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ABSTRACT

This article analyzes a kernel-based transfer learning method,
under a k-class Gaussian mixture model for the input data.
Following recent advances in random matrix theory, we pro-
pose new insights in transfer learning schemes for challenging
cases, when the first-order statistics of all data classes coin-
cide. The article proves the asymptotic normality of the LS-
SVM decision function for any smooth kernel function. As
a result, an optimization scheme is proposed to minimize the
classification error rate. Our theoretical results are corrobo-
rated through simulations and then successfully applied to the
context of transfer learning for PolSAR image classification.

Index Terms— Transfer learning, high dimensional
statistics, kernel methods, random matrix theory, support
vector machines.

1. INTRODUCTION

In classical machine learning, tasks are generally processed
separately. This approach however does not take into account
the potentially high similarity between tasks. Transfer learn-
ing aims to leverage information contained in one task (the
source task) to help improve the generalization performance
of another task (the target task); see [1] and [2] for detailed
tutorials and various interpretations of the actual methods.

This article specifically focuses on a least-square support
vector machine (LS-SVM) version of transfer learning, as in-
troduced in [3]. The approach followed by [3] is to share part
of the separating hyperplane in both source and target tasks
and then solve a parallel SVM optimization for both tasks,
under this shared hyperplane constraint. Despite the simplic-
ity of the method, the comprehension of the transfer learning
behavior and performances remains quite empirical. Partic-
ularly fundamental is the question of the appropriate choice
of the SVM hyperparameters in order to avoid the dreaded
problem of negative transfer, by which the source task opti-
mization actually impedes rather than helps the target task.
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First breakthroughs were recently made in [4,5] by as-
suming a large dimensional statistical model, using modern
random matrix advances. The present article leverages these
recent findings to generalize the LS-SVM model to a kernel
LS-SVM transfer learning mechanism, naturally appropriate
to handle complex data structures. Specifically, the article
provides a theoretical analysis generalizing [4,5] to a data
model with different covariance structures for each data class.
As in [4,6], our analysis reveals the importance of optimizing
the training data labels in order to combat negative transfer.

Our main contributions may be summarized as follows:
(i) we provide a theoretical estimate of the limiting perfor-
mance of LS-SVM transfer learning under a large and nu-
merous data assumption; (ii) we analyze the relation between
covariance matrix structures in all data classes (source and
target) and the transfer learning inner workings; (iii) these re-
sults are applied to the practical setting of PolSAR classifica-
tion.

Notations: Boldface lowercase (uppercase) characters
stand for vectors (matrices), and scalars non-boldface respec-
tively. 1n is the column vector containing n ones, and In the
n×n identity matrix. The notation (·)T denotes the transpose
operator. The norm ∥·∥ is the Euclidean norm for vectors and
the operator norm for matrices. P and Pc are centering ma-
trices used to normalize the data and suppress biases inherent
to theoretical analysis.

2. MODEL AND ASSUMPTIONS

2.1. Model

Consider {(x1, y1), . . . , (xn, yn)} a set of n samples arising
from k classes, with xi ∈ Rp and yi ∈ {ℓ1, . . . , ℓk} for
ℓa ∈ R the label associated to class Ca. We define y =
[y1, . . . , yn]

T and ℓ = [ℓ1, . . . , ℓk]
T. Note that y = J ℓ with,

J ≜ [j1, . . . , jk], where ja = {δ(yi = ℓa)}ni=1 is the indica-
tor vector1 of class Ca with cardinality na.

We further denote ca = na/n for a ∈ {1, . . . , k},
c = [c1, . . . , ck]

T and P ≜ In − 1
n1n1

T
n, Pc ≜ 1

n JT PJ =

1where δ(.) is the Kronecker symbol



diag(c)− c cT.

The set of data is divided between a target subset, which
contains samples from exclusively two classes (referred to as
target classes), and a source subset, which contains all other
samples, often numerous, compared to the target subset.

Our practical problem is to classify unknown new data
into one of the two target classes while benefiting from the
existence of the labeled source data.

The task of interest is thus the classification into classes
CT1

and CT2
, with T1, T2 ∈ {1, . . . , k}, while training on all

samples available, i.e., including the source data to the train-
ing process. In order to simplify the analysis, we focus, with-
out loss of generality, on the setting of k = 4 classes (in the
following, we will denote these class indexes by S1, T1, S2,
T2): CT1

and CT2
on the target side and CS1

and CS2
on the

source side. The extension to a multi-class scenario is how-
ever immediate. One could imagine a scenario with kT target
classes and kS source classes, by imagining an extension one
versus all of the binary case.

