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Objectives

The present paper deals with the joint detection and
estimation of change-points in an Image Time Series
(ITS) of complex multivariate images. In peculiar,
we deal with the heterogeneous behaviour observed
in High-Resolution (HR) images which cannot be
modelled by a Gaussian model.
To this end, an extension of Conradsen et al.’s work
is considered under the large family of Complex El-
liptical Symmetric (CE) distributions. New statis-
tics have been derived using Generalised Likelihood
Ratio Test (GLRT) technique and integrated in the
estimation algorithm. Simulations show a more ro-
bust behaviour and better performance than the
Gaussian-derived statistics when the data is hetero-
geneous.

Introduction

Recent years have seen an increase in the number of
remotely sensed images, such as SAR or Hyperspectral
images, available to the research communities. Time
Series consist in a huge amount of data which cannot
be processed by hand. In this context, non supervised
methodologies have to be developed for an extensive
analysis of change-points.

The data to consider is as follows:
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The problem considered presently is:
Consider a Time Series of random vectors
x(t) ∼ px(x; θt); given N independent observations
{x(t)

k }k=1...N, find all tC ∈ J2, T K so that θtC−1 6= θtC.
The number of total changes is unknown.

Recently, Conradsen et al. have developed a joint de-
tection and estimation technique using a Gaussian as-
sumption for the local observed pixels (θt is the covari-
ance matrix in this case).
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Figure 1:Example with p = 1, N = 1.

Omnibus and Marginal schemes

Suppose the local observations x(t)
k follow an arbitrary

model px(x; θt). Two detection schemes are needed:
•Omnibus scheme:

Let (t1, t2) ∈ J1, T K2, so that t2 > t1,
Ht1,t2

0,omni : θt1 = . . . = θt2 = θt1,t2
Ht1,t2

1,omni : ∃(t, t′) ∈ {t1, . . . , t2}2, θt 6= θt′

(1)

•Marginal scheme:
Consider (t1, t2) ∈ J1, T K2, so that t2 > t1,

Ht1,t2
0,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 = θt2

Ht1,t2
1,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 6= θt2

(2)

The algorithm

1: Initialize t1← 1
2: while Ht1,T

1,omni do . Omnibus test
3: Initialize r ← 1
4: while Ht1,t1+r

0,marg do . Marginal tests
5: Update r ← r + 1
6: end while
7: Store t1 + r − 1 as a change point
8: Update t1← t1 + r
9: end while

Our contribution

In HR images, the homogeneity on the window is
not respected as weel as the Gaussian hypothesis
and local variations of power are observed. The CE
family, which is more suited to model the observa-
tions, is considered.
In peculiar, we consider the self-normalised observa-
tions z(t)

k = x(t)
k /‖x

(t)
k ‖ which follows a CAE distri-

bution:
pCAEz (z; Σ′) = Sp

−1|Σ′|−1 zHΣ′−1z

−p
, (3)

where Sp = 2πp/Γ(p) and Γ is the gamma function.
The derivation of statistics for problems (1) and (2)
are done using θt = {Σ′t} and the PDF (3).

•No change scenario:
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•Change scenario:
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Derivation of new statistics:
•Omnibus Scheme (1):
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•Marginal Scheme (2):
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with:
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Simulation parameters

α, β ρt p N T

Shape and Scale
for Γ-distribution

Coefficients for
Toeplitz matrices

Size of
vector

Number of
observations

Number of
Images

The new statistics have been tested in simulation and
compared to the Gaussian ones. The model used is
x =

√
τ x̃ where τ ∼ Γ(α, β) and x̃ ∼ CN (0p,Σ).

The covariance matrices are chosen to be Toeplitz of
the form Σt(m,n) = ρ

|m−n|
t . ρt is the sole parameter

governing the change over time.

CFAR property

The new statistics have the texture and scatter matrix
Constant False Alarm Rate (CFAR) property. This
means that it is possible to guarantee a probabil-
ity of false alarm PFA by appropriately selecting a
threshold !
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Figure 2:PFA − λ relationships for several parameters of a CCG
distribution under H0 regime.

Results on synthetic images

Example using T = 5, p = 3, N = 25, PFA = 10−4.
•Background: α = 0.3, β = 0.1, ρ = 0.99.
•Cross-patern: α = 0.3, β = 1, SNR = 10 dB, ρ = 0.3
•Circle pattern:
α = 0.3, β = 1, SNR = 10 dB, ρ = 0.2
t 1 2 3 4 5
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Conclusions

•New statistics have been derived to using a CE
distribution model.
•They have a more robust behaviour (less false
alarms) and better performance of detection for
heterogeneous data.
•Perspectives: Try them on real SAR or
hyperspectral dataset.


