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1. ABSTRACT

Adaptive radar detection and estimation
schemes are often based on the indepen-
dence of the training data used for build-
ing estimators and detectors. This paper
relaxes this constraint and deals with the
problem of deriving detection and estima-
tion schemes for joint spatial and temporal
correlated radar measurements. To model

these correlations, we use the Vector ARMA
(VARMA) methodology. The matrix param-

eters of the VARMA model are estimated by
likelihood maximisation in Gaussian and non-
Gaussian environments. These matrix esti-
mates are used to bluid Adaptive Radar Detec-
tors, like Adaptive Normalized Matched Fil-
ter (ANMF). Their performances are analyzed
through simulated datasets. We show that tak-
ing into account the spatial covariances may
increase the performances significantly com-
pared to classical procedures which ignore the
spatial correlations.

2. VARMA((0,1) RADAR CLUTTER MODEL

A multivariate signal (y,)rez is an m-variate
VARMA (p, q) model if

p q
yr— > Py, =+ Y Oicii,
1=1 1=1

where (ci)rez are IID m-variate zero-mean
vectors with non-degenerate covariance ma-
trix 3. = E (¢ ¢; ) characterizing the tempo-
ral dependence of its components. Here, we
choose p = 0 and ¢ = 1, which means that y,
is correlated only with y,_ ;.

The radar detection problem can be stated as a
classical binary hypothesis testing [1]

Hy:y=c Y. =cp,k=1,..., K

H:y=ap+c y,=cx,k=1,..., K.
The detection test performance is analyzed
through the false alarm probability P, and
the probability of detection P;. These proba-
bilities are computed through the Normalized
Matched Filter (GLRT in partially homoge-
neous Gaussian clutter, approximated GLRT
in non-Gaussian CES clutter) [2]
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where M stands for any estimator of the co-
variance matrix M of y which satisfies

M=3.+0,%. 06

3. GAUSSIAN ESTIMATORS

Independent observations: The likelihood

function L1(Y, M) is given by

K
1 H pp—1
k=1

The maximum of L (Y'; M) with respect to M
is the Sample Covariance Matrix [1]

L.i(Y; M) =

K
. 1 -
Mscwm = I7e ;ykyk

VARMA(0,1) observations: The parameters
can be estimated by conditional or exact likeli-

hood maximisation [3]. The conditional likeli-
hood function is

Lo(Y;©1,3.)=

M

The exact likelihood function is

eEXP (—(i} — X(A:())H l} — X(A}()))
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where ¢y, X and Y dg)end only on the ob-
servations and X, and ©;. As the sample size

tends to infinity, the conditional MLE’s and
the exact MLE’s both converge almost surely
to the true values ®; and XY.. But their fi-
nite sample behaviours may be ditferent, es-
pecially in the case of small datasets.

4. COMPOUND GAUSSIAN ESTIMATORS

The random vector ¢ is compound Gaussian
if ¢ = /T where .. > 0 is the random
texture, x,. is a Gaussian vector, and 7 is in-

dependent of xy.
Independent observations: The conditional
PDF of y,, conditionally to 7, is

(. 7) L,
Tk) = X
PR klTh T | M| 1" b

The value of 7, that maximizes p(y,. |7x) is Tk =
Iy ey /m = yI M~ 'y, /m, [4]. The likeli-
hood function is

K
La(Y; M) = H
k=1 "

The covariance matrix maximizing L4(Y ; M)
is the Tyler’s estimate [5]

VARMA(0,1) observations: The conditional
likelihood function of Y is

L5(Y7 @17 ZC)
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5. EXPERIMENTAL RESULTS
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Figure 1: Py, — A plot and the corresponding FPy-
SNR relationship for Pr, = 1077 for spatially
VARMA(O,1) correlated Gaussian clutter (m = 16,
p =05 01 = 091,,). (a), (b) K = 32. (c), (d)
K = 48.
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Figure 2: Py, — X plot and the corresponding Fy-
SNR relationship for Py, = 10~ for VARMA(0,1)
spatially correlated compound Gaussian clutter
(v = 05, m =16, p = 0.5, @1 = 0.91,,). (a),
(b) K = 32. (¢), (d) K = 48.

6. CONCLUSION

We proved that the spatial correlation char-
acterizing the clutter secondary data could
be exploited to enhance the performance of
the radar detection. This enhancement takes
place in simulated Gaussian distributed data
through a maximization of both conditional
and exact likelihood functions to estimate the
data covariance matrix. In the case of non
Gaussian distributed clutter, the conditional
ML gives a considerable improvement of the
quality of detection with respect to the classi-
cal Tyler’s estimator.
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