Robust Detection and Estimation of Change-Points in a Time Series of Multivariate Images

Ammar Mian^{*,†}, Jean-Philippe Ovarlez^{†,‡}, Guillaume Ginolhac[†] and Abdourahmane M. Atto[†]

*: CentraleSupélec/SONDRA, Plateau du Moulon, 3 rue Joliot-Curie, F-91190 Gif-sur-Yvette, France †: ONERA, DEMR/TSI, Chemin de la Hunière, F-91120 Palaiseau, France

‡:LISTIC, Université de Savoie Mont-Blanc, F-74944, Annecy le Vieux, France

UDJECTIVES

The present paper deals with the joint detection and estimation of change-points in an Image Time Series (ITS) of complex multivariate images. In peculiar, we deal with the heterogeneous behaviour observed in High-Resolution (HR) images which cannot be modelled by a Gaussian model.

To this end, an extension of Conradsen et al.'s work is considered under the large family of Complex Elliptical Symmetric ($\mathbb{C}\mathcal{E}$) distributions. New statistics have been derived using Generalised Likelihood Ratio Test (GLRT) technique and integrated in the estimation algorithm. Simulations show a more robust behaviour and better performance than the Gaussian-derived statistics when the data is heterogeneous.

The algorithm		Simulation parameters				
1: Initialize $t_1 \leftarrow 1$ 2: while $H_1^{t_1,T} \cdot do$	N Omnibus test	α, eta	ρ_t	р	N	T
3: Initialize $r \leftarrow 1$		Shape and Scale for Γ -distribution	Coefficients for Toeplitz matrices	Size of vector	Number of observations	Number of Images
4: while $\operatorname{H}_{0,\operatorname{marg}}^{t_1,t_1+r}$ do	\triangleright Marginal tests	The new stati	stics have bee	en teste	ed in simul	lation and
5: Update $r \leftarrow r+1$		compared to	the Gaussian	ones.	The mod	lel used is
6: end while		$\mathbf{x} = \sqrt{\tau} \tilde{\mathbf{x}} $ w	here $\tau \sim \Gamma(\alpha)$	(β) ar	nd $\tilde{\mathbf{x}} \sim \mathbb{C}$	$\mathcal{N}(0_n, \mathbf{\Sigma}).$
7: Store $t_1 + r - 1$ as a change point		The covariance matrices are chosen to be Toeplitz of				
8: Update $t_1 \leftarrow t_1 + r$		the form $\Sigma_t(r)$	$(n,n) = \rho_t^{ m-r }$	$ n $. ρ_t is	s the sole	parameter

Introduction

Recent years have seen an increase in the number of remotely sensed images, such as SAR or Hyperspectral images, available to the research communities. Time Series consist in a huge amount of data which cannot be processed by hand. In this context, non supervised methodologies have to be developed for an extensive analysis of change-points.

The data to consider is as follows:

9: end while

Our contribution

In HR images, the homogeneity on the window is not respected as weel as the Gaussian hypothesis and local variations of power are observed. The $\mathbb{C}\mathcal{E}$ family, which is more suited to model the observations, is considered.

In peculiar, we consider the self-normalised observations $\mathbf{z}_k^{(t)} = \mathbf{x}_k^{(t)} / \|\mathbf{x}_k^{(t)}\|$ which follows a \mathbb{CAE} distribution:

$$p_{\mathbf{z}}^{\mathbb{C}\mathcal{A}\mathcal{E}}(\mathbf{z};\mathbf{\Sigma}') = \mathfrak{S}_{p}^{-1} |\mathbf{\Sigma}'|^{-1} \left(\mathbf{z}^{\mathrm{H}}\mathbf{\Sigma}'^{-1}\mathbf{z}\right)^{-p}, \qquad (3)$$

where $\mathfrak{S}_p = 2\pi^p / \Gamma(p)$ and Γ is the gamma function. The derivation of statistics for problems (1) and (2)are done using $\theta_t = \{ \Sigma'_t \}$ and the PDF (3).

• No change scenario:

ieter governing the change over time.

CFAR property

The new statistics have the texture and scatter matrix Constant False Alarm Rate (CFAR) property. This means that it is possible to guarantee a probability of false alarm P_{FA} by appropriately selecting a threshold !

The problem considered presently is: Consider a Time Series of random vectors $\mathbf{x}^{(t)} \sim p_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta}_t); \text{ given } N \text{ independent observations}$ $\{\mathbf{x}_{k}^{(t)}\}_{k=1...N}, \text{ find all } t_{C} \in [\![2,T]\!] \text{ so that } \boldsymbol{\theta}_{t_{C}-1} \neq \boldsymbol{\theta}_{t_{C}}.$ The number of total changes is unknown.

Recently, Conradsen et al. have developed a joint detection and estimation technique using a Gaussian assumption for the local observed pixels ($\boldsymbol{\theta}_t$ is the covariance matrix in this case).

Derivation of new statistics:

• Omnibus Scheme (1):

 $\hat{\Lambda}_{\mathbb{C}\mathcal{A}\mathcal{E},\text{omni}}^{t_1,t_2} = \frac{\left|\hat{\Sigma}_{t_1,t_2}^{\text{TE}}\right|^{(t_2-t_1)N}}{\left|\hat{\Sigma}_{t_1}^{t_2}\right|^{\sum TE}} \frac{t_2}{\prod_{i=1}^{t_2}} \sum_{k=1}^{N} \frac{\left|\hat{\Sigma}_{t_1,t_2}^{\text{TE}}\right|^{-1} \mathbf{z}_{k}^{(t)}}{\left(\mathbf{z}_{t_1,t_2}^{(t)}\right)^{\sum TE}} - \frac{\left|\hat{\Sigma}_{t_1,t_2}^{\text{TE}}\right|^{\sum TE}}{\left(\mathbf{z}_{t_1,t_2}^{(t)}\right)^{\sum TE}} - \frac{\left|\hat{\Sigma}_{t_1,t_2}^{(t)}\right|^{\sum TE}} - \frac{\left|\hat{\Sigma}_{t_1,t_2}^{(t)}\right|^{\sum TE}}{\left(\mathbf{z}_{t_1,t_2}^{(t)}\right)^{\sum TE}} - \frac{\left|\hat{\Sigma}_{t_1,t_2}^{(t)}\right|^{\sum TE}} - \frac{\left|\hat{\Sigma}_{t_1,t_2}^{(t)}\right|^{\sum TE}} - \frac{$

• Marginal Scheme (2):

 $(z_{1}-t_{1})N$

Figure 2:P_{FA} – λ relationships for several parameters of a \mathbb{CCG} distribution under H_0 regime.

Results on synthetic images

Example using T = 5, p = 3, N = 25, $P_{FA} = 10^{-4}$.

- Background: $\alpha = 0.3, \beta = 0.1, \rho = 0.99$.
- Cross-patern: $\alpha = 0.3, \beta = 1, \text{SNR} = 10 \text{ dB}, \rho = 0.3$
- Circle pattern:

 $\alpha = 0.3, \beta = 1, \text{SNR} = 10 \text{ dB}, \rho = 0.2$

Figure 1:Example with p = 1, N = 1.

Omnibus and Marginal schemes

Suppose the local observations $\mathbf{x}_{k}^{(t)}$ follow an arbitrary model $p_{\mathbf{x}}(\mathbf{x}; \theta_t)$. Two detection schemes are needed:

• Omnibus scheme:

Let $(t_1, t_2) \in [1, T]^2$, so that $t_2 > t_1$, $\left(\operatorname{H}_{0,\mathrm{omni}}^{t_1,t_2}:\boldsymbol{\theta}_{t_1}=\ldots=\boldsymbol{\theta}_{t_2}=\boldsymbol{\theta}_{t_1,t_2}\right)$ $\left\{ \begin{array}{l} \mathbf{H}_{1,\text{ommi}}^{\text{optime}} : \mathbf{J}_{t_1} - \dots = \boldsymbol{\sigma}_{t_2} = \boldsymbol{\theta}_{t_1,t_2} \\ \mathbf{H}_{1,\text{ommi}}^{\text{optime}} : \exists (t,t') \in \{t_1,\dots,t_2\}^2, \ \boldsymbol{\theta}_t \neq \boldsymbol{\theta}_{t'} \end{array} \right.$

• Marginal scheme:

Consider $(t_1, t_2) \in [1, T]^2$, so that $t_2 > t_1$, $\begin{cases} \mathrm{H}_{0,\mathrm{marg}}^{t_1,t_2}:\boldsymbol{\theta}_{t_1}=\ldots=\boldsymbol{\theta}_{t_2-1}=\boldsymbol{\theta}_{t_1,t_2-1} \text{ and } \boldsymbol{\theta}_{t_2-1}=\boldsymbol{\theta}_{t_2}\\ \mathrm{H}_{1,\mathrm{marg}}^{t_1,t_2}:\boldsymbol{\theta}_{t_1}=\ldots=\boldsymbol{\theta}_{t_2-1}=\boldsymbol{\theta}_{t_1,t_2-1} \text{ and } \boldsymbol{\theta}_{t_2-1}\neq\boldsymbol{\theta}_{t_2} \end{cases}$

Conclusions

• New statistics have been derived to using a $\mathbb{C}\mathcal{E}$ distribution model.

- They have a more robust behaviour (less false) alarms) and better performance of detection for heterogeneous data.
- Perspectives: Try them on real SAR or hyperspectral dataset.

