by the covariance matrix [3].

The recently launched POLSAR systems are now capable
of producing high-quality images of the Earth’s surface with
meter resolution. The decrease of the resolution cell offers the
opportunity to observe much thinner spatial features than the
decametric resolution of the up-to-now available SAR images.
Recent studies [4] show that the higher scene heterogeneity
leads to non-Gaussian clutter modeling, particularly for urban
areas. One commonly used fully polarimetric non-Gaussian
clutter model is the product model [5]: The spatial non-
homogeneity is incorporated by modeling the clutter as a prod-
uct between the square root of a scalar random variable (texture)
and an independent zero-mean complex circular Gaussian
random vector (speckle). If the texture random variable is sup-
posed to be a Gamma spatial distributed intensity, the product
model is equivalent to the well-known K-distributed clutter
model [6], [7].

For a Gaussian polarimetric clutter model, the estimation
of the polarimetric coherency matrix is treated in the context
of POLSAR speckle filtering. The POLSAR adaptive filtering
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techniques can roughly be divided into two main classes [8]:
based on the optimization of the spatial support and based
on the use of the local statistics to derive adaptive estimators.
These two directions are not exclusive since both of them
can be applied simultaneously [9], [10]. For example, the
refined Lee filter couples eight edge-aligned directional neigh-
borhoods with an adaptive estimator based on the LLMMSE
criterion [9].

In the context of the non-Gaussian polarimetric clutter mod-
els, several studies tackled POLSAR parameter estimation us-
ing the product model. For deterministic texture, Novak et al.
derived the PWF by optimally combining the elements of the
polarimetric covariance matrix to produce a single scalar image
[11], [12]. Using the complex Wishart distribution, the PWF
for homogeneous surfaces has been generalized to an MPWF
[13], [14]. In general, the texture random variable is speci-
fied by the PDF. For Gamma-distributed texture, Lopes and
Sery [13] derived the ML estimator of the covariance matrix.
Moreover, the vector spatial LLMMSE filter applied on the
scalar ML texture estimator has also been introduced when the
texture variance and spatial correlation functions are a priori
known [13]. In [15], DeGrandi et al. performed an exten-
sive study on the dependence of the normalized second-order
moment of intensity on polarization state for a K-distributed
clutter model. This dependence was condensed in a graphical
form by a formalism called the polarimetric texture signature.
This study has been applied for target detection and texture
segmentation using the discrete wavelet transform generated
with the first derivative of a B-spline of order three as mother
wavelet [16].

The POLSAR information allows the discrimination of dif-
ferent scattering mechanisms. In [17], Cloude and Pottier in-
troduced the target entropy and the entropy–alpha–anisotropy
(H−α−A) model by assigning to each eigenvector the cor-
responding coherent single scattering mechanism. Based on
this decomposition, unsupervised classification for land appli-
cations was performed by an iterative algorithm based on the
complex Wishart density function [18], [19].

The objective of this paper is to present a new coherency
estimation technique [20] based on the SIRV model [21] and
to analyze the consequences that this model has on the con-
ventional POLSAR processing chain. This paper is organized
as follows. Section II is dedicated to the presentation of the
proposed estimation scheme. The heterogeneity of the polari-
metric textured scenes is taken into account by coupling the ML
normalized coherency estimator with adaptive neighborhoods
(ANs) driven on the scalar ML span estimators. A new ML
distance measure is also introduced for classifying normalized
coherency matrices under the SIRV model. In Section III, the
results obtained using the proposed approach are presented
and compared to those given by the Gaussian ML estimator.
Results of the H−α−A decomposition, followed by unsuper-
vised POLSAR classification, allow discussing the use of the
normalized coherency and the span as two separate descriptors
of POLSAR data sets. Detailed discussion on the advantages
and the limitations of the SIRV model is given in Section IV.
Eventually, in Section V, some conclusions and perspectives are
presented.

II. HETEROGENEOUS MODEL FOR POLARIMETRIC

TEXTURED SCENES

The goal of the estimation process is to derive the scene
signature from the observed data set. In the case of spatially
changing surfaces (“heterogeneous” or “textured” scenes), the
first step is to define an appropriate model describing the depen-
dence between the polarimetric signature and the observable
as a function of the speckle. In general, the multiplicative
model [5] has been employed for SAR data processing as a
product between the square root of a scalar positive quantity
(texture) and the description of an equivalent homogeneous
surface (speckle) by means of the following:

1) the intensity descriptor for single-polarization SAR im-
ages [22], [23];

2) the complex SAR signal descriptor for single-polarization
SAR data [24];

3) the polarimetric target vector descriptor in lexicographic
basis for monostatic POLSAR images [11], [25], [26];

4) the normalized polarimetric target vector descriptor in
lexicographic basis [6], [27], [28];

5) the polarimetric covariance matrix descriptor for
POLSAR data [13], [29].

In this paper, the polarimetric descriptors used are the tar-
get vectors k = [k1, k2, k3]T in the Pauli basis (monostatic
acquisition). The following section presents an application of
the recent advances, in the field of SIRV modeling [20], for
estimating span and normalized coherency matrices of high-
resolution POLSAR data.

A. Gaussian Model

The elements of a vector are generally modeled by a multi-
variate zero-mean complex Gaussian random process. The PDF
is given by the following expression [2]:

pm(k) =
1

πm det {[T ]} exp
{
−k†[T ]−1k

}
(1)

where [T ] = E{kk†} is the polarimetric coherency matrix,
det{. . .} denotes the matrix determinant, † is the conjugate
transpose operator, m is the dimension of the target vector
(m = 3 for monostatic POLSAR acquisitions), and E{. . .}
denotes the statistical mean over the polarimetric channels.

According to (1), a Gaussian stochastic process is completely
characterized by the coherency matrix. In this case, the ML
estimator of the polarimetric coherency matrix is the SCM
obtained by replacing the statistical mean by spatial averaging

[T̂ ]SCM =
1
N

N∑

i=1

kik
†
i (2)

where N is the number of samples. The SCM is statistically
determined by the Wishart PDF [2].

Another POLSAR parameter is the span (or total power) P
generally defined for each pixel as [1]

PSLC = k†k. (3)
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The corresponding multilook span can be estimated within a
local neighborhood according to

P = E
{
k†k

}
= Tr {[T ]} (4)

where Tr{[T ]} denotes the trace of the matrix [T ]. Hence, the
common span estimator for the Gaussian case can directly be
obtained from the SCM as

P̂SCM = Tr
{

[T̂ ]SCM

}
. (5)

B. SIRV Model

SIRVs and their applications to estimation and detection in
communication theory were first introduced by Yao [21]. The
SIRV is a class of nonhomogeneous Gaussian processes with
random variance. The complex m-dimensional measurement
k is defined as the product between the independent complex
circular Gaussian vector z (speckle) with zero mean and covari-
ance matrix [M ] = E{zz†} and the square root of the positive
random variable τ (representing the texture)

k =
√
τz. (6)

It is important to notice that, in the SIRV definition, the PDF
of the texture random variable is not explicitly specified. As
a consequence, SIRVs describe a whole class of stochastic
processes defined by (6). This class includes the conventional
clutter models having Gaussian, K-distributed, Chi, Rayleigh,
Weibull, or Rician PDFs [30].

For POLSAR data, the SIRV product model is the product of
two separate random processes operating across two different
statistical axes.

1) The polarimetric diversity is modeled by a multi-
dimensional Gaussian kernel characterized by its covari-
ance matrix [M ].

