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ABSTRACT

In classical detection framework, the parameter space is usu-
ally discretized, so that in reality received parameter depen-
dent signals are never perfectly aligned with the signal model
under test: it leads to the off-grid signal mismatch. In a
Gaussian adaptive context (i.e. the noise covariance is un-
known), Kelly GLRT and AMF detectors are well established
techniques that can suffer severe performance degradation in
presence of this kind of mismatch. We propose here to use
adaptive subspace detectors to solve this issue, a suitable sub-
space (that coincides with the Discrete Prolate Spheroidal Se-
quences basis when the signal model is that of sinusoids in
noise) is proposed that offers robust performance. The inter-
est lies in the fact that such detectors are really easy to imple-
ment and we are able to derive their analytic performance.

Index Terms— Off-grid mismatch, adaptive radar detec-
tion, Kelly GLRT, AMF, DPSS

1. INTRODUCTION

Classically, in a lot of signal processing problems, the signal
parameters are assumed discrete whereas the observed scene
is often continuous by nature. This may lead to a mismatch
between the received parameter dependent signal and the pre-
sumed signal model, known as “off-grid” mismatch, which is
for example a topic of interest in sparse signal recovery [1].

Signal mismatch has been present in a variety of studies
in detection problems. Often, the considered mismatch, de-
signed to reflect uncertainties on the received signals, have
very general formulation (e.g. [2, 3]). On the contrary, the
off-grid mismatch is very structured. As a consequence lots
of these studies are not specifically designed for the problem
under consideration here and might not perform very well.
Also, the increased robustness is often obtained at the price
of increased computational complexity. To the best of our
knowledge, the issue of off-grid target detection has not been
the subject of numerous studies in the literature [4].

In this paper we focus on adaptive detection in Gaussian
environment in presence of signal mismatch. In absence of
mismatch, Kelly’s GLRT [5] and Adaptive Matched Filter
(AMF) [6] are very widespread approaches. It was already
observed that Kelly’s test is not very robust to signal mis-

match angle [6]. As we will see, in case of off-grid targets the
performance degradation can be severe.

Study [3] is, to our knowledge, the closest state of the art.
The proposed detector assumes that the signal mismatch an-
gle is bounded (the signals must belong to a defined cone). As
a drawback, an optimization has to be performed to compute
the measurement projection on the cone, and this should be
performed for each new measurement to be tested. Also, an-
alytic probability of detection and false alarm are not known.
It is also worth mentioning that the projection to the cone
imposes a lower bound on the false alarm probability (since
every realization inside the cone is declared as a detection):
depending on the problem, this might not be compatible for
certain applications (such as radar) where the required false
alarm probability can be very low (of the order of 10−6).

We extend the approach in [4] to the case of adaptive
detection. In this paper, the idea is to use subspace detec-
tor that can be more robust to the off-grid mismatch. We
discuss the choice of a good basis and the choice of its di-
mension. We show that for the widespread sinusoids-in-noise
model, the basis is directly deduced from the Discrete Prolate
Spheroidal Sequences vectors (DPSS) [7]. The strong advan-
tages of this subspace approach is that associated detectors
are easy to implement and it is possible to derive their ana-
lytic performances.

The paper is organized as follows : the signal model is
presented and the problem is formulated in section 2. Section
3 deals with the adaptive subspace detectors and we provide
their performances under off-grid signal mismatch. Section 4
deals with the relevant choice of the subspace and finally sec-
tion 5 concludes with numerical experiments where we show
the benefit of the proposed detectors.

2. SIGNAL MODEL AND PROBLEM
FORMULATION

In classical radar estimation and detection problems, the sig-
nal parameter space (say Θ) is often discretized into a grid
GΘ (a discrete set), and all of as we don’t know where an
the signal/target parameter lies and how many are present. In
practice, several values of the unkown parameterθ0 ∈ GΘ are
tested. Suppose we have an observation vector y ∈ CP×1,
which consists of a signal part corrupted by an additive Gaus-



sian noise. The signal writes αs(θ) ∈ CP×1, where α ∈ C
and θ ∈ Θ ⊂ R are the unknown deterministic nuisance am-
plitude parameter and parameter of interest, respectively. We
assume that ‖s(θ)‖2 = 1. The target parameter θ can take any
value in

