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Abstract. Polarimetric SAR images have a large number of applica-
tions. To extract a physical interpretation of such images, a classification
on their polarimetric properties can be a real advantage. However, most
classification techniques are developed under a Gaussian assumption of
the signal and compute cluster centers using the standard arithmetical
mean. This paper will present classification results on simulated and real
images using a non-Gaussian signal model, more adapted to the high
resolution images and a geometrical definition of the mean for the com-
putation of the class centers. We will show notable improvements on
the classification results with the geometrical mean over the arithmeti-
cal mean and present a physical interpretation for these improvements,
using the Cloude-Pottier decomposition.

1 Introduction

Large-scale observation of the Earth is achieved thanks to two main methods :
observation via optical systems and observation via radar systems. The latter
offer two advantages over the former: the independence from the illumination
of the area to be observed and the ability to go through clouds. Thus, data
can be acquired whatever the time of day and whatever the weather. These
properties have led radar systems to be used in numerous applications in both
the civilian and the military domain, such as ship detection, iceberg detection,
land cover classification etc. The only practical technique which achieves high
spatial resolution is the Synthetic Aperture Radar (SAR) and therefore, most if
not all, active imaging radars are SAR.

A SAR measures both the phase and the amplitude of the backscattered
signal for each resolution cell. Thus, pixels of the resulting image are complex.
POLarimetric SAR (POLSAR) systems are able to polarize the waves in emission
and in reception along several orthogonal polarizations. For each resolution cell,
there are thus several measurements corresponding to the different combinations
in polarization.

The random distribution of scatterers inside a resolution cell leads to the
radar measurement being modeled by a random variable. As each resolution cell
contains a large number of scatterers, the Central Limit Theorem implies that
the radar measurement is Gaussian distributed. Thus, POLSAR data is usually
modeled by a multivariate complex Gaussian distribution.



The interactions between polarisation channels can be related to the physical
information of the observed scene. Obtaining information on these interactions
allows to obtain information about the physical processes that take place when
an electromagnetic wave hits an object. The random nature of these interactions
can be studied using their second order moment, called the covariance matrix.

As previously mentioned, polarimetric SAR images can be used for several
applications, in particular land cover classification. Therefore, polarimetric SAR
images classification is an active area of research. Two main approaches ap-
peared in the corresponding literature. The first approach is to classify pix-
els thanks to their physical characteristics. Several matrix decompositions have
been proposed: coherent decompositions, based on the scattering matrix, like
the Cameron decomposition [6] or the Krogager decomposition [14], in order to
characterize pure scatterers. The distributed scatterers have been studied thanks
to incoherent decompositions, i.e. decompositions of the covariance matrix. Free-
man et al. [10] proposed such a decomposition. In [7], Cloude et al. proposed
the H − α decomposition, based on the eigendecomposition of the covariance
matrix. The second approach is to classify the images based on their statistical
properties: Kong et al. [13] derived a distance measure for single-look complex
polarimetric SAR data, which has been extended by Yueh et al. [23] and van Zyl
et al. [20] for normalized complex POLSAR data. A distance measure for the
multi-look complex case has been proposed by Lee et al. in [16], based on the
complex Wishart distribution of the clutter covariance matrix under the Gaus-
sian assumption.

However, recent POLSAR acquisition systems are now able to acquire very
high resolution images, up to decimetric resolution. Thus, there are fewer scat-
terers in each resolution cell and their number varies from one resolution cell to
the other. This leads to a higher heterogeneity, especially in urban areas. Thus,
the backscattered signal can no longer be modeled as a Gaussian process. One
commonly used fully polarimetric non-Gaussian clutter model is the Spherically
Invariant Random Vector (SIRV) model. The polarimetric clutter is no longer
modeled as a Gaussian process but as the product of a Gaussian process and
a random variable. This random variable, called texture, represents the local
variations of power, hence the heterogeneity.

