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Abstract—This paper considers the Space Time Adaptive Processing
(STAP) problem where the disturbance is modeled as the sum of a
Low-Rank (LR) Spherically Invariant Random Vector (SIRV) clutter and
a zero-mean white Gaussian noise. To derive our adaptive LR-STAP filters,
the estimation of the projector onto the clutter subspace is performed
from the Sample Covariance Matrix (SCM) and the Normalized Sample
Covariance Matrix (NSCM). We compute the theoretical performance of
both corresponding LR-STAP filters through the analysis of the Signal
to Interference plus Noise Ratio (SINR) Loss, based on a perturbation
analysis. Numerical simulations validate the theoretical formula and allow
to show that the LR-STAP filter built from the SCM performance does not
depend on the heterogeneity of the SIRV clutter whereas the LR-STAP
filter built from the NSCM performance does.

Index Terms—Low-rank clutter, normalized sample covariance matrix,
perturbation method, SIRV, STAP.

I. INTRODUCTION

Space Time Adaptive Processing (STAP) is a technique used in air-
borne phased array radar to detect moving target embedded in an inter-
ference background such as jamming or strong clutter [1]. While con-
ventional radars are capable of detecting targets both in the time domain
related to target range and in the frequency domain related to target ve-
locity, STAP uses an additional domain (space) related to the target
angular localization. The consequence is a two-dimensional adaptive
filtering technique which uses jointly temporal and spatial dimensions
to cancel interference and to improve target detection. In most works
on radar, the clutter is assumed to be a simple Gaussian process. But
firstly, the increase of the radar resolution leads to a higher scene het-
erogeneity where the clutter can be no longer modeled by a Gaussian
process [2], [3]. To take this heterogeneity into account, one can use the
Spherically Invariant RandomVector (SIRV) product model,first intro-
duced by Yao [4] in the information theory community. This is a com-
pound-Gaussian model, well-known for its good statistical properties
and for its good correspondence to several real data sets [5], [6]. Sec-
ondly in side-looking STAP (as considered in this paper), the ground
clutter can be shown to have a Low Rank (LR) structure from Brennan
rule [7]. In this paper, the disturbance is then modeled as the sum of a
LR-SIRV clutter and a zero-mean white Gaussian noise.
In practice, the disturbance covariance matrix is generally unknown

and an estimate is required to perform the STAP processing. This esti-
mation procedure requires the so-called secondary data which are as-
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sumed to be independent and share the same distribution as the observa-
tion under test. In a STAP framework, the dimension of the covariance
matrix is important (number of sensors times number of pulses). Com-
monly, the number of secondary data has to be upper than two times
this dimension to ensure the classical 3 dB loss for the performance re-
sults [8]. One of the advantage of the LR techniques is that this rule can
be strongly relaxed to preserve such a performance [9]–[12]. Another
problem in STAP comes from these secondary data which are often
contaminated by the secondary lobes of the target under study or other
targets with same angular and velocity properties. It is also possible to
have outliers in the STAP data cube like for example in highway STAP
data with cars traffic-jam or convoys tracking. In such cases, LR tech-
niques exhibit another advantage on classical methods: for a quite low
Signal-to-Clutter Ratio (SCR), LR techniques are robust to secondary
data contamination, see e.g., [9], [13]. This robustness directly relies on
the choice of the covariance matrix estimate, from which the projector
estimate will be derived. It seems obvious that the well-known Sample
CovarianceMatrix (SCM) is not adapted to strong contamination prob-
lems since this estimate depends on the power of each data sample.
Thus, it is interesting to consider other covariance matrix estimates,
independent of the data power, i.e., self-normalized estimates. This is
the case of the Normalized Sample Covariance Matrix (NSCM) [14].
We then proposed in [15] to build the clutter subspace projector on the
NSCM. The corresponding LR-STAP filter exhibits interesting results:
it is more robust to secondary data contamination by target components
than the LR-STAP filter obtained from the SCM.Moreover, we showed
in [16] that the projector onto the clutter subspace built from the NSCM
is a consistent estimate of the true one when the disturbance is modeled
as the sum of a LR-SIRV clutter and a white Gaussian noise.
Under the two hypotheses of Gaussian clutter plus noise and orthog-