[
θ0 − ∆

2 , θ0 + ∆
2

]
, where ∆ is the grid step. The grid

step ∆ is classicaly chosen so that s(θ0) and s(θ0 + ∆) are
orthogonal. In the special case of interest, for the sinusoids-
in-noise model

s(θ) =
1√
P

[
1 ej2π

1
P θ ... ej2π

P−1
P θ

]T
, (1)

we have ∆ = 1
P . This model is widely used, especially for

radar target detection in Doppler domain. The noise is as-
sumed complex circular Gaussian distributed n ∼ CN (0,R),
where R is unknown. Since R is unknown, it must be es-
timated via K secondary i.i.d. data yk = nk with nk ∼
CN (0,R).

Then, the off-grid adaptive detection problem in Gaussian
environment consists in deciding between two hypotheses:
presence (H1) or absence of a target (H0) embedded in noise.

H1 :

{
y = αs(θ) + n, θ ∈

[
θ0 − ∆

2 , θ0 + ∆
2

]
,

yk = nk, 1 ≤ k ≤ K,
(2)

H0 :

{
y = n,

yk = nk, 1 ≤ k ≤ K.

Since there is a mismatch between the parameter under test θ0

and the true target parameter θ, classical detectors will endure
a performance degradation. The criteria we study here is the
mean detection probability over θ ∈

[
θ0 − ∆

2 , θ0 + ∆
2

]
.

3. ADAPTIVE SUBSPACE DETECTORS

Since the signal s(θ) belongs to a manifold, trying to approx-
imate it by a vector s(θ0) (as it is implicitly done by classical
detectors) does not lead to very robust tests. The idea here is
to approximate the manifold by a proper subspace of dimen-
sion p > 1. Then analytic performance of such tests under
off-grid mismatch are derived.

3.1. ASD and MAMF

When we substitute the following subspace model

y = Uα + n,

where U ∈ CP×p represents the signal subspace, to the
model in (2), well known established detectors are the Adap-
tive Subspace Detector (ASD) [8],

tASD =

∥∥∥P
S

1
2 U

z
∥∥∥2

K +
∥∥∥P⊥

S
1
2 U

z
∥∥∥2 ≷ ηASD

which is the GLRT of the detection problem, and the Multi-
rank AMF (MAMF)

tMAMF =

∥∥∥P
S

1
2 U

z
∥∥∥2

K
≷ ηMAMF ,

and the CFAR ASD [8] (derived assuming that there is an
unknown scale parameters in the noise variance between pri-
mary and secondary data),

tCFAR−ASD =

∥∥∥P
S

1
2 U

z
∥∥∥2

∥∥∥P⊥
S

1
2 U

z
∥∥∥2 ≷ ηCFAR−ASD,

where z = S
1
2y, S = 1

K

∑K
k=1 yky

H
k , PU is the orthog-

onal projector on U and P⊥U = I − PU. Note that when
U = s(θ0), the ASD, the multirank AMF and the CFAR ASD
are exactly Kelly’s GLRT [5], the AMF [6] and the Adaptive
Coherence Estimator (ACE), respectively.

3.2. Performance of the ASD and MAMF under off-grid
signal mismatch

Following the lines of [8], it is possible to show that when the
signal is modeled as (2), we can write the ASD, MAMF and
CFAR ASD statistics as

tASD = f, tMAMF =
f

b
,

tCFAR−ASD = f(1− b),
where, conditionally to b, f follows a non-central F-distribution
f ∼ F (ν1, ν2, bA(θ)), with degrees of freedom ν1 = 2p and
ν2 = 2(K − P + 1) and non-centrality parameter A(θ) =

2
∥∥∥P

R
1
2 U

s(θ)
∥∥∥2

. Moreover, b is such that 1 − b follows a

non-central Beta distribution: 1−b ∼ β
(
ν3, ν4, A

⊥(θ)
)
, with

degrees of freedom ν3 = 2(P−p) and ν4 = 2(K−P+p+1)

and non-centrality parameter A⊥(θ) = 2
∥∥∥P⊥

R
1
2 U

s(θ)
∥∥∥2

.
We can then deduce the probability of detection of the ASD,
MAMF and CFAR ASD when the signal parameter equals θ:

P id(θ) = Pr [ti ≥ ηi] ,

= 1−
∫ 1

0

F[ν1,ν2,bA(θ)] (γi (b)) pb,θ(b)db, (3)

where i ∈ {ASD, MAMF, CFAR−ASD}. F[ν1,ν2,a](x)
denotes here the cumulative distribution function of a non-
central F-distribution with degrees of freedom ν1 and ν2 and
non-centrality parameter a. The distribution pb,θ(b) of b is the
just the one explicited above. In order to obtain the distribu-
tion for either the ASD, the MAMF or the CFAR ASD, we
only need to replace γi (b) by either γASD(b), γMAMF (b), or
γCFAR−ASD(b):

γASD(b) = ηASD
ν1

ν2
, γMAMF (b) = ηMAMF b

ν1

ν2
n,



γCFAR−ASD(b) = ηCFAR−ASD(1− b)ν1

ν2
.

The integration in (3) is performed numerically. Averaging
with respect to θ ∈

[
θ0 − ∆

2 , θ0 + ∆
2

]
gives the desired mean

detection probability P̄ id = 1
∆

∫ θ0+ ∆
2

θ0−∆
2

P id(θ)dθ.
The false alarm probability Pfa is simply obtained by set-

ting A(θ) = A⊥(θ) = 0. The thresholds ηASD, ηMAMF and
ηCFAR−ASD are chosen in order to garantee a desired Pfa.

Note that due to the mismatch, the result here differs from
that in [8] where the distribution of b was central Beta (versus
non central Beta here) and the expression of the non centrality
parameter in the F-distribution is also impacted.

4. CHOICE OF THE SUBSPACE

4.1. Choosing the subspace U

Assuming a fixed rank p, a good choice for the signal sub-
space is to chose an orthonormal basis U that minimizes the
average projection error

U = arg min
V,dim(V)=p

E(θ0,∆,V),

where E(θ0,∆,V) =
1

∆

∫ θ0+ ∆
2

θ0−∆
2

∥∥s(θ)−VVHs(θ)
∥∥2
dθ.

Such basis is then simply given by the p eigenvectors (de-
noted vk(θ0,∆)) associated with the p strongest eigenvalues

of the matrix U(θ0,∆) =
1

∆

∫ θ0+ ∆
2

θ0−∆
2

s(θ)sH(θ)dθ [9].

Moreover, the minimal projection residue is given by the
sum of the remaining eigenvalues of U(θ0,∆).

min
V,dim(V)=p

E(θ0,∆,U) =

P∑
k=p+1

λk (θ0,∆) . (4)

When the signal model is (1), we have

U(θ0,∆) =
1

∆

[
s(θ0)sH(θ0)

]
�BP,∆2

,

where � denotes the Hadamard (element-wise) product, and
the matrix [BP,W ]kl = 2W sin(2W (k − l)), 1 ≤ k, l ≤ P,
is the DPSS matrix [7]. Let us denote uk(P,W ) and
λk(P,W ) the corresponding k-th eigenvector and eigenvalue
respectively (sorted by decreasing magnitude). Note that
vk(θ0,∆) = s(θ0)�uk

(
P, 1

∆

)
. The index-limited sequence

DPSS {un(P,W )} is by construction the index-limited se-
quence with most concentrated spectrum in [−W,W ] and
orthogonal to {uk(P,W ), k ∈ [1, n− 1]}, λk(P,W ) denot-
ing its fraction of energy in [−W,W ] [7].