2) The randomness of spatial variations in the radar back-
scattering from cell to cell is characterized by τ . The cor-
responding random process operates along the spatial axis
given by the image support. Relatively to the polarimetric
axis, the texture random variable τ can be viewed as an
unknown deterministic parameter from cell to cell.

One major advantage of the SIRV clutter model is the high
degree of generality with respect to other texture-aware models
employed in the literature [4], [30]. Nevertheless, this model is
founded on the validity of three basic assumptions: The texture
random variable affects the backscattered power only; it is
multiplicative and spatially uncorrelated. When applied to high-
resolution POLSAR clutter, the SIRV model postulates that the
texture descriptor τ from (6) is identical for all polarization
channels.

Now, let p(τ) be the texture PDF associated to the SIRV
model. The SIRP corresponding to (6) has the following
PDF [31]:

F {p(τ), [M ]} = pm(k) =
+∞∫

0

1
(πτ)m det {[M ]}

× exp
(
−k†[M ]−1k

τ

)
p(τ) dτ. (7)

1) Model Identification: When using the product model, an
identification problem can be pointed out: The SIRV model is
uniquely defined with respect to the covariance matrix param-
eter up to a multiplicative constant. Let [M1] and [M2] be
two covariance matrices such that [M1] = κ · [M2] ∀κ ∈ R∗

+.
Notice that the two sets of parameters defined as {τ1, [M1]} and
{τ2 = (τ1/

√
κ), [M2]} describe the same SIRV. For solving

this identification problem, the covariance matrix has to be
normalized. In the following, the covariance matrix [M ] is nor-
malized such that Tr{[M ]} = m, with m being the dimension
of the target vector.

One important consequence of the imposed normalization
condition is that the resulting normalized polarimetric co-
herency matrix reveals information concerning the polarimetric
diversity only: The total power information is transferred into
the texture random variable. The POLSAR data can fully be
characterized by coupling the normalized coherency matrix
with the span descriptor

PSLC = k†k = τ(z†z). (8)

When operating on the polarimetric statistical axis, the span for
the SIRV case is given by

P = E
{
τ(z†z); τ

}
= τ · E

{
z†z

}
= τ · Tr {[M ]} = τ · m.

(9)

An estimate of P can be obtained when considering τ as an
unknown deterministic parameter from cell to cell.

2) Stationarity Definition: In the following, several generic
concepts are recalled. Given a SIRP, this process is wide-sense
stationary if and only if both the texture random variable and
the speckle random vector are wide-sense stationary. As the
speckle is a zero-mean complex Gaussian vector, the latter
means that the statistical samples ki used in the estimation
process must have the same theoretical covariance matrix [M ].
This condition is called “matrix stationarity.”

However, as the results presented in this section can be
applied whatever the texture PDF (∀p(τ)), the previous prop-
erties can be reformulated using the SIRV class of stochastic
processes. Given a “matrix stationary” stochastic process, this
process is “SIRV homogeneous” if and only if the texture
random variable is “texture homogeneous,” where texture ho-
mogeneous means that it is possible to define a texture PDF
(∃p(τ)) such that the stochastic process can be described by
the product model from (6). We illustrate these properties using
four local populations which often occur in practical POLSAR
applications.

1) One zero-mean Gaussian process with covariance matrix
[M ]: N (0, [M ]). Being a “Gaussian stationary”1 process,
it is also “SIRP stationary” and SIRV homogeneous. This
model is widely used for POLSAR data analysis [32].

2) Two adjacent Gaussian processes with different covari-
ance matrix: N = {N (1)(0, [M ]1),N (2)(0, [M ]2)}. The
Gaussian mixture N is neither SIRP stationary nor SIRV
homogeneous as the matrix stationarity condition is not

1A “Gaussian stationary” process is a stochastic process whose Gaussian
PDF does not change when shifted in time or space.
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respected. Generally, such cases are treated by employing
adaptive estimation schemes [8], [9] in order to approxi-
mate the local “Gaussian stationarity” condition.

3) One K-distributed process [33] with Gamma-distributed
texture pG(τ ; τ , ν) and covariance matrix [M ]:
FK{pG(τ ; τ , ν), [M ]}. This process is SIRP stationary
as it is “K stationary”,2 but obviously, it is not Gaussian
stationary.

4) Two adjacent K-distributed processes with two different
Gamma texture PDFs p(1)

G (τ ; τ1, ν1), p(2)
G (τ ; τ2, ν2)

and the same covariance matrix [M ]: FK =
{F (1)

K {p(1)
G (τ ; τ1, ν1), [M ]}, F (2)

K {p(2)
G (τ ; τ2, ν2), [M ]}}.

The K-distributed processes F (1)
K and F (2)

K are SIRP
stationary and K stationary, but the mixture FK is not
K stationary. Despite this, the process FK is SIRV
homogeneous as it is possible to define a texture PDF
which models the Gamma mixture. As a consequence,
the results presented in this section can still be applied in
this case.

In conclusion, the two properties to be verified in order to
apply the SIRV model are the matrix stationarity and the “tex-
ture homogeneity.” Moreover, the latter considerably relaxes
the “texture stationarity” condition required when using explicit
texture models such as the Gamma or the Fisher PDF.

3) SIRV Parameter Estimation: In the field of target detec-
tion for radar applications, the SIRV model led to many inves-
tigations [34]–[37]. In (6) and (7), the normalized covariance
matrix is an unknown parameter which can be estimated from
the ML theory. In [31], Gini and Greco derived the exact ML
estimate [M̂ ] of the normalized covariance matrix when τi are
assumed to be unknown deterministic parameters. For N i.i.d.
data, the likelihood function to maximize with respect to [M ]
and τi is given by

Lk (k1, . . . ,kN ; [M ], τ1, . . . , τN )

=
1

πmN det {[M ]}N ×
N∏

i=1

1
τm
i

exp

(
−k†

i[M ]−1ki

τi

)
. (10)

For a given [M ], maximizing Lk(k1, . . . ,kN ; [M ],
τ1, . . . , τN ) with respect to τi yields the texture ML estimator

τ̂i =
k†

i[M ]−1ki

m
. (11)

Replacing τi in (10) by their ML estimates, the generalized
likelihood is obtained as

L′
k (k1, . . . ,kN ; [M ]) =

1
πmN det {[M ]}N

×
N∏

i=1

mm exp(−m)(
k†

i[M ]−1ki

)m . (12)

2A “K stationary” process is a stochastic process whose K PDF does not
change when shifted in time or space.

The ML estimator of the normalized covariance matrix in the
deterministic texture case is obtained by canceling the gradient
of L′

k with respect to [M ] as the solution of the following
recursive equation:

[M̂ ]FP = f
(
[M̂ ]FP

)

=
m

N

N∑

i=1

kik
†
i

k†
i[M̂ ]−1

FPki

=
m

N

N∑

i=1

ziz
†
i

z†i[M̂ ]−1
FPzi

. (13)

This approach has been used in [38] by Conte et al. to derive
a recursive algorithm for estimating the matrix [M ]. This al-
gorithm consists in computing the FP of f using the sequence
([M ]i)i≥0 defined by

[M ]i+1 = f ([M ]i) . (14)

This study has been completed by the work of Pascal et al.
[20], [39], which recently established the existence and the
uniqueness, up to a scalar factor, of the FP estimator of the
normalized covariance matrix, as well as the convergence of
the recursive algorithm whatever the initialization. The al-
gorithm can therefore be initialized with the identity matrix
[M ]0 = [Im]. One way to analyze the convergence of the
FP estimator consists in evaluating the following criterion:

C(i) =

∥∥∥[M̂ ](i + 1) − [M̂ ](i)
∥∥∥

F∥∥∥[M̂ ](i)
∥∥∥

F

(15)

where ‖ . . . ‖F represents the Frobenius norm. When comput-
ing the FP estimator, (14) is iterated until C becomes smaller
than a predefined lower limit. Note that only a few iterations
suffice to reach an error that is less than 10−15[20].

It has also been shown in [31] and [38] that the recursive
estimation scheme from (14) can be applied to derive an exact
ML estimator of the normalized covariance matrix

[M̂ ]ML =
m

N

N∑

i=1

hm+1

(
k†

i[M̂ ]−1
MLki

)

hm(k†
i[M̂ ]−1

MLki)
kik

†
i

with hm(q) =
∞∫

0

τp exp
( q

τ

)
p(τ) dτ. (16)

In the previous equation, the exact ML estimator depends on
the texture PDF through the SIRV density-generating func-
tion hm(q). Chitour and Pascal [40] have recently demonstrated
that (16) admits a unique solution and that its corresponding
iterative algorithm converges to the FP solution for every
admissible initial condition. Pascal et al. [20], [39] have also
demonstrated that the normalized covariance ML estimator de-
veloped under the deterministic texture case (13) yields also an
approximate ML estimator under stochastic texture hypothesis.
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We propose to apply these results in estimating normal-
ized coherency matrices for high-resolution POLSAR data.
The main advantage of this approach is that the local “scene
heterogeneity” can be taken into account without any a priori
hypothesis regarding the texture random variable τ [(14) does
not depend on τ ]. The obtained FP is the approximate ML esti-
mate under the stochastic τ assumption and the exact ML under
the deterministic τ assumption. Moreover, the normalized po-
larimetric coherency matrix estimated using the FP method is
unbiased and asymptotically Gaussian distributed [20], [39].

Note also that the texture estimator from (11) can directly be
linked to the total scattered power (span) according to (9). By
estimating the normalized coherency as the FP solution of (13),
the derived estimate is independent of the total power, and it
contains polarimetric information only. Using this matrix, it is
possible to compute the SIRV span ML estimator for unknown
deterministic τ as

P̂PWF = k†[M̂ ]−1
FPk. (17)

One can observe that the span estimator from (17) has the
same form as the PWF introduced by Novak and Burl in [11].
The only difference is the use of the normalized coherency
estimate given by the FP estimator instead of the conven-
tional SCM.

Finally, it is possible to derive an estimate of the conventional
polarimetric coherency matrix according to (6)

[T̂ ]FP =
P̂PWF

m
[M̂ ]FP. (18)

4) Gaussian Model in the SIRV Context: The multivariate
Gaussian distribution presented in Section II-A is obviously a
member of the SIRV class. Let us assume N i.i.d. realizations
of the target vector k. The SCM from (2) is the ML estimator
of [T ] in the Gaussian clutter but not in the clutter described
by the product model [41]. In the specific case of completely
correlated texture (τ = τi ∀i ∈ {1, . . . , N}), Richmond [42]
proved that the SCM is, again, the exact ML estimator of
[M ] provided that the M normalization is respected. In fact,
the completely correlated τ case is equivalent to the Gaussian
model for a given realization of data across all resolution
cells [31]. Consequently, it is possible to define the normalized
SCM as

[M̂ ]SCM = m
[T̂ ]SCM

Tr
{

[T̂ ]SCM

} . (19)

In other words, in Gaussian clutter, the local power P is no
more random in (9), but m · τ = P with probability one [31].
Based on this consideration and according to (17), the MPWF
can be defined as

P̂MPWF =
1
N

N∑

i=1

k†
i [M̂i]−1

FPki. (20)

The MPWF is the span ML estimator for Gaussian clutter with
known power P , and it is unbiased [13], [14]. When compared
to the span estimator from (5), the main advantage of the

MPWF is that it takes into account the correlation between
the different polarization channels (speckle) in the whitening
process.

C. Spatial Support

In the estimation process, a certain number of samples must
be gathered for deriving the observation vector. In this purpose,
the boxcar sliding neighborhood is usually employed. The
main drawback of nonadaptive BN is that the available number
of samples is directly proportional with the loss of spatial
resolution. In order to deal with this undesired effect, several
strategies to obtain locally ANs were proposed for POLSAR
data processing. In [8], three local neighborhoods are analyzed,
and their performances are discussed with respect to different
end-user applications (visual interpretation, classification, etc.).
Experiments on real data sets have shown that the intensity-
driven adaptive neighborhood (IDAN) represents, on the whole,
a good tradeoff between preserving signal characteristics and
gathering a significant number of samples for coherency and
H−α−A parameter estimation [8], [43].

Recent studies have revealed that the original IDAN algo-
rithm tends to introduce a bias with respect to the radiometry
information [44]. The main reasons are the use of a symmetric
confidence interval around the mean for the Gamma-distributed
intensity and the estimation of the initial seed by the median
computed within a 3 × 3 neighborhood. In order to deal
with these problems, the SDAN algorithm has been introduced
in [45]. It allows using heterogeneous scene models, such as
SIRV, in the estimation step. Note that this approach is not
optimal as the resulting AN is driven on the texture (span)
information only. One may use other existing locally ANs (e.g.,
directional neighborhoods [9]), but, up to now, the existing
AN algorithms are also tributary to the span information.

SDAN successively truncates the texture PDF using two
symmetric confidence intervals around the mean. The trunca-
tion thresholds are expressed with Gamma-distributed texture.
However, different PDFs can be truncated according to the
same thresholds (initially set using a Gamma prior). In this
paper, the SDAN is employed to eliminate eventual outliers
from the local neighborhood. The main advantage of this ap-
proach consists in selecting spatially connected pixels within a
certain confidence interval. Its main inconvenience is the esti-
mation bias which can be induced by truncating the significant
part of the unknown texture PDF.

Within the SIRV context, the SDAN algorithm operates
under deterministic texture hypothesis: If τ is deterministic,
the span statistics over matrix stationary areas is given by the
Gamma PDF resulting from the complex Gaussian kernel. This
is coherent with the general hypothesis adopted for POLSAR
speckle filtering, stating that the local matrix stationarity prop-
erty is revealed by changes in the span image when texture is
absent [9].

D. Application to POLSAR Parameter Estimation

One way to derive the normalized coherency matrix is the
normalized sample covariance estimator, obtained by locally
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replacing the statistical mean by spatial average within the
sliding neighborhood W

[M̂ ]SCM(i, j) =
m

Tr
{

[T̂ ]SCM

} [T̂ ]SCM

with [T̂ ]SCM =
1

card {W(i, j)}
∑

(p,q)∈W(i,j)

k(p, q)k†(p, q)

(21)

where (i, j) represents the current range/azimuth position and
card{W} denotes the cardinal of W . The main advantage of
the [M̂ ]SCM estimator consists in deriving the polarimetric
covariance matrix independently of the span for the Gaussian
case. The normalized SCM estimator presents also one major
disadvantage: It is not SIRP stationary, and, as a consequence,
this estimator is not consistent over textured areas. Although
the derivation of the normalized SCM estimator from the stan-
dard SCM estimator is straightforward, we could not find any
specific paper to report its use for POLSAR data.

In this paper, we propose to extend the estimation of the
normalized polarimetric coherency matrix by using a hetero-
geneous scene model over the sliding neighborhood. The FP
estimator of the normalized covariance matrix for the SIRV
model is applied using the procedure described in Section II-B.
More precisely, the FP normalized coherency matrix is com-
puted iteratively as

[M̂l]FP(i, j) =
m

card {W(i, j)}

×
∑

(p,q)∈W(i,j)

k(p, q)k†(p, q)
k†(p, q)[M̂l−1]−1

FP(i, j)k(p, q)

with [M̂0]FP = [Im] (22)

where l is the iteration index. Equation (22) gives the covari-
ance matrix estimate of the SIRV complex Gaussian kernel
without imposing any statistical constraint over the texture
random variable τ . The resulting matrix [M̂ ]FP is asymptot-
ically Gaussian distributed. The proposed procedure (SDAN-
FP) starts by computing the AN using the SDAN algorithm [45]
at each range/azimuth position. The resulting AN is supposed to
respect the matrix stationarity condition. Finally, the FP estima-
tor is applied to derive the normalized polarimetric coherency
matrix estimate under a compound Gaussian polarimetric clut-
ter model (22).

Another physical parameter to be estimated is the total
power. For the SIRV model, the PWF span estimator is the
ML estimator; hence, it should be applied for textured areas.
However, on Gaussian textureless areas, a stronger speckle re-
duction can be obtained using the MPWF estimator. In practical
applications, the PWF and the MPWF estimators should be
applied as follows: On Gaussian stationary regions, the best
span estimator is the MPWF, while on SIRV homogeneous
areas only, the PWF should be applied. We propose to deal with

Fig. 1. Proposed estimation scheme.

this tradeoff by applying the LLMMSE criterion for the span
estimation [9]

P̂LLMMSE = P̂MPWF+αLLMMSE(P̂PWF −P̂MPWF)

with αLLMMSE =
σ2

PWF

(
1+σ2

n

)

σ2
MPWF−µ2

MPWFσ
2
n

(23)

where µMPWF, σPWF, and σMPWF are the signal mean and
standard deviations computed inside the local estimation neigh-
borhood, respectively, and σn is the noise standard deviation
(a priori known). In (23), the two span estimators can be
computed according to (17) and (20).

In the last stage, it is also possible to unify these two descrip-
tors by multiplying them according to the SIRV model from (6).
An important remark is that, by multiplying the two descriptors,
the separation between the total received power (span) and
the polarimetric information (speckle normalized coherency) is
lost. Finally, the resulting coherency matrix [T̂ ] does not obey
the Wishart PDF as it depends on the estimated span PDF.

In summary, this section introduces a novel estimation
scheme (see Fig. 1) for deriving normalized polarimetric co-
herency matrices and resulting estimated span. The proposed
algorithm couples span-driven multiresolution techniques [45]
with heterogeneous SIRV scene models [20] to deal with
the polarimetric texture inside the estimation neighborhood.
It is important to notice that the proposed FP estimator uses
normalized coherency matrix inversion, and thus, it works
only with Hermitian positive definite normalized coherency
matrices. This constraint is still acceptable since, in practice,
image coherency matrices are generally of full rank (three for
monostatic POLSAR data) [46]. However, in the specific case
of a noninvertible matrix, which can correspond to a strongly
polarized scattered signal, the SIRV model can be applied by
using only the nonzero signal subspace.

E. Distance Measures for POLSAR Segmentation

Classification of ground cover with POLSAR data is an
important application [17]–[19], [47]–[49]. Generally, one has
to find a distance between the pixel covariance matrix [C] and
the class center [C]ω . Based on this distance, conventional clus-
tering methods have already been introduced with POLSAR
data: “naive” Bayesian ML classifier or K-means [18], fuzzy
K-means, or expectation maximization [47].

When the POLSAR data are modeled by a stochastic process
with a known PDF, it is possible to derive optimal ML distance
measures (e.g., the Wishart distance for Gaussian processes).
In [27], Yueh et al. derived an optimal ML distance measure
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for terrain cover classification using the normalized target
vector in the lexicographical basis. The adopted normalization
condition was the Euclidian norm, and the distance measure
was computed applying the Bayesian ML classifier with the
PDF of the normalized polarimetric data. Note that, in Yueh’s
approach, the covariance matrix is estimated using the SCM
(ML estimator only with Gaussian clutter). In consequence,
the derived optimal distance is a generalized ML distance for
Gaussian clutter only.

We propose the following general binary hypothesis test for
a given class ω:

{
H0 : [C] = [C]ω
H1 : [C] ,= [C]ω.

(24)

According to the Neyman–Pearson Lemma, the likelihood ratio
test (LRT) provides the most powerful test [50]

Λ =
pm(k1, . . . ,kN/H1)
pm(k1, . . . ,kN/H0)

. (25)

For Gaussian clutter, maximizing the LRT from (25) and re-
placing the pixel coherency matrix [T ] with the ML estimate
[T̂ ]SCM are equivalent to minimizing the conventional Wishart
distance

DWishart

(
[T̂ ]SCM, [T ]ω

)
= ln

det {[T ]ω}
det

{
[T̂ ]SCM

}

+ Tr
{

[T ]−1
ω [T̂ ]SCM

}
. (26)

This distance has been widely used for supervised and unsuper-
vised POLSAR data clustering [18], [19], [47].

In the case of the SIRV model, one can rewrite the hypothesis
test as
{

H0 : [M ]=[M ]ω ⇔ k=
√
τz, with z ∼ N (0, [M ])

H1 : [M ] ,=[M ]ω ⇔ k=
√
τz, with z ∼ N (0, [M ]ω)

(27)

where τ is the unknown deterministic texture.
For a given class [M ]ω , the LRT with respect to the texture τ

and the normalized coherency matrix [M ] is given by

ΛSIRV =

∏N
n=1

1
πmτm

n det{[M ]ω} exp
{
−k†

n[M ]−1
ω kn

τn

}

∏N
n=1

1
πmτm

n det{[M ]} exp
{
−k†

n[M ]−1kn

τn

} . (28)

Notice that the likelihood function in (28) does not use
the stochastic texture description as the PDF p(τ) is sup-
posed unknown in the SIRV model. As previously stated in
Section II-B3, the texture parameter τ can be considered ei-
ther as a random variable with unknown PDF p(τ) or as an
unknown deterministic parameter with PDF p(τ) = δ(τ − τn)
which characterizes yet a particular SIRV process. It can be
shown that the ML estimation of the coherency matrix yields a
good approximate ML estimate in the first case and the true ML
estimate in the second case [31], [38]. With the general PDF
being unknown, it is therefore impossible to derive a texture-
independent closed-form expression for the likelihood ratio of

the test given by (27). This procedure is here simplified, con-
sidering a particular SIRV process with a texture characterized
by an unknown deterministic parameter. Consequently, each
resolution cell is now associated with its own p(τ) = δ(τ −
τn) in (7), where τn are the unknown deterministic texture
variables. This way, the texture descriptor can be discarded for
each pixel independently.

By taking the natural logarithm in (28), one obtains

ln(ΛSIRV)=−N ln
det{[M ]ω}
det{[M ]} −

N∑

n=1

k†
n

(
[M ]−1

ω −[M ]−1
)
kn

τn
.

(29)

Now, since τn’s and [M ] are unknown, they are replaced by
their ML estimates from (11) and (13). The resulting general-
ized LRT Λ′

SIRV is given by

ln(Λ′
SIRV) = − N ln

det {[M ]ω}
det

{
[M̂ ]FP

}

− m
N∑

n=1

k†
n[M ]−1

ω kn

k†
n[M̂ ]−1

FPkn

+ Nm. (30)

Maximizing the generalized LRT over all classes is equivalent
to minimizing the following SIRV distance:

DSIRV

(
[M̂ ]FP, [M ]ω

)
= ln

det {[M ]ω}
det

{
[M̂ ]FP

}

+
m

N

N∑

n=1

k†
n[M ]−1

ω kn

k†
n[M̂ ]−1

FPkn

. (31)

Notice that computing the distance from (31) needs the original
scattering vectors kn.

