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1. ABSTRACT

Adaptive radar detection and estimation
schemes are often based on the indepen-
dence of the training data used for build-
ing estimators and detectors. This paper
relaxes this constraint and deals with the
problem of deriving detection and estima-
tion schemes for joint spatial and temporal
correlated radar measurements. To model
these correlations, we use the Vector ARMA
(VARMA) methodology. The matrix param-
eters of the VARMA model are estimated by
likelihood maximisation in Gaussian and non-
Gaussian environments. These matrix esti-
mates are used to bluid Adaptive Radar Detec-
tors, like Adaptive Normalized Matched Fil-
ter (ANMF). Their performances are analyzed
through simulated datasets. We show that tak-
ing into account the spatial covariances may
increase the performances significantly com-
pared to classical procedures which ignore the
spatial correlations.

2. VARMA(0,1) RADAR CLUTTER MODEL

A multivariate signal (yk)k∈Z is an m-variate
VARMA(p, q) model if

yk −
p∑

i=1

Φi yk−i = ck +

q∑
i=1

Θi ck−i,

where (ck)k∈Z are IID m-variate zero-mean
vectors with non-degenerate covariance ma-
trix Σc = E

(
ck c

H
k

)
characterizing the tempo-

ral dependence of its components. Here, we
choose p = 0 and q = 1, which means that yk

is correlated only with yk−1.
The radar detection problem can be stated as a
classical binary hypothesis testing [1]

H0 : y = c yk = ck, k = 1, . . . ,K

H1 : y = αp + c yk = ck, k = 1, . . . ,K.

The detection test performance is analyzed
through the false alarm probability Pfa and
the probability of detection Pd. These proba-
bilities are computed through the Normalized
Matched Filter (GLRT in partially homoge-
neous Gaussian clutter, approximated GLRT
in non-Gaussian CES clutter) [2]
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where M̂ stands for any estimator of the co-
variance matrix M of y which satisfies

M = Σc + Θ1 Σc Θ
H
1 .
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3. GAUSSIAN ESTIMATORS

Independent observations: The likelihood
function L1(Y ,M) is given by

L1(Y ;M)=
1

πmK |M |K exp

(
−

K∑
k=1

yH
k M−1 yk

)
.

The maximum ofL1(Y ;M) with respect to M
is the Sample Covariance Matrix [1]

M̂SCM =
1

K

K∑
k=1

yk y
H
k .

VARMA(0,1) observations: The parameters
can be estimated by conditional or exact likeli-
hood maximisation [3]. The conditional likeli-
hood function is

L2(Y ;Θ1,Σc)=
1

πmK |Σc|K
exp

(
−

K∑
k=1

cHk Σ−1
c ck

)
.

The exact likelihood function is

L3(Y ;Θ1,Σc) =
exp (−(Ỹ − X̃ĉ0)

H(Ỹ − X̃ĉ0))

π|Σc|K
∣∣∣X̃H

X̃
∣∣∣ ,

where ĉ0, X̃ and Ỹ depend only on the ob-
servations and Σc and Θ1. As the sample size
tends to infinity, the conditional MLE’s and
the exact MLE’s both converge almost surely
to the true values Θ1 and Σc. But their fi-
nite sample behaviours may be different, es-
pecially in the case of small datasets.

4. COMPOUND GAUSSIAN ESTIMATORS

The random vector ck is compound Gaussian
if ck =

√
τkxk where τk ≥ 0 is the random

texture, xk is a Gaussian vector, and τk is in-
dependent of xk.
Independent observations: The conditional
PDF of yk conditionally to τk is

p(yk|τk) =
1

πm|M |τmk
exp

(
−yH

k M−1yk

τk

)
.

The value of τk that maximizes p(yk|τk) is τ̂k =
cHk Σ−1c ck/m = yH

k M−1yk/m, [4]. The likeli-
hood function is

L4(Y ;M) =
K∏

k=1

mm exp(−m)

πm|M |(yH
k M−1yk)

m
.

The covariance matrix maximizing L4(Y ;M)
is the Tyler’s estimate [5]

M̂FP =
m

K

K∑
k=1

yky
H
k

yH
k M̂

−1

FPyk

.

VARMA(0,1) observations: The conditional
likelihood function of Y is

L5(Y ;Θ1,Σc) =
K∏

k=1

mm exp(−m)

πm|Σc|(cHk Σ−1
c ck)m

.

5. EXPERIMENTAL RESULTS
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Figure 1: Pfa − λ plot and the corresponding Pd-
SNR relationship for Pfa = 10−2 for spatially
VARMA(0,1) correlated Gaussian clutter (m = 16,
ρ = 0.5, Θ1 = 0.9Im). (a), (b) K = 32. (c), (d)
K = 48.
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Figure 2: Pfa − λ plot and the corresponding Pd-
SNR relationship for Pfa = 10−2 for VARMA(0,1)
spatially correlated compound Gaussian clutter
(ν = 0.5, m = 16, ρ = 0.5, Θ1 = 0.9Im). (a),
(b) K = 32. (c), (d) K = 48.

6. CONCLUSION

We proved that the spatial correlation char-
acterizing the clutter secondary data could
be exploited to enhance the performance of
the radar detection. This enhancement takes
place in simulated Gaussian distributed data
through a maximization of both conditional
and exact likelihood functions to estimate the
data covariance matrix. In the case of non
Gaussian distributed clutter, the conditional
ML gives a considerable improvement of the
quality of detection with respect to the classi-
cal Tyler’s estimator.


