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Abstract
Based on a modification of the Robust Principal Component Analysis
(RPCA), we regard the given hyperspectral image (HSI) as being made
up of the sum of low-rank background HSI and a sparse target HSI that
contains the targets based on a pre-learned target dictionary specified by
the user. The proposed method is evaluated on both synthetic and real
experiments.

What is a hyperspectral image (HSI)?

Figure 1.: A hyperspectral image (HSI)

A hyperspectral image (HSI) is a three dimensional data cube consisting of a series of images
of the same spatial scene in a contiguous and multiple narrow spectral wavelength (color) bands.

Each pixel in the HSI is a p-dimensional vector, x ∈ Rp, where p stands for the total number of
spectral bands.

Hyperspectral target detection
With the rich information afforded by the high spectral dimensionality, target detection is not
surprisingly one of the most important applications in hyperspectral imagery.

Usually, the detection is built using a binary hypothesis test:

1. Null hypothesis (H0) The test pixel x consists only of background,

2. Alternative hypothesis (H1) The test pixel x may be either fully or partially occupied by the
target material.

We can regard each test pixel as being made up of:

x = α t + (1 − α) b , 0 ≤ α ≤ 1

where:

• α: designates the target fill-fraction,

• t: is the spectrum of the target,

• b: is the spectrum of the background.

In case when α = 1, the pixel x is fully occupied by the target material and is usually referred
as full or resolved target pixel. When 0 < α < 1, the pixel x is partially occupied by the target
material, and is usually referred as subpixel or unresolved target.

Our study on exploiting RPCA for hyperspec-
tral target detection
How is RPCA exploited?
Based on similar assumptions as to those used in Robust Principal Component Analysis (RPCA):

1. the background is not too heavily cluttered with many different materials with multiple
spectra, so that the background signals should span a low-dimensional subspace, a property
that can be expressed as the low rank condition of a suitably formulated matrix,

2. the total image area of all the target(s) should be small relative to the whole image (i.e. spa-
tially sparse), e.g., several hundred pixels in a million pixel image, though there is no restric-
tion on target shape or the proximity between targets.

Figure 2.: A given HSI that contains three targets (the red circles). The HSI is split into a low rank background
HSI L0 , plus a sparse target HSI E0.

To estimate both L0 and E0, the RPCA considers the following minimization problem:

min
L,E

{rank(L) + λ ∥E∥0,2}
s.t. D = L +E ,

(1)

where λ controls the sparsity level in E.

Problem (1) is NP-HARD to solve due to the rank(.) term and l0,2 norm. Thus, it is solved by the
following convex minimization problem (after surrogating the rank term by the nuclear norm
and the l0,2 norm by the l1,2 norm):

min
L,E

{τ ∥L∥∗ + λ ∥E∥1,2 + ∥D −L −E∥2F} , (2)

where τ controls the rank of L, and λ the sparsity level in E.

Is RPCA adequate to identifying the true targets?

No!
The following evaluations prove that the direct use of RPCA:

1. is inadequate to distinguishing the true targets from the background.

2. searches only for small heterogeneous and/or high contrast regions!

Evaluation on the DATA HSI (of size 201 × 200 × 167)

Figure 3.: From left to right: the original HSI (mean power in dB over the 167 spectral bands); the ground truth
image for the targets of interests; the sparse target HSI E after some thresholding (mean power in dB).

Evaluation on the Cuprite HSI (of size 250 × 291 × 186)

Figure 4.: From left to right: the original HSI (mean power in dB over the 186 spectral bands); the ground truth
image for the targets of interests; the sparse target HSI E after some thresholding (mean power in dB).

Our modification of RPCA
We consider that a prior target information is provided to the user. This prior information is
related to the target spectra.
In this regard, we use a pre-learned target dictionary At to cast the general RPCA into a more
specific form, specifically, we further factorize the sparse component E from RPCA into the
product of At and a sparse activation matrix C:

D = L0 + (AtC0)T +N0 ,

where

• (AtC0)T is the sparse target matrix.

• At is the target dictionary containing the target samples.

• The coefficient matrix C0 that should be sparse in columns.

• N0 is assumed to be independent and identically distributed Gaussian noise with zero mean
and unknown standard deviation.

Both the low rank component (L0) and sparse component (AtC0)T are estimated as follows:

min
L,C

{τ rank(L) + λ ∥C∥2,0 + ∥D −L − (AtC)T∥2
F
} , (3)

where τ controls the rank of L, and λ the sparsity level in C.

Problem (3) is surrogated towards the following convex minimization problem:

min
L,C

{τ ∥L∥∗ + λ ∥C∥2,1 + ∥D −L − (AtC)T∥2
F
} , (4)

Synthetic experiments
The experiments are done on a 101 × 101 × 186 HSI zone (see Figure 5).

1. We incorporate in this zone, 7 target blocks (each of size 6× 3) with α ∈ [0.01, 1] (all have the
same α), placed in long convoy formation all formed by the same synthetic (perfect) target t
consisting of a sulfate mineral type known as “Jarosite”.

2. The target t that we created actually consists of the mean of the first six Jarosite mineral
samples taken from the USGS Spectral Library.

3. As for At, it is constructed from the six acquired Jarosite samples (see Figure 5).
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Figure 5.: From left to right: the 101 × 101 × 186 HSI zone (we exhibit the mean power in dB over the 186 spectral
bands); Plot of the Jarosite samples taken from the online USGS Spectral library.

Visual target detections of (AtC)T :

Figure 6 depicts a 2-D visual detection results of (AtC)T for different α values. Obviously, all
the targets are detected with little false alarms until α ≤ 0.1 when a lot of false alarms appear.

Figure 6.: Visual detections (mean power in dB over the 186 bands) of (AtC)T for the 7 target blocks for different
α.

Real Experiments
1. The experiments are based on a HSI zone of size 250 × 291 × 186 pixels (see Figure 7)

2. We consider this HSI zone specifically to detect the Tectosilicate mineral type target pixels
known as Buddingtonite.

3. There are three Buddingtonite samples available in the online ASTER spectral library, and
our target dictionary At is formed by these samples (see Figure 7).
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Figure 7.: From left to right: the 250 × 291 × 186 HSI zone (mean power in dB over the 186 spectral bands); Plot of
the Buddingtonite target samples taken from the online ASTER Spectral library.

Visual target detections of (AtC)T :

Figure 8 depicts the visual detection of the Buddingtonite targets in (AtC)T . The Buddingtonite
targets are detected with very little false alarms.

Figure 8.: The detection in (AtC)T (mean power in dB over the 186 bands) .

Concluding remarks
• The obtained results demonstrate the effectiveness of our modified RPCA for hyperspectral

target detection. In particular, they can deal with targets of any shapes or targets that occur
in close proximity, and are resilient to most values of fill-fractions unless they are too small!!

• The subspace overlap problem illustrated in Figure 4 is now much relieved, as can be seen
from Figure 8 ,,,