2 State of the Art

2.1 SAR signal statistics

Gaussian assumption In order to reduce the speckle noise in early SAR sys-
tems, a common approach was to average several indepedent estimates of the
reflectivity of each resolution cell. The quantities in each pixel of the resulting
so-called multilook image are therefore Gaussian-distributed. To obtain the co-
variance matrix of a polarimetric scattering vector k, corresponding to a pixel of



the image, it is necessary to employ an estimation scheme, as the covariance ma-
trix cannot be computed directly. Several samples (k1, ...kN ) are drawn from the
immediate neighbourhood of the pixel under consideration, with the assumption
that they are independent and identically distributed (i.i.d.). A boxcar neigh-
bourhood is generally used for this. The Maximum Likelihood Estimate of the
covariance matrix M is then the so-called Sample Covariance Matrix (SCM),
given by the following equation:

M̂SCM =
1

N

N∑

i=1

kik
H
i (1)

with k1, ...,kN ∼ N (0,M) and H denotes the tranpose conjuguate operator.

Polarimetric non-Gaussian model Yao [22] first introduced Spherically In-
variant Random Vectors for estimation and detection in communication theory.
A SIRV is a compound Gaussian vector, defined as the product of a positive
scalar random variable τ and a m-dimensional complex circular Gaussian vec-
tor, x, with m the number of configurations of polarizations. Then the target
vector k can be rewritten as:

k =
√
τx (2)

By writing k this way, the polarimetric information, which is the information
about the interactions between the polarimetric channels, is separated from the
power information. Indeed, the texture τ is a random variable. Its value changes
randomly from cell to cell: it represents the local variations of power that are
characteristics of the heterogeneity. x, then, contains only information about the
phase differences between polarizations channels: polarimetric information.

In the SIRV model, the Probability Density Function (PDF) of the texture
τ is not explicitly specified. This allows for a large class of stochastic processes
to be described. For example, the Gaussian case can be obtained with a Dirac
pdf for τ . The K distribution, which has been successfully used to describe radar
signal in heterogeneous areas, can be modeled with a Gamma-distributed tex-
ture.

Considering a deterministic texture, Gini et al. derived in [11] the Maximum
Likelihood (ML) estimate of the covariance matrix M. It is the fixed point of
the following function:

f
(
M̂FP

)
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N

N∑

i=1

kikH
i

kH
i M̂FPki

(3)

This estimate is therefore called the Fixed Point Estimate (FPE). In [8],
Conte et al. extended the validity of the FPE as an approximate ML estimate
for the case of stochastic texture. In [18], Pascal et al. have proven that the FPE



as a solution to Eq. (3) exists and is unique up to a scalar factor. They also proved
in [18] that it is unbiased, consistent and asymptotically Wishart-distributed.

The main advantage of the FPE over the SCM for polarimetric classification
is the removal of the power information. Indeed, by replacing ki by

√
τixi in Eq.

(3), the expression of the FPE becomes:

M̂FP =
m

N

N∑

i=1

xixH
i

xH
i M̂FPxi

(4)

The FPE is then independent from the random fluctuations of power modeled
by the texture and depends only on the information stored in the vector x, which
is the polarimetric information. This way, classification methods employed on the
covariance matrix estimate are more likely to properly exploit the polarimetric
information with the FPE than with the SCM.

2.2 Wishart classifier

In [15], Lee et al. proposed an unsupervised classification method based on the
complex Wishart distribution of the covariance matrix under Gaussian assump-
tion for the speckle. A distance measure between a class center C and the co-
variance matrix of a pixel M̂, called the Wishart distance measure is derived:

dW
(
M̂,C

)
= ln |C|+Tr

(
C−1M̂

)
(5)

where |.| is the matrix determinant. The Wishart distance measure is not
strictly a distance as it is not symmetrical. Its purpose is to measure the distance
between a Wishart-distributed covariance matrix and a cluster center, see [15]
for more details on how it is obtained.

This distance is used in a standard K-means classification scheme to assign
pixels to classes until a stopping criterion is met. The purpose of the K-means
algorithm is, given a set of observations, to partition these observations into a
given number of clusters (or classes) in order to minimize the within-cluster sum
of squares. It is comprised of two steps: an assignement step, where each obser-
vation is assigned to the closest class according to a specific distance, and an
update step where the class centers are updated according to the observations
switching classes.

The algorithm of the Wishart classifier is then:

1. Initially classify the image with the Cloude-Pottier decomposition [7].

2. Compute the class centers Ci =
1

pi

pi∑

j=1

M̂, where pi is the number of pixels

in class i .
3. Reassign pixels to the corresponding class thanks to Eq. (5)
4. Repeat steps 2-3 until a stopping criterion is met.



2.3 Information geometry

Until now, all classical approaches compute the class centers as the empirical

arithmetic mean Ci =
1

pi

pi∑

j=1

M̂. The problem is that the space of covariance

matrices, P(m), ie hermitian definite positive matrices is not a euclidean space.
It has the structure of a Riemannian manifold and while the matrix obtained by
computing the arithmetical mean stays inside P(m), it is not the proper defini-
tion of the mean as the barycenter in this space. Moakher [17] and Barbaresco
(notably [3], [4] and [5]) have proposed methods to compute the barycenter of
several matrices in P(m). More recently, Devlaminck illustrated in [9] the dangers
in using a Euclidean definition of the mean for polarized light. When computing
the mean Stokes parameters, which are parameters describing the polarization
state of an electromagnetic wave, of a horizontally linear polarized light passing
through a perfect linear polarizer with a rotating axis of polarization, the re-
sulting mean vector was partially polarized. Using a Riemannian distance, the
mean Stokes vector was fully polarized, which was the expected behavior.

Wang et al. also presented a mean-shift clustering technique using similar
techniques for polarimetric SAR data in [21], which yields very interesting re-
sults. However, they do not address the issue of non-Gaussianity when consid-
ering the covariance (or coherency) matrix of the pixels.

We recall here how to obtain the Riemannian expression of the mean and a
Riemannian distance in P(m).

The metric is defined on this space by:

ds2 = Tr
((

M−1 (dM)
)2)

(6)

which leads to the following distance:

dG(A,B) =
∥∥∥log

(
A−1/2BA−1/2

)∥∥∥ =
N∑

i=1

log(λi) with |B− λA| = 0 (7)

The correct expression of the mean for class cl is then:

Mωl = arg min
Mω∈P(m)
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F
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There is no analytical solution for K > 2 but a gradient descent method
leads to the following iterative procedure for the solution:

Mk =
(
M1/2

k−1

)H
exp

(
ε

K∑

i=1

log

((
M−1/2

k−1

)H
Ml

i M
−1/2
k−1

))
M1/2

k−1 (9)



3 Simulations

3.1 Construction of the simulations

Toeplitz matrices are regurlaly used in radar processing to model specific con-
figurations, such as Space-Time Adaptive Processing. Polarimetric covariance
matrices are then generated as Toeplitz matrices for this reason and for conve-
nience. We could also have used matrices obtained from real data but results
would be similar. Complex Toeplitz matrices are of the form:




1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1



 (10)

with ρ ∈ C.
Four matrices are used to generate polarimetric radar data. In each quadrant,

random scattering vectors are generated out of one of the four matrices. Each
quadrant is divided in four subquadrants. In each of the subquadrants, scattering
vectors are drawn along a K distribution with a different shape parameter from
subquadrant to subquadrant. Fig. 1 illustrates this process:

The K distribution results from the multiplication of a multivariate Gaus-
sian random vector with a Gamma-distributed random variable, described by
the shape parameter λ. When the shape parameter λ of the Gamma distribu-
tion tends to infinity, it converges to a Gaussian distribution. Therefore, shape
parameters λ =

(
0.5 1 5 50

)
have been chosen in order to have areas that are

clearly non Gaussian and others that are close to being Gaussian-distributed.
The images have additionaly been multiplied by a uniformly distributed power,
to model the heterogeneity. The ρ coefficient has been chosen for each Toeplitz
matrix among the following coefficients:

ρ ∈





0.8003 + 0.1419i
−0.4404− 0.1645i
0.4715− 0.1927i
0.1576− 0.9706i



 .

Those coefficients were chosen to ensure covariance matrices are as diverse
as possible.

3.2 Standard Wishart classifier

On Fig. 2 is represented the power of each pixel. It is visually impossible to
separate the areas from this image alone as several areas built from different
distributions have the same appearance.

The results of the standard Wishart classifier presented on section 2.2 with
the use of the SCM are displayed on Fig. 3. The number of classes was set to 4.
Pixels were initially assigned to classes in a random uniform way. The algorithm



∼ K(M1, λ1) ∼ K(M1, λ2)

∼ K(M1, λ3) ∼ K(M1, λ4)

∼ K(M2, λ1) ∼ K(M2, λ2)

∼ K(M2, λ3) ∼ K(M2, λ4)

∼ K(M3, λ1) ∼ K(M3, λ2)

∼ K(M3, λ3) ∼ K(M3, λ4)

∼ K(M4, λ1) ∼ K(M4, λ2)

∼ K(M4, λ3) ∼ K(M4, λ4)

Fig. 1. Structure of the simulated image



Fig. 2. Power image

was stopped when less than 5 percent of the pixels switched classes from one
iteration to the next.

The influence of the power over the polarimetric information with this esti-
mate can be clearly identified. Areas with the same power - the same shade of
grey in Fig. 2 - are assigned to the same class, even when they originate from a
different distribution.

However, as can be seen on Fig. 4, the same classification method using the
FPE yields a result closer to what was expected. Areas are clearly separated
thanks to their difference in the covariance matrix rather than their difference
in power. However, the two separate areas on the right side of the image are
identified as one class while they have been constructed as two separate classes.
Surprisingly, when investigating the distances (in Frobenius norm, among others)
between the 4 initial matrices, the two matrices corresponding to the right side
areas of the image are not particularly close. This is most likely a consequence of
the random initialisation as with other random initialisations, the results were
different. Most of the time, classes were correctly separated with the Fixed Point
Estimate but still, there are cases where the classification fails. Our assumption
is that the computation of the class centers with the euclidean definition of the
mean groups pixels that should not be grouped and in most cases, it has little
to no impact on the classification results. But sometimes, the errors due to this
miscalculation of the mean may have a strong impact on the end results. Using
the geometric definition of the mean can alleviate this effect.



Fig. 3. Standard Wishart classification with the SCM

Fig. 4. Standard Wishart classification with the FPE



3.3 Information geometry

Fig. 5 presents the results of the classification process using the FPE and the
geometrical mean, instead of the standard arithmetical mean, with the same
initialization as Fig. 3 and Fig. 4. It is clear that the use of the geometrical
mean allowed for a better classification as the four initial quadrants are crealy
visible on the end results. However, one must note that the initialization still
plays a strong part. Some configurations, not shown here, lead to a failure of the
classification process, even when using the geometrical mean.

Fig. 5. Wishart classification with the FPE and the geometrical mean

4 Results on real data

Simulations have presented a notable improvement on the classification accuracy
in the polarimetric sense, as they showed that even when using the SIRV model,
which is more adapted to describe non-Gaussian clutter, large areas of the image
could be misclassified when using the incorrect euclidean definition of the mean.
This calls strongly for an application of the geometry of information on a real
scene, where a lot of polarimetric mechanisms can be encountered and where
the opportunities for misclassification abound. This is why the algorithms used
in the simulations in Section 3 have been applied on a data set acquired by
the ONERA RAMSES system in the region of Brétigny, France. This image,



presented on Fig. 6 has a resolution of approximately 1.3 meters in both range
and azimuth and has been acquired in X-band with a 30◦ incidence angle.

4.1 Classification results

Fig. 6. Real polarimetric image in the Pauli basis.

Wishart distance measure The image on Fig. 6 is represented in the Pauli
basis : blue for the ‖HH + V V ‖ component, red for the ‖HH − V V ‖ and green
for the ‖HV ‖ component. This decomposition allows for a very quick assess-
ment of the polarimetric mechanisms in an image. Indeed, a strong ‖HH+V V ‖
component is characteristic of scattering over a surface, a strong ‖HH − V V ‖
component indicates double-bounce scattering and a strong ‖HV ‖ component
indicates volume scattering, which is generally present in forested areas. How-
ever, color mixtures are very subject to interpretation and should be handled
carefully.

In this image, a lot of polarimetric diversity is present. Two large buildings
can be observed in the left part of the image, one in purple and white, the other
in green. Smaller buildings and several fields are scattered among the image. A
forested area is present on the right side. On the lower right side, four corner
reflectors have a strong signal in red.