In this paper, the distance measure from (31) is used as a dis-
similarity measure in the conventional K-means clustering for
POLSAR data. The full description of the K-means algorithm
can be found in [18].

In summary, this section introduces a new distance measure
between normalized coherency matrices. The resulting approx-
imate generalized ML distance is optimal for POLSAR data
characterized by the SIRV model.

An interesting remark concerning the SIRV distance can be
observed in (31). On the one hand, when the texture (span
information) is high, the second term of the SIRV distance
DSIRV becomes small, and the distance measure is dominated
by the determinant ratio. This usually corresponds to strongly
polarized targets with a dominant scattering mechanism (e.g.,
dihedral, trihedral, etc.). On the other hand, with smaller span
values, the distance is dominated by the second term which
takes into account the N observed samples. This second case
often corresponds to distributed targets.

III. RESULTS AND DISCUSSION

This section has two main objectives. The first one consists
in evaluating the performance of the normalized coherency
estimation techniques presented in Section II. The second
objective is to show the improvement in the conventional
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Fig. 2. Simulated POLSAR data, Gaussian case (200 × 200 pixels). (a) Initial
one-look span estimated using (3). (b) Amplitude color composition of the
target vector elements k1 − k3 − k2.

POLSAR processing chain brought by introducing the normal-
ized coherence matrix related to the SIRV model.

Three different estimation techniques are analyzed: the nor-
malized SCM coupled with the 7 × 7 BN (BN-SCM) and the
FP estimator coupled either with the 7 × 7 BN (BN-FP) or
with the SDAN (SDAN-FP). In all three cases, the correspond-
ing span image is estimated using the LLMMSE estimator
from (23). The parameters used for the SDAN algorithm are
Leq = 3 and Nmax = 50.

A. Simulated POLSAR Data

As, for real data, it is impossible to find reference regions
with known coherency matrix, the effectiveness of the esti-
mation schemes is demonstrated using simulated POLSAR
data [30].

1) Gaussian Case: The first POLSAR data set consists of
four adjacent Gaussian regions as presented in Fig. 2. Each
of the four quadrants is associated with a known deterministic
texture value and a known theoretical covariance matrix. Using
these parameters, each component of the polarimetric target
vector is simulated accordingly. Fig. 2(a) shows the initial
span image computed using (3), and Fig. 2(b) shows the re-
sulting amplitude color composition of the three target vector
components.

The LLMMSE span P and the normalized coherency mat-
rix [M ] are estimated using the three different estimation
schemes. Note that, in the Gaussian case, the optimal ML esti-
mation technique is the BN-SCM from Fig. 3(a) and (d). Inside
each quadrant, the stochastic process characterizing the data is
Gaussian stationary; hence, it is also SIRV homogeneous. The
BN-FP estimation yields quite similar results, from the visual
point of view, as shown in Fig. 3(b) and (e). However, the
use of the BN is associated with the well-known edge-blurring
effect as the matrix stationarity condition is not respected over
the transitions between the quadrants. The SDAN-FP estima-
tion reduces this undesired effect as presented in Fig. 3(c)
and (f). As a general remark, the blurring is more present within
the normalized coherency diagonal elements than within the
span images due to the use of the adaptive LLMMSE span
estimator.

In order to objectively assess the estimation performances,
the mean and the variance for each element of the normalized

coherency are computed over the SE quadrant. A global error
measure ε for the normalized coherency matrix is also intro-
duced as

ε =
1
N

N∑

i=1

∥∥∥[M̂i] − [Mref ]
∥∥∥

F

‖[Mref ]‖F

(32)

where [Mref ] is the reference normalized coherency matrix used
for data simulation. As observed in Table I, the best results are
obtained using the BN-SCM estimator. Being the ML estimator
for Gaussian stationary regions, the SCM is used as a bench-
mark for the SDAN and the FP estimator. The mean value is
well preserved for both BN-FP and SDAN-FP estimates, while
the variance of the BN-FP is smaller than the measured variance
of the SDAN-FP. The latter observation is explained by the fact
that the BN is optimal on such SIRV homogeneous regions.
One can also note that, despite the mean of each element of
the normalized coherency being quite similar, a better error
measure is provided by the ε parameter. Using the Frobenius
norm, which is a norm associated to the inner product on the
ring of all complex matrices, the corresponding error ε shows
that the smallest error is obtained for the optimal BN-SCM
estimator. When introducing the FP estimator, ε increases, and
it increases even more by using the SDAN adaptive spatial
support. This behavior corresponds to the expected theoretical
observations. However, it is important to notice that, for both
BN-FP and SDAN-FP, the error is not increased by more than
7% with respect to the ML estimator. This is acceptable for the
POLSAR applications where the clutter is characterized by a
Gaussian stationary stochastic process.

A similar objective performance assessment is carried out
for the estimation of the span image. Table II shows the span
mean ratio and the speckle coefficient of variation computed
for the same Gaussian stationary region. As for the normalized
coherency, the bias in the estimated radiometry is less than
7% for all three estimation techniques. An interesting remark
consists in the fact that, when using the FP estimator, the
bias from Table II is also linked with the average computed
over the corresponding homogeneous region. Even if the mean
ratio is a standard parameter for evaluating the speckle filter
radiometric bias, this parameter is not so well adapted for
the FP estimation. Although being asymptotically Gaussian
distributed, the FP estimator is outperformed by the SCM
(ML estimator for Gaussian clutter) with a fixed number of
samples. Consequently, the average over a homogeneous area
should be coupled with the estimation of the FP normalized
coherency over the same homogeneous population for optimal
performances. This effect can be noticed with the SDAN-FP
span, where the local SDAN can gather more than 49 samples
over Gaussian stationary areas. The resulting SDAN-FP span
estimator exhibits a radiometric bias that is less than 1% (same
as for the BN-SCM).

In summary, the subjective and objective performance as-
sessment carried out for Gaussian POLSAR clutter shows that,
despite being suboptimal, the proposed FP estimator and the
SDANs give good overall performances. The corresponding
error measure is less than 7% for all estimation schemes.
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Fig. 3. Simulated POLSAR data, Gaussian case (200 × 200 pixels). Square root of the LLMMSE span image using the normalized coherency estimated by
(a) BN-SCM, (b) BN-FP, and (c) SDAN-FP. Color composition of the normalized coherency diagonal elements [M ]11 − [M ]33 − [M ]22 estimated by
(d) BN-SCM, (e) BN-FP, and (f) SDAN-FP.

TABLE I
SIMULATED POLSAR DATA, GAUSSIAN CASE: MEAN AND STANDARD DEVIATION OF THE

NORMALIZED COHERENCY ELEMENTS OVER GAUSSIAN STATIONARY AREAS

TABLE II
SIMULATED POLSAR DATA, GAUSSIAN CASE: SPAN MEAN RATIO µ̂/µref AND COEFFICIENT OF VARIATION OVER GAUSSIAN STATIONARY AREAS

2) SIRV Case: The second simulated POLSAR data set
proposes the same four quadrants but with Gamma-distributed
texture [Fig. 4(a)]: Each quadrant is K distributed. The tex-
ture coefficient of variation used for simulation is equal to
three, which corresponds to a highly non-Gaussian clutter
(urban areas). Fig. 4(b) shows the initial span image. Fig. 4(c)
shows the corresponding amplitude color composition of the
three target vector components.

The overall data set is not SIRV homogeneous as the ma-
trix stationarity condition is not respected on the boundaries;
however, each quadrant is SIRP stationary. In the following, we
shall use only the “SIRV homogeneity” assumption over each
quadrant, namely, the texture PDF is supposed unknown. Fig. 5

shows the LLMMSE span P and the normalized coherency ma-
trix [M ] estimated using the three different estimation schemes.

As the data set is not Gaussian, the PWF span estimator
is dominant in the LLMMSE criterion, and the correspond-
ing speckle reduction is performed using only three samples.
Hence, concerning the LLMMSE span estimation, BN-SCM,
BN-FP, and SDAN-FP [Fig. 5(a)–(c)] look similar from the
visual point of view.

The effectiveness of the FP estimator in compound Gaussian
clutter can be observed in Fig. 5(e) and (f). While the
BN-SCM normalized coherency [Fig. 5(d)] presents a “patchy”
appearance, the BN-FP estimation [Fig. 5(e)] provides better
visual homogeneity within each quadrant. The adaptive SDAN
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Fig. 4. Simulated POLSAR data, SIRV case (200 × 200 pixels). (a) Texture image. (b) Initial one-look span estimated using (3). (c) Amplitude color composition
of the target vector elements k1 − k3 − k2.

Fig. 5. Simulated POLSAR data, SIRV case (200 × 200 pixels). Square root of the LLMMSE span image using the normalized coherency estimated by
(a) BN-SCM, (b) BN-FP, and (c) SDAN-FP. Color composition of the normalized coherency diagonal elements [M ]11 − [M ]33 − [M ]22 estimated by
(d) BN-SCM, (e) BN-FP, and (f) SDAN-FP.

spatial support [Fig. 5(f)] assures better edge preservation for
the transitions between quadrants. One important issue is that
the diagonal elements of the BN-FP normalized coherency for
the SIRV case [Fig. 5(e)] have the same visual aspect as for the
previous Gaussian POLSAR data set [Fig. 3(e)]. This shows
that the FP estimate of the covariance matrix does not depend
on the texture PDF.

Using the same reference region as for the Gaussian case,
Table III presents the mean and the variance for each element of
the normalized coherency and also the overall error measure ε
computed for the three estimation schemes. BN-FP and SDAN-
FP outperform BN-SCM in retrieving the reference value and
also in terms of variance reduction. Since the matrix stationarity
is always assured within the reference region, BN-FP outper-
forms the SDAN-FP also. Finally, another interesting result
consists in the fact that Table III indicates the same BN-FP
value for the ε error parameter as in the Gaussian case (Table I).
This objective issue confirms the visual comparison mentioned
in the previous paragraph.

Objective performance assessment has been carried out for
the LLMMSE span estimation also. Table IV presents the

Kolmogorov–Smirnov (KS) test with respect to the reference
span used for simulation. The resulting KS values, com-
puted over the entire span image, indicate that BN-FP outper-
forms BN-SCM. The best results are reported when using the
SDAN-FP estimator. Note that the KS distance is rather small
ε ∈ (0.07, 0.12) in all three cases.

B. Airborne POLSAR Data

To illustrate the improvements in the standard POLSAR
processing chain, the results obtained with high- and very high
resolution airborne data are reported. Both data sets were ac-
quired by the airborne French Aerospace Laboratory (ONERA)
RAMSES system [51].

1) High-Resolution POLSAR Data: The first POLSAR data
set was acquired in Brétigny, France. The mean incidence angle
is 30◦. It represents a fully polarimetric (monostatic mode)
X-band acquisition with a spatial resolution of approximately
1.5 m in range and azimuth.

Fig. 6(a) shows the color composition of the target vector
amplitudes. The target area is composed of three buildings, a

Authorized licensed use limited to: Jean-Philippe Ovarlez. Downloaded on February 4, 2010 at 19:56 from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VASILE et al.: COHERENCY MATRIX ESTIMATION OF HETEROGENEOUS CLUTTER 11

TABLE III
SIMULATED POLSAR DATA, SIRV CASE: MEAN AND STANDARD DEVIATION OF THE

NORMALIZED COHERENCY ELEMENTS OVER SIRP STATIONARY AREAS

TABLE IV
SIMULATED POLSAR DATA, SIRV CASE: THE KS TEST

KSn = maxx |Fn(x) − Fref(x)| FOR THE SPAN DISTRIBUTION

Fig. 6. Brétigny, RAMSES POLSAR data, X-band (501 × 501 pixels).
(a) Amplitude color composition of the target vector elements k1 − k3 − k2.
(b) Optical image (137 × 137 pixel zoom of the initial span superposed for
illustrating the region of interest).

parking lot, and the surrounding agricultural areas. For further
illustration, a non-Gaussian urban (building) region has been
selected, namely, the span image superposed over the airborne
photograph from Fig. 6(b).

The LLMMSE span and the normalized coherency matrix
are estimated using the three different estimation schemes
(Fig. 7). The BN-FP span illustrated in Fig. 7(b) exhibits better
whitening in the estimation process than the BN-SCM span
from Fig. 7(a). This can be observed on the isolated brilliant
pointwise structures surrounding the building. However, both
BN-SCM and BN-FP are tributary to the “ring effect” (two
large dips on a spatial profile near the boundaries of a pointwise
target) induced by coupling the BN spatial support with the
LLMMSE estimator [52]. This effect is reduced in the SDAN-
FP span image as it can be observed over the metallic structures
that are present on the roof of the building from Fig. 7(c).

Visual assessment is carried out also with the normalized co-
herency [M ] estimates. Color compositions, constructed from
either the diagonal elements of [M ] or the corresponding
H−α−A parameters [17], are computed for the three esti-

mation techniques [Fig. 7(d)–(i)]. Both parameters exhibit the
same behavior:

1) BN-SCM: patchy appearance mainly due to the texture;
2) BN-FP: blurring as the matrix stationarity condition is not

respected;
3) SDAN-FP: higher spatial feature preservation but more

variance.

As the target area is highly heterogeneous, the SDAN-FP
estimation is a good tradeoff between robust estimation and
spatial resolution preservation.

Finally, it is possible to derive the SDAN-FP polarimetric co-
herency matrix as a product between the span image [Fig. 7(c)]
and the corresponding normalized coherency [Fig. 7(f)]. In
Fig. 8(a)–(c), the SDAN-FP coherency is compared with the
conventional coherency matrices obtained by the SCM estima-
tor coupled with two spatial supports: the BN and the IDAN [8].
Subjective visual assessment can be expressed in terms of
the hue–saturation–lightness color space [53] by associating
the lightness to the span and the saturation to the polari-
metric diversity. The SDAN-FP coherency from Fig. 8(c) ex-
hibits better performances in terms of lightness and saturation,
which means that both the span and the normalized coherency
are better estimated. The corresponding H−α classification
maps [17] are shown in Fig. 8(d)–(f). For H−α classification
also, the SDAN-FP coherency provides better performances as
it achieves stronger noise reduction than the IDAN filter.

One key issue to be discussed is whether the normalized
coherency matrix and the span should be aggregated in the final
estimation step or not (the question mark from Fig. 1). Most of
the existing processing chains use the conventional coherency
matrix for representing POLSAR data for unsupervised land
cover classification [18], [19], [43], [47] and for target detection
applications [12], [33]. Due to the SIRV model identification
problem discussed in Section II-B, the complete description
of the POLSAR data set is achieved by estimating the span
and the normalized coherency independently. The latter de-
scribes the polarimetric diversity, while the span indicates the
total received power. Moreover, the FP estimation of the nor-
malized coherence does not depend on the span information.
Given these facts, we propose to investigate this problem in
the framework of unsupervised POLSAR classification. The
classification scheme discussed in the following is the stan-
dard Wishart H−α segmentation [18]. For segmenting the
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Fig. 7. Brétigny, RAMSES POLSAR data, X-band (137 × 137 pixels). Square root of the LLMMSE span image using the normalized coherency estimated
by (a) BN-SCM, (b) BN-FP, and (c) SDAN-FP. Color composition of the normalized coherency diagonal elements [M ]11 − [M ]33 − [M ]22 estimated by
(d) BN-SCM, (e) BN-FP, and (f) SDAN-FP. Color composition of the polarimetric H−α−A parameters estimated by (g) BN-SCM, (h) BN-FP, and (i) SDAN-FP.

Fig. 8. Brétigny, RAMSES POLSAR data, X-band (137 × 137 pixels). Color composition of the coherency diagonal elements [T ]11 − [T ]33 − [T ]22 estimated
by (a) BN, (b) IDAN, and (c) SDAN-FP after multiplication with the LLMMSE span from Fig. 7(c). H−α classification results using (d) BN, (e) IDAN, and
(f) SDAN-FP.
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Fig. 9. Brétigny, RAMSES POLSAR data, X-band (501 × 501 pixels). LLMMSE span using the normalized coherency estimated by SDAN-FP: (a) Span
image, (d) Gamma unsupervised classification, and (g) physical mechanism identification (odd-bounce classes, even-bounce classes, and volume class) using the
SDAN-FP normalized coherency. SDAN-FP coherency matrix after span multiplication: (b) Color composition of the diagonal elements [T ]11 − [T ]33 − [T ]22,
(e) Wishart unsupervised classification, and (h) physical mechanism identification. SDAN-FP normalized coherency matrix: (c) Color composition of the diagonal
elements [M ]11 − [M ]33 − [M ]22, (f) SIRV unsupervised classification, and (i) physical mechanism identification.

normalized coherency, we have modified the Wishart H−α
algorithm by replacing the Wishart distance with the SIRV ML
distance discussed in Section II-E. For comparison, we have
also used the scalar Gamma K-means classification with H−α
initialization.

Fig. 9 shows the POLSAR unsupervised classification re-
sults using three descriptors estimated by SDAN-FP: span
[Fig. 9(a)], coherency [Fig. 9(b)], and normalized coherency
[Fig. 9(c)]. The selected scene is composed of both Gaussian
(agricultural fields) and non-Gaussian (urban) areas. This case
is encountered in many practical POLSAR classification ap-
plications. Fig. 9(e) shows the eight-class segmentation map
obtained using the SDAN-FP coherency matrix. When com-
pared to the scalar unsupervised classification map [Fig. 9(d)]
obtained using the span only, one can observe the high degree
of similarity between them. This leads to the following con-
clusion concerning the Brétigny data set: The Wishart H−α
classification is mainly influenced by the information contained
in the span image. The same behavior has been reported over
alpine glaciers, with L-band E-SAR data [45]. Regarding the
polarimetric information, Fig. 9(f) shows the classification map
computed using the normalized coherency matrix and the as-

Fig. 10. Toulouse, RAMSES POLSAR data, X-band (500 × 500 pixels),
resolution azimuth and range of 50 cm. (a) Amplitude color composition of
the target vector elements k1 − k3 − k2. (b) Optical image.

sociated SIRV distance. The visual assessment in Fig. 9(e) and
(f) reveals that a significant part of the polarimetric information
is lost when using the standard coherency matrix: The building
class separation is lost, as well as the natural canonical targets
(trihedral, dihedral, etc.) that are present over different “field”
classes. One important remark concerning the Wishart H−α
classification is that a large number of samples are usually
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Fig. 11. Toulouse, RAMSES POLSAR data, X-band (500 × 500 pixels), resolution azimuth and range of 50 cm. Color composition of the diagonal elements
[T ]11 − [T ]33 − [T ]22: (a) Lee refined filter and (b) SDAN-FP coherency matrix after span multiplication. (c) Color composition of the diagonal elements
[M ]11 − [M ]33 − [M ]22 estimated by SDAN-FP. Wishart unsupervised classification: (d) Coherency estimated by the Lee refined filter and (e) SDAN-FP
coherency matrix after span multiplication. (f) Unsupervised classification of the SDAN-FP normalized coherency based on the SIRV distance measure. Physical
mechanism identification (odd-bounce classes, even-bounce classes, and volume class) using (g) coherency estimated by the Lee refined filter, (h) SDAN-FP
coherency matrix after span multiplication, and (i) SDAN-FP normalized coherency.

assigned to the class feature vector when iterating the K-means
clustering algorithm. Due to this, locally Gaussian areas (agri-
cultural fields) may become heterogeneous regions as neither
the matrix stationarity nor the texture homogeneity conditions
are respected.

The same behavior can also be observed in Fig. 9(g)–(i)
with the classification maps obtained after basic scattering
mechanism identification [54]. The use of polarimetric indi-
cators, derived from the eigenvector–eigenvalue decomposition
of the normalized coherency matrix, allows the interpretation
of each cluster scattering mechanism from Fig. 9(d)–(f). In all
three cases, the POLSAR parameters were computed using the
SDAN-FP normalized coherency from Fig. 9(f). The observed
scene is then classified into three canonical scattering types:
even bounce (blue or cyan), odd bounce (red or dark red), and
volume scattering (green) [55].

2) Very High Resolution POLSAR Data: The second
POLSAR data (Fig. 10) set was acquired in Toulouse, France,
with a mean incidence angle of 50◦. It represents a fully po-
larimetric (monostatic mode) X-band acquisition with a spatial
resolution of approximately 50 cm in range and azimuth.

Fig. 11 shows the visual assessment of the proposed esti-
mation scheme applied to very high resolution POLSAR data
acquired in an urban environment. The obtained results are
visually compared to those obtained by the refined Lee filter
operating under Gaussian clutter hypothesis [9]. With a 50-cm
spatial resolution, the SDAN-FP normalized coherency from
Fig. 11(c) reveals higher variability in polarimetric signatures
than with a 1.5-m spatial resolution [Fig. 7(f)]. Fig. 11(b) shows
the color composition of the diagonal elements of the SDAN-
FP coherency matrix after multiplication by the corresponding
LLMMSE span. When compared to the polarimetric coherency
derived by the refined Lee filter [Fig. 11(a)], the SDAN-FP
coherency better preserves the polarimetric and radiometric
signatures over thin spatial features (brilliant points and edges),
while over larger structures (buildings, fields, and roads), the
two images look similar. This can also be observed in the eight-
class segmentation maps obtained by Wishart H−α clustering
[Fig. 11(d) and (e)]. It is important to stress that, for very high
resolution urban POLSAR data, the polarimetric coherency
matrix is not Wishart distributed. Hence, the unsupervised
H−α classification based on the SIRV distance measure can
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properly be applied using the SDAN-FP normalized coherency.
The result is shown in Fig. 11(f). Finally, the three classifi-
cation maps are interpreted according to the basic scattering
mechanism identification procedure [54]. The subjective visual
assessment indicates that quite realistic results are obtained us-
ing the SDAN-FP normalized coherency descriptor [Fig. 11(i)]:
Buildings and cars are mainly retrieved in the red “odd-bounce”
class, while “even-bounce” scattering mechanism (cyan class)
appears on the flat regions (roads).