The classification performance on CT1
and CT2

will natu-
rally strongly depend on the distribution similarity of data in
source classes. This is here encapsulated in the kernel matrix
K, with entries Kij = f

(
∥xi − xj∥2/p

)
, for f : R → R,

where f is the kernel function.

2.2. Problem statement

LS-SVM [7] aims to predict the class label ℓx of incom-
ing data x, thanks to a training performed on the training
dataset X = {xi}ni=1, by devising a separating hyperplane
wTφ(x) + b between CT1

and CT2
, which is defined by the

optimization problem:

argmin
w,b

L(w, e) = ∥w∥2 + γ

n

n∑
i=1

e2i (1)

such that ei = yi −wTφ(xi)− b, i = 1, . . . , n

where γ > 0 is the penalty factor that balances the risk
due to the potential complexity of the model, ∥w∥2, and
the risk due to the distance between real labels and es-
timated ones. The resolution (as in [8], p.4) of (1) by
the method of Lagrange multiplier α leads to the solution

ŵ = [φ(x1) · · · φ(xn)]
T
α =

n∑
i=1

αiφ(xi), where


α = Q

(
In − 1n 1

T
n Q

1T
n Q1n

)
y = Q (y − b1n)

b =
1T
n Qy

1T
n Q1n

(2)

with Q =

(
K+

n

γ
In

)−1

and K =
{
φ(xi)

T φ(xj)
}
i,j

.

Using the kernel trick, we now denote K = {f(∥xi −
xj∥2/p)}ni,j=1.

Given α and b, a new datum x is then classified into
classes Ca depending on the value of the decision function:

g(x) =

n∑
i=1

αiφ(xi)
Tφ(x) + b = αTk(x) + b . (3)

where k(x) = {f(∥x − xj∥2/p)}nj=1. A new datum x
is associated with class, say, CT1

if g(x) is below a certain
threshold, and with CT2

otherwise. To classify target data, the
decision threshold of g(x) is to be defined and we will define
it in the section 3 based on its asymptotic distribution.

In high dimension, most machine learning methods, in-
cluding LS-SVM, consider that the algorithms work in a
regime p << n. Before proceeding to the LS-SVM transfer
learning main results, a few extra technical assumptions are
needed.

2.3. Assumptions and non-trivial regime

We suppose that, for a ∈ {1, . . . , k} :

xi ∈ Ca if xi = µa +
√
pωi ,

where µa ∈ Rp and ωi ∼ N (0, p−1 Ca) with Ca ∈ Rp×p a
symmetric and non-negative definite matrix. In this paper, we
will focus on the non-trivial problem of separating centered
data, i.e. µ = 0.
To avoid trivial results, we assume, as in [5,9], that the class
statistics satisfy certain growth rate conditions between the

data covariance matrices. Setting C◦ ≜
1

n

k∑
a=1

na Ca and

defining the parameter τ ≜
2

p
trC◦ > 0, it was shown in [9]

that:
p−1∥xi − xj∥2 − τ

a.s.→ 0 for any i ̸= j, (4)

This (problematic) phenomenon of concentration of distance
allows us to approximate asymptotically f(∥xi −xj∥2/p) by
a Taylor expansion (of order two) of f around τ . We will
assume here that the kernel function f is at least three times
derivable in a neighborhood of τ . Thus, the asymptotic be-
havior of LS-SVM transfer learning will strongly depend on
the first two derivatives of f around τ .

As such, the asymptotic behavior of LS-SVM transfer
learning will heavily depend on the first two derivatives of f
in τ .

LS-SVM classification performances in high dimensions
will heavily depend on the nature of the kernel function. This
feature becomes adaptable to different given problems as ex-
plored in [9].

In the classical statistic setting, the features of SVM
framework have made the analysis of its performances a
challenging task. SVMs performances have been studied
with various approaches (introducing VC dimension [8] or
Bayesian interpretation [10]) keeping p and n fixed. The



recent asymptotic analysis conducted in [5] opened the door
to tracks of improvement for LS-SVM framework. Now, we
intend to conduct the same kind of asymptotic analysis in
order to explore the inner-working between source and target
data in a transfer learning context. LS-SVM classification
performances in high dimensions will heavily depend on the
nature of the kernel function. This feature becomes adapt-
able to different given problem as explored in [9] and [6] for
vanishing difference in means across classes.