Applying the Wishart classifier of Sect. 2.2 with the Fixed Point Estimate,
the Wishart distance measure and the arithmetical mean yields the classification
results presented on Fig. 7.

Fig. 7. Wishart Classifier with FPE, arithmetical mean and Wishart distance measure.

The two large buildings are effectively separated from the rest of the image.
The yellow class consists solely of one the large buildings and small patches near
some of the smaller buildings. There are also small patches of the orange class
near this building and some of the smaller ones. The other large building is
represented by the two classes : the medium blue and the light blue class. Those
classes are also found on the smaller buildings and on the urban area of the top
left. The teal and red classes seem to be present in the more natural areas.

The last class, in dark blue, is more difficult to interpret because it contains
natural areas like the field in the lower left corner and the corner reflectors of
the lower right who have a very strong unambiguous double-bounce return. The
arithmetical mean of the class centers leads to a bias in their expression and
pixels with quite different polarimetric are assigned to the same class because of
this. Using the correct geometrical expression of the mean between covariance
matrices should hopefully correct this and properly separate pixels.

Fig. 8 represents the classification results with the Fixed Point Estimate, the
Wishart distance measure and the geometrical mean. As can be seen on this
image, the classification accuracy is improved concerning the dark blue class



of Fig. 7. It consists now almost exclusively of the pixels corresponding to the
corner reflectors with a few patches left on the field of the lower left corner. The
medium blue class appears sharper as well in both the urban area of the top left,
the small building in the center of the image - that was not identifiable in Fig.
7 - and the parking lot on the right side.

Fig. 8. Wishart Classifier with FPE, geometrical mean and Wishart distance measure.

Those classification results were obtained with a 5-by-5 sliding window for
the estimation of the covariance matrix. If we increase the size of this sliding
window to a 15-by-15 window, the classification leads to the results presented
in Fig. 9. With the geometrical mean, the corner reflectors are separated in the
yellow class, which contains only them. The field of the lower left corner is in
the separate red class, along with a few patches scattered among the image and
some pixels around the centers of the corner reflectors. The two large buildings
are in two separate class containing only them as well, the teal and medium blue
classes. The brown class gathers all the remaining pixels belonging to urban or
man-made elements of the scene.

Geometrical distance The distance of Eq. (7) can also be used instead of the
Wishart distance measure to reassign the pixels at each iteration. Classification
results using the geometrical distance are presented on Fig. 10.

In that case, we observe again a better performance of the geometrical mean
over the arithmetical mean with regards to the polarimetric classification. Al-



(a) Wishart Classifier: FPE, AM, Wishart
distance measure.

(b) Wishart Classifier: FPE, GM, Wishart
distance measure.

Fig. 9. Wishart Classifier: FPE, Wishart distance measure, 15-by-15 sliding window.

though, with the AM, the algorithm is able to discriminate between the large
buildings and the rest of the image, the shapes of both the small and the large
buildings are much better outlined using the GM. The urban area of the top
left corner and the parking lot are correctly classified in the same class as other
buildings. The green class consists solely of the very tip of the corner reflectors.

However, in both cases, all the other pixels are more or less assigned to the
same class which shows that the geometrical distance may not be pertinent for
use in polarimetric classification.

4.2 Polarimetric interpretation

One of the most commonly used ways to interpret the underlying polarimetric
mechanisms in a polarimetric SAR image is the Cloude-Pottier decomposition
[7]. This decomposition relies on the eigendecomposition of the covariance ma-
trix, under the assumption that each resolution cell contains a dominant scat-
tering mechanism. The eigendecomposition of the covariance matrix yields the
eigenvalues λi and the eigenvectors ui. The eigenvectors can be represented as:

ui =




cosαiejφi

sinαicosβiej(δi+φi)

sinαisinβiej(γi+φi)



 (11)

where αi,βi, δi,φi are angles related to the wave propagation (see [7] for more
details).

From the eigenvalues, we define: pi =
λi∑m

k=1 λk
.



(a) Wishart Classifier: FPE, AM, geometrical distance.

(b) Wishart Classifier: FPE, GM, geometrical distance.