In conclusion, the joint analysis of the span and the nor-
malized coherency presents several advantages with respect
to the coherency matrix descriptor: separation between the
total received power and the polarimetric information, esti-
mation of the normalized coherency matrix independently of
the span, and the existence of the SIRV distance measure
for unsupervised ML classification of normalized coheren-
cies. However, the span–normalized-coherency description of
POLSAR images raises new problems which still remain under
investigation. The first issue concerns the use of span for
testing the matrix stationarity condition for the normalized
coherency estimation. This test is currently used for POLSAR
data speckle filtering, and it is founded on the basic principle
that changes within the polarimetric signature are revealed by
changes in the total received power. Consequently, one may
envisage other estimation schemes dedicated to the SIRV model
with stochastic texture by considering external estimators of
matrix stationarity. The second important remark concerns
the Wishart unsupervised classification scheme. Although all
statistical requirements employed for unsupervised classifica-
tion are met, the polarimetric information is quite difficult to
extract using the K-means clustering. As it can be noticed
in Fig. 9(c), the polarimetric signatures are strongly mixed,
and the class boundaries are smoothed within high-resolution
POLSAR images (even for highly heterogeneous target areas).
Therefore, other clustering strategies should be better suited to
capture the spatial distribution of different polarimetric signa-
tures. One starting point could be the POLSAR segmentation
by likelihood approximation [56], spectral clustering ensemble
[57], or the support vector machines kernel-based nonlinear
classification [58].

Finally, one can observe that span information does also, in
some cases, contribute to classification quality (e.g., discrim-
ination of roads in Fig. 9 and buildings in Fig. 11), although
the polarimetric signature clustering suffers. Based on the
SIRV model, the separation span/polarimetric signature is
achieved. Future work is needed to objectively assess the clas-
sification potential of these two descriptors separately.

IV. GENERAL REMARKS

One critical point of the SIRV model is linked to the scalar
texture (span) descriptor τ . The validity of the product model
for POLSAR data has been investigated in many papers over
the last decades [7], [11]–[13], [28].

Yueh et al. [27] derived the generalized likelihood of the
normalized polarimetric target vector in Gaussian clutter. This
approach has been extended to the K-distributed clutter in [6]
and [28]. Note that this extension is not optimal since the

covariance matrix parameter is replaced by the SCM, or the
SCM depends on the texture PDF p(τ), and it is not the ML
estimator of the covariance matrix in the K-distributed clutter.
The exact ML normalized covariance estimator can be derived
using Yao’s representation theorem for SIRVs, and its exact
expression is given in (16).

The product model has also been used by Novak et al. [11],
[12] for deriving the PWF. Based on this result, Lopes and Sery
[13] derived the MPWF as well as the adaptive LLMMSE filter
for Gaussian and K-distributed clutter. The SIRV representation
theorem allows the derivation of the PWF as an ML estimator
of the deterministic texture. Once the texture parameter is
obtained for every resolution cell, further statistical processing
can be applied over a population of texture parameters (e.g., the
proposed LLMMSE span filter).

For Gaussian clutter, Lee et al. [18], [19], [47] introduced
optimal polarimetric covariance matrix classification schemes
based on the Wishart distance. The proposed methods can
be extended to the SIRV model by using the SIRV distance
presented in Section II-E. Moreover, the asymptotic distribution
of the FP estimator from (13) has been derived in [39]. The
FP estimator computed with N samples (secondary data) con-
verges in distribution to the normalized SCM computed with
N [m/(m + 1)] secondary data. Since the normalized SCM is
the SCM up to a scale factor, we may conclude that, in prob-
lems invariant with respect to a scale factor on the covariance
matrix, the FP estimate is asymptotically equivalent to the SCM
computed with N [m/(m + 1)] secondary data.

We can conclude that Yao’s representation theorem allows
optimal multivariate signal processing of POLSAR data in a
general framework. The SIRV model provides the methodology
for retrieving the conventional cases (multivariate Gaussian
and multivariate K distribution). This methodology can also be
generalized to other heterogeneous clutter models defined by
explicit texture PDFs (inverse Gamma, Fisher, etc.) [59].

More recent studies have revealed the presence of different
scattering characteristics between the cross- and copolar terms
of the Sinclair matrix [16], [60]. In consequence, the POLSAR
clutter could be modeled by different texture random variables
for each polarization channel. Such a stochastic model already
exists in the literature, and it is known as the generalized SIRV
model [61]. Unfortunately, the covariance matrix generalized
SIRV estimator of the Gaussian kernel could not be found,
without taking into account any a priori information about
the texture multivariate PDF. Future work should investigate
the coupling between SIRVs and multiple single-channel spa-
tial texture descriptors, such as the nonstationary anisotropic
Gaussian-kernel model [62].

Despite being quite general, the SIRV clutter model sup-
poses the matrix stationarity condition to be verified over the
observation vector. We proposed the use of an adaptive spatial
support based on the scalar span information. The resulting
SDAN operates under deterministic texture hypothesis, and it
states that the local matrix stationarity property is revealed by
changes in the span image.

One limitation of the proposed estimation scheme concerns
the determination of the SIRV homogeneous neighborhood
surrounding a pixel. The strategy adopted for this paper consists
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in testing the matrix stationarity condition using the span, under
deterministic texture assumption. Despite not being optimal in
the context of the SIRV model, the proposed approach does
not require additional a priori information regarding the local
clutter statistics.

Finally, the SDAN-FP algorithm is more computation inten-
sive than other existing POLSAR speckle filtering algorithms
developed for Gaussian clutter [8]–[10], and it handles single-
look complex data only. Further work should address the exten-
sion of the proposed approach to adaptive nonlinear filtering of
multilook POLSAR data.

V. CONCLUSION AND PERSPECTIVES

This paper has presented a new estimation scheme for deriv-
ing normalized coherency matrices and the resulting estimated
span with high-resolution POLSAR images. The proposed ap-
proach couples nonlinear ML estimators with SDANs for taking
the local scene heterogeneity into account.

The heterogeneous clutter in POLSAR data was described by
the SIRV model. Two estimators were introduced for describing
the POLSAR data set: the FP estimator of the normalized
coherency matrix and the corresponding LLMMSE span. The
FP estimation is independent on the span PDF and represents
an approximate ML estimator for a large class of stochastic
processes obeying the SIRV model. Moreover, the derived
normalized coherency is asymptotically Gaussian distributed.

For the SIRV clutter, a new ML distance measure was
introduced for unsupervised POLSAR classification. This dis-
tance was used in conventional K-means clustering initialized
by the H−α polarimetric decomposition. Other extensions of
the existing unsupervised or supervised POLSAR clustering
methods (e.g., Bayes ML or fuzzy K-means) can be derived by
replacing the conventional Wishart distance with the proposed
SIRV distance.

The effectiveness of the proposed estimation scheme was
illustrated by high- and very high resolution ONERA RAMSES
X-band POLSAR data. The reliability of the obtained results
was demonstrated by quantitative performance assessments
using simulated POLSAR data.

This work has many interesting perspectives. We believe that
this paper contributes toward the description and the analysis
of heterogeneous clutter over scenes exhibiting complex po-
larimetric signatures. The proposed approach presents a high
degree of generality as no explicit stochastic texture model is
needed. Finally, the proposed estimation scheme can be ex-
tended to other multidimensional SAR techniques using the co-
variance matrix descriptor, such as the following: multibaseline
interferometry, polarimetric interferometry, or multifrequency
polarimetry. Future work should address the quantitative perfor-
mance analysis of classification and target detection algorithms
based on these estimators.
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