With the previous assumptions at hand, we are now capa-
ble of running through a technical analysis of our LS-SVM
transfer learning problem in high dimensions.

3. ASYMPTOTIC RESULTS

In order to assess the performance of the classifier and the im-
pact of source data in the training set, as n, p → ∞, our objec-
tive is to provide an approximation of g(x) in this regime. The
solution (α, b) of (2) is a function of y and of Q. As Q is not
directly accessible, we proceed in two steps: (i) exploiting the
results of [9], we exploit a technically convenient asymptotic
”linearization” of K, (ii) performing a Taylor-expansion on

Q around its dominant term
(
f(τ)1n 1

T
n +

n

γ
In

)−1

. Pro-

ceeding as in [5], we then obtain asymptotically accurate ap-
proximations for α and b. In the case of applications of the
paper, we focus on the classification of data with zero mean
vector (and thus only discriminated by class co-variances). In
line with remarks made in [5], it is more interesting to use
kernels verifying f ′(τ) = 0. By setting:

ta = p−1/2 tr(Ca −C◦), t = [t1, . . . , tk]
T , (5)

tC,a = [tr(Ca C1), . . . , tr(Ca Ck)]
T , (6)

T = [tC,1, . . . , tC,k] , (7)
ma = p−1 f ′′(τ) t ta + 2 p−2 f ′′(τ) tC,a , (8)

Wa = p−3 (f ′′(τ))
2
t tT trC2

a , (9)
CT = −2 p−2 f ′′(τ) cT TPc ℓ , (10)

the main result of [5] extends as follows.

Theorem 1 (Gaussian Approximation). Let x ∈ Ca, a ∈
{T1, T2}. Considering that the stated hypotheses are verified,
the asymptotic distribution of g(x) defined by (3) is given by:

nV
− 1

2
a (g (x | x ∈ Ca)− Ea)

d→ N (0, 1) (11)

where mean Ea and variance Va are defined as

Ea = cTℓ+ γ ℓT Pc ma + γ CT , (12)
Va = 2γ2ℓTPc WaPcℓ , (13)

This theorem allows us to characterize the classification
performance for the two classes. An example is illustrated
through the histogram at the left-hand side of Fig. 2 for the

Toy-example of Section 4.1. Thus, we can also characterize
the optimal decision threshold that separates the classes CT1

and CT2
. If we denote by s the decision threshold for class

membership, the classification error Pe is given by: g(x)
CT2

≷
CT1

s. With this value of s fixed, the classification error rate Pe is
given by:

Pe =
1

2
(P (g(x) > s | x ∈ CT1) + P (g(x) < s | x ∈ CT2)) .

With the result of Theorem 1 and after some manipulations2,
we can define the optimal classification threshold3 sopt be-
tween two Gaussian variables G1 ∼ N (ET1

,VT1
) and G2 ∼

N (ET2 ,VT2) minimizing probability Pe :

sopt =
ET2

VT1
− ET1

VT2

VT1 −VT2

− (VT1
VT2

)1/2

VT1 −VT2

×[
(ET2 − ET1)

2 + (VT2 −VT1) (ln(VT2)− ln(VT1))
]1/2

and its associated probability of error Pe,lim, in the large n, p
limit, thus reads

Pe,lim =
1

2

(
Q

(
sopt − ET1√

VT1

)
+ Q

(
ET2 − sopt√

VT2

))
.

(14)
Besides, recalling (12), and denoting tV = p1/2 t, we have

ET2
− ET1

=
f ′′(τ)

p2
γ ℓT Pc t∆E with

t∆E = tr (CT2
−CT1

) tV

+ 2 [tr ((CT2 −CT1)C1) , . . . , tr ((CT2 −CT1) Ck)]
T
.

Plugging in sopt the quantities VT1 and VT2 by their respec-
tive expressions (13), Pe,lim is then minimized for ℓopt max-
imizing the Rayleigh quotient

ℓopt = argmax
ℓ

(ET2
− ET1

)2

V
=

ℓT Pc t∆E tT∆E Pc ℓ

ℓT Pc tV tTV Pc ℓ
.