4.2. Choosing the dimension of the subspace p

Choosing the optimal dimension p of the subspace is not triv-
ial. Increasing p tends to reduce the projection error (the mis-
match between the true and assumed signal subspace) and

ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9

Pr (n ∈ Cθc ) 6.9× 10−4 1.4× 10−2 0.13 0.68

Table 1: Probability for n ∼ CN (0,R) to belong to the cone
Cθc centered in s(θ0) and of half angle ∆/2. θ0 = 0, θc =
cos−1( 2

π ). R is a symmetric Toeplitz matrix with coefficients(
1, ρ, ..., ρP−1

)
, P = 15.

thus to increase the probability of detection. But increasing
p also tends to increase the threshold and thus, in turn, to de-
crease the detection probability. As in [4], we observed em-
pirically that p = 2 gives usually the best result. We have the
following result [7]:

Theorem 1 When W → 0, P → +∞ with πWP → c, then
λk(P,W ) → λk(c), where λk(c) is the k − th eigenvalue
associated with the k− th Prolate Spheroidal Wave Function
(PSWF) with corresponding parameter c [7].

In our case W = 1/2P and c = π/2. We have λ1(c) ≈
0.78, λ2(c) ≈ 0.20, λ3(c) ≈ 0.01 and λ4(c) ≈ 2.10−4. Thus,
p = 2 allows to capture more than 98 % of the signal subspace
energy, considering the projection error (4).

5. NUMERICAL RESULTS

We consider here the case of steering vectors following the
signal model (1). The SNR is here defined as SNR =
20 log10 (|α|).

We assume that the noise covariance R is a symmet-
ric Toeplitz matrix with coefficients

(
1, ρ, ..., ρP−1

)
with

0 ≤ ρ ≤ 1 .
In order to implement the GLRT [3], we choose as signal

subspace s(θ0) and a cone angle θc equivalent to a res-
olution cell half width, that is to say the angle between

s(θ0) and s(θ0 + ∆/2): cos(θc) =
|s(θ0+∆/2)Hs(θ0)|
‖s(θ0)‖2‖s(θ0+∆/2)‖2

=∣∣∣ sin(π/2)
P sin(π/2P )

∣∣∣ ≈ 2
π . Note that this angle is almost constant

with respect to P and is quite large (around 50◦). As a con-
sequence, the probability of n ∼ CN (0,R) to belong to
the cone - that sets a lower bound on the Pfa - has to be
computed. This probability for some scenario is studied in
Table 1. As we can see when the application requires low
Pfa and/or when the noise exhibits some correlation, this
technique is not suited anymore. Note that the bounded angle
mismatch considered in [3] is more general than the off-grid
mismatch, and since the mismatch cone contains more than
the studied mismatch, it explains why it might not be very
suited to our case.

In Figure 1, we compare the performances of the GLRT
[3] and the proposed ASD, MAMF and CFAR ASD tests,
called DPSS ASD, DPSS MAMF and DPSS CFAR ASD as
we used DPSS subspace with p = 2 for all of them. The
mean probability is computed by averaging 20 equi-spaced
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Fig. 1: Mean probability of detection P̄d (obtained with de-
rived theorectical expression). P = 15, θ0 = 0, ∆ = 1/P ,
K = 2P . Dots represent Monte carlo runs (200 trials).

hypotheses within the resolution cell. As we can see in Fig-
ure 1a when the scenario is not too severe, the GLRT with
bounded mismatch angle performs very well at low SNR.
At higher SNR, the proposed detectors performs better. But
when the scenario requires more strict Pfa, and when the
noise exhibit some correlation (which is more a radar oriented
context), the GLRT [3] can not be applied, since the Pfa can-
not be guaranteed. As can be seen in Figure 1b, Kelly’s GLRT
(known to be less robust to mismatch angle) suffer from se-
vere performance loss, whereas the proposed subspace ap-
proaches perform quite well, outperforming the AMF. As ex-
pected, the CFAR ASD performs a little bit less than ASD
and MAMF, since it assumes an additionnal unknown scaling
parameter between primary and secondary data.

Other subspaces were tested, like subspaces build with
equi-spaced replica of s(θ) within the interval

[
θ0 − ∆

2 , θ0 + ∆
2

]

and showed lower performance than the proposed subspace.

6. CONCLUSION

In this paper we propose to use Adaptive subspace detectors
in order to deal with the problem of off-grid target detection.
Analytic performance of the detectors are provided as well
as a suitable subspace. Interestingly, the proposed subspace
is equal to the DPSS basis for the well-known sinusoids in
noise. The proposed detectors showed good results on sim-
ulations, confirming their interest to the state of the art for
more challenging scenario (correlated noise, low probability
of false alarm).
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