onality of the target signal with respect to the clutter subspace, the the-
oretical analysis of LR-STAP filters has been conducted in the seminal
works [9], [11], [12] (with SCM) and next in [17] (with NSCM). In this
paper, we relax the first hypothesis and we consider the much more
realistic case of a LR-SIRV clutter plus white Gaussian noise. How-
ever, for mathematical tractability the second hypothesis is kept. Our
work studies the Signal to Interference plus Noise Ratio (SINR) Loss
by means of a perturbation analysis [18]. Numerical simulations vali-
date our results even in a case of non orthogonality of the target signal
with respect to the clutter subspace and give a comparison between the
filters performance.
The following convention is adopted: italic indicates a scalar quan-

tity, lower case boldface indicates a vector quantity and upper case
boldface a matrix. denotes the transpose operator and the trans-
pose conjugate. is the expected value operator. CN is a
complex Gaussian vector of mean and of covariance matrix .
is the -identity matrix. is a Chi-square random variable
with degrees of freedom.

II. LOW-RANK STAP FILTERS

In STAP [1], the radar receiver consists in an array of antenna ele-
ments processing pulses in a coherent processing interval. Let us set

. In this framework, we receive a signal consisting
in a known complex signal corrupted by an additive disturbance .
We also have secondary data which only contain the disturbance:

(1)

where is a deterministic complex attenuation and has unit norm.
We assume that and are independent and share the same statistical
distribution. They are modeled as the sum of a clutter, or , and a
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white Gaussian noise, or . The processes and are modeled
as zero-mean complex Gaussian noises CN . Concerning the
clutter and , we consider that its power in each cell and in the cell
under test is different. In such a situation, it is common to model this
kind of clutter by a SIRV [19]–[21]. A SIRV [4] is a non-homogeneous
Gaussian random vector with random power: its randomness is induced
by spatial variation in the radar backscattering. Therefore, (resp. )
is the product of a positive random variable (resp. ), called the
texture, and a -dimensional independent complex Gaussian vector
CN (resp. ), called the speckle:

(2)

In side-looking STAP, we are able to evaluate the clutter rank thanks
to Brennan rule [7] which leads to a low rank structure for the STAP
clutter and , i.e., . Let

and be the eigen-
system of . The covariance matrix of and is then given by:

(3)

with corresponding eigensystem
and . We

define the projector onto the clutter subspace and the projector onto
the orthogonal of the clutter subspace [9], [11]:

(4)

The optimal STAP filter is [1]:

(5)

In the low-rank assumption, this optimal filter is approximated by [9],
[11]: .
In practical cases, since the covariance matrix (and therefore also
) is unknown, it is necessary to estimate them from the secondary

data . The common way to estimate the projector
is based on the Sample Covariance Matrix (SCM). From its Eigen-
value Decomposition (EVD), we obtain the estimated projector onto
the clutter subspace [9], [11]:

(6)

For the case of SIRV clutter without white Gaussian noise, it is well
known that the NSCM [14] allows to reach better detection perfor-
mances than the SCM. Therefore, we proposed in [15] to build
from the NSCM. Indeed, even if the NSCM is a biased estimate of the
covariance matrix , we showed in [16] that the associated projector
estimate is consistent when the disturbance is a LR-SIRV clutter plus a
white Gaussian noise. Moreover, the corresponding LR-STAP filter al-
lows to reach good robustness to data contamination [15]. The NSCM
is defined as:

(7)

From its EVD, we obtain another estimated projector onto the clutter
subspace [9], [11]:

(8)

The two sub-optimal STAP filters studied in this paper are:

(9)

III. THEORETICAL SINR LOSS

As in previous works on LR-STAP theoretical performance anal-
ysis [11], the following usual assumption is made for mathematical
tractability: the projection of the steering vector on the true interfer-
ence subspace is negligible, i.e., for . This just
means that the target is not fully embedded in the clutter ridge. We
will check in Section IV by simulations that the theoretical result is
also valid even in a case of non orthogonality of the target signal with
respect to the clutter subspace. From the structure of , we have the
following relations:

(10)

The generic STAP filter output is . The
SINR at the filter output is:

(11)

is maximumwhen and its value is
. The SINR loss, denoted by , is the loss of performance

when ( or ):

(12)

From (9) and (10) the SINR losses, or , of (12) can be
rewritten as:

(13)

where or . The aim of this section is
to compute the mean SINR losses and . Results
are given in the following proposition.
Proposition 3.1:

(14)

(15)

where are the eigenvalues of given
in [16] as a function of .