(15)
As the matrix tV tTV is of unit rank, the quotient is maximal
for ℓ = ℓopt ∝

(
tV tTV

)†
t∆E with (·)† the pseudo-inverse.

4. CLASSIFICATION SIMULATED DATA AND
POLSAR IMAGES

4.1. ”Toy example” α-setting

Let us consider the following ”toy-model” setup with tar-
get data randomly generated according to N (0,CT1

) and
2We can minimize the probability of error Pe by deriving Pe(x) =

1/2
(
P
(
g(x) > s | x ∈ CT1

)
+ P

(
g(x) < s | x ∈ CT2

))
. Function

g(x) having a Gaussian distribution, we have explicit access to Pe(x) and
we can derive it.

3The question of an optimal threshold based on class concentrations hav-
ing already been studied in [5], we focus on the case of balanced classes.



N (0,CT2) and source data drawn from N (0,CS1) and
N (0,CS2). Target and source data are related through
CT1

= αCS1
+(1−α)CS2

and CT2
= αCS2

+(1−α)CS1

with α ∈ [0, 1].
Figure 1 depicts the error rate empirically observed for

ℓ = [ℓS1
, ℓT1

, ℓS2
, ℓT2

], with ℓ = [−1,−1, 1, 1], associating
source Sa with target Ta, versus ℓ = ℓopt obtained from (15).
It is clearly observed that the optimized use of source data
induces improved performance over the standard ℓi ∈ {±1}
strategy, and over a target-only approach.

While the Gaussian mixture model might seem too restric-
tive, it has been recently proved, in the large dimensional set-
ting under present concern, that most conventional machine
learning algorithms treat advanced data models similarly to
Gaussian mixture models: as such, these models are a suf-
ficiently accurate assumption to absorb a large range of real
data (starting with neural network features of real images, as
proved by Seddik et al. in [11]).
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Fig. 1. Classification performance on simulated data, related
by parameter α, s.t. CTa

= αCSa
+(1−α)CSb

, for various
label strategies; p = 512, nS1

= nS2
= 508, nT1

= nT2
= 4,

polynomial kernel f .

4.2. Experimental data

Our proposed transfer learning approach is here applied to
a problem of terrain classification for polarimetric Synthetic
Aperture Radar (PolSAR) images. A visual example is de-
picted at top of Figure 3, where the objective is to separate
the two classes of terrain ”road” and ”fields”.

The statistical (empirical) mean vectors in both classes are
here very close. The complex-valued SAR data are character-
ized by their associated polarimetric channels of size pc = 3.
Using spatial (boxcar of size pxy = 3 × 3 pixels) diversities,
the vector of real data characterizing each pixel has finally the
size p = 2 pc pxy = 54. The use of two adjacent spatial areas
defines the two final data sets CT1

, CT2
and CS1

, CS2
. Accord-

ing to the assumptions of 2.3, the data used here (source and
target) are all centered (with zero mean vector) and we will
use as kernel function f(x) = (x− τ)2, such that f ′(τ) = 0.

a) b)

 

 

Fig. 2. Left: Histograms for Toy-example (Section 4.1).
Right: Histograms from experimental SAR data (Section 4.2).

Fig. 3. Top: Classification between two target areas (Target 1
and Target 2) of a polarimetric SAR image of Bretigny pro-
vided by ONERA using source areas (Source 1 and Source 2).
p = 54, n = 2000 (1000 per classes). Bottom: corresponding
LS-SVM Classification

The separation of the two classes is illustrated through his-
tograms on the right-hand side of Figure 2. The correspond-
ing classification result is displayed at the bottom of Figure 3.

5. CONCLUDING REMARKS

This article proposed an improved LS-SVM transfer learn-
ing methodology for the problem of separating classes with
equal statistical means. Our analysis revealed the importance
to doctor the input data labels of both source and target data
to maximize the classification performance. The analysis also
emphasized the non-trivial impact of the ”quality”, largely
privileged, over the quantity of the source data on the perfor-
mance, which was verified on real PolSAR data. This process
has been verified on simulated data and applied to experimen-
tal SAR images for POLSAR classification.

As such, the article provides new insights into transfer
learning and the large degrees of achievable improvements,
already in this quite elementary LS-SVM framework.
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