Fig. 10. Wishart Classifier: FPE, geometrical distance.



Two physical parameters are then extracted from the eigenvalues and the
eigenvectors:

– the entropy H : it characterizes the degree of chaos inside the resolution cell.
It takes values between 0 and 1. If the entropy is low, there is indeed a
dominant polarimetric mechanism. When the entropy increases, it indicates
there are other scattering mechanisms inside the cell which are not negligible.
When it is close to 1, it means there is no dominant mechanism inside the
cell, the contribution of the several mechanisms is equivalent. It is given by:

H = −
m∑

i=1

pi logm(pi) (12)

– the α angle: this parameter is not related to any physical angle but gives an
indication on the type of the dominant mechanism. It takes values between
0 and 90 degrees. It is given by:

α =
m∑

i=1

piαi (13)

Fig. 11. H − α plane

The underlying scattering mechanism for each pixel can then be characterized
knowing its parametersH and α and their position in theH−α plane represented
in Fig. 11. The red curve represents the limit of entropy-α couples that are
physically possible. The dotted blue lines roughly delimit areas where different



scattering mechanisms take place. These boundaries are not set in stone but
offer a rather quick and visual separation between mechanisms.

The repartition of the pixels in each class in the H − α plane after the
classification ended are presented on Fig. 12 for the arithmetical mean and on
Fig. 13 for the geometrical mean.

Fig. 12. Repartition in the H − α plane after classification, AM.

If we take a closer look at the most pertinent classes, like the dark and light
blue classes, we can see that the pixels belonging to these classes appear to be
more clustered. For the dark blue class, the range in both alpha and entropy is
reduced, which means that the pixels belonging to this class are more similar
in the polarimetric sense. This was expected as the classification appeared to
refine the class around the corner reflectors. For the other classes, the deviations



Fig. 13. Repartition in the H − α plane after classification, GM.

in alpha and entropy are roughly the same using either one of the means. We
can take a look at the repartition using the 15-by-15 sliding window, represented
on Fig. 14. Only the red and green classes are represented because they are the
only classes relevant to the corner reflectors. We have seen that using the 15-by-
15 sliding window, the corner reflectors were separated in a unique class with
the geometrical mean: the green class. Fig. 14 shows these pixels all have a low
entropy and an α angle between 40 and 50 degrees, which is coherent with the
response of a corner reflector.



Fig. 14. Repartition in the H − α plane after classification, AM and GM, 15x15.

5 Conclusion

This paper presented a method for polarimetric SAR data classification using
information geometry. It relies on a rigorous definition of the metric on the space
of Hermitian semi-definite positive matrices.

The signal was described using the non-Gaussian SIRV model. In this model,
the Approximate Maximum Likelihood of the covariance matrix is the Fixed
Point Estimate. It is independent of the texture PDF and thus allows to dis-
criminate between matrices only on their polarimetric properties - the phase
relationships between the polarimetric channels - rather than their power.

Classifications were performed on simulated images with parts of the image
Gaussian-distributed and other parts non-Gaussian distributed. Results on the
SCM and its classification on the power were briefly recalled and improvements
on classification with the FPE were presented when using the geometrical ex-
pression of the mean.

The algorithm was then applied to a real polarimetric image and results
show that the classification was improved using the geometrical mean as classes



consisted of pixels more similar in the polarimetric sense, based on the ground
truth and a physical interpretation thanks to the Cloude-Pottier decomposition.
Differences on the results were noted when using different sizes for the sliding
window used for the estimation of the covariance matrices. Binary partition
trees [1] and expectation-maximization algorithm [12] have also been used in
polarimetric SAR classification and could be more robust to the initialisation
than the simple k-means algorithm. A k-means++ algorithm [2] could be used
to alleviate this problem. On large images, the computation time can also become
an issue so using Bregman ball trees [19] could potentially help with this aspect
of the problem.

A distance derived from information geometry was also used instead of the
standardWishart distance measure to reassign pixels in the algorithm but results
are not conclusive at this time.

The proposed method yields encouraging results but the end results remain
too vague, especially on the natural areas. Combining the polarimetric informa-
tion with the power information, which is removed here, could greatly help the
visual aspect of the final images.
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