Proof: Since all considered estimators have been shown consis-
tent, the SINR loss is evaluated for large by means of a perturbation

analysis [18]. Starting from the perturbations on , and , the
SINR loss of (13) is reduced in a compact form thanks to a second
order approximation. Let us start by .
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First, let us introduce the pseudo-inverse, , of (see (3)):

(16)

Let be the covariance estimation error on . This
estimation error induces an error on the estimates and .
It is shown in [18] that the projector estimates are given up to the second
order with respect to by:

(17)

where and are equal to:

(18)

where matrices and are second order terms with respect to . In
what follows, all equalities are valid up to the second order with respect
to .
The second-order approximation of the denominator of (13) yields:

(19)

The first term is equal to from (10). The second and the third term
are equal to 0 since and . Therefore:

(20)

We have from (3) and (16):

(21)

From (21), (20) becomes:

(22)

Secondly, let us compute the numerator of (13). We have:

(23)

Since and , (23) is equivalent to:

(24)

and thus:

(25)

Finally, the second order expression of the SINR loss of (13) is:

(26)

As (since for ), we can substitute
for in (26):

(27)

Let us set:

(28)

and

(29)

We have:

(30)

For large , as assumed in this paper, the central limit theorem en-
sures that is Gaussian distributed. Its first and second order moments
follow from those of and will be now investigated. The SINR loss
distribution will be obtained from these results. The first order moment
of is:

(31)

since for . Let us now compute the second order
moments of . Let us recall that and introduce the
following new parameter:

(32)

Conditionally to , is complex zero-mean Gaussian and its covari-
ance eigensystem is

and . Consequently, each
component of , conditionally to , can be written as follows:

(33)

where is uniformly distributed on . All random variables are
mutually independent. Therefore, we obtain:

(34)
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Fig. 1. Theoretical (solid line) and Numerical (dashed line and stars) SINR losses for LR-STAP filters built from the SCM (a) and the NSCM (b) as a function of
. The LR-SIRV clutter is simulated by a Gamma distribution of parameter (red) and (blue).

The second order moments of is easily computed from (33) and
(34): and

(35)

The SINR loss distribution follows from (30), (35) and the central limit
theorem:

(36)

Taking the expectation of (36) completes the proof for .
The proof for is very similar and is omitted.
Remark: In STAP context, the hypothesis of a strong clutter in com-

parison to thewhiteGaussian noise is often valid. In this particular case,
the SINR losses of proposition 3.1 admit simplified expressions:

(37)

(38)

Indeed, we have in the case of a strong clutter for
. For in (14), (37) is then easily deduced. Con-

cerning , it may be shown from [16] that
when is small. Expression (38) follows from (15) for small .
Equation (37) is similar to the classical result of [9], [11] with

Gaussian clutter. This shows that the texture has no influence on
the SINR loss in a strong clutter hypothesis. Concerning the
behaviour of the SINR loss of (38) in a strong clutter context,
we notice that does depend on the texture distribution.

IV. NUMERICAL SIMULATIONS

We consider the following side-looking STAP configuration to check
the theoretical SINR losses of proposition 3.1. The number of sen-
sors is and the number of coherent pulses is . An-
gles of arrival are measured with respect to broadside. The center fre-
quency and the bandwidth are respectively equal to
and . The radar velocity is . The inter-element
spacing is ( is the speed of light) and the pulse repetition
frequency is . The clutter rank is computed from Brennan
rule [7]: . The covariance matrix of the
Gaussian clutter is simulated thanks to the modelling presented in [1].
To simulate the SIRV clutter, we choose for the texture a Gamma dis-
tribution with shape parameter and scale parameter (which results
in ). The identity matrix is next added to build the covari-
ance matrix of (3). The Clutter to Noise Ratio (CNR) is set to 25
dB. The clutter ridge spans the angles between and 90 and the
speeds between and 100 m/s. The target velocity is 40 m/s
with an angle of arrival equal to . In this configuration, we have

. Therefore, we consider a case with the
property of non-orthogonality between the target and the clutter sub-
spaces: a simple matched filter is not sufficient to detect the target.
The theoretical LR-SCM and LR-NSCM SINR losses are computed

using (14) and (15). For the last one, the expectations involving the
texture are evaluated by 100000 Monte Carlo trials. The numerical
LR-SCM and LR-NSCM SINR losses of (13) are estimated using
10000 Monte-Carlo trials.
Fig. 1 displays the numerical and theoretical SINR losses as a func-

tion of for the LR-STAP filters built from the SCM and NSCM in the
case of a LR-SIRV clutter of parameter and . The second
case simulates a strong non-homogeneous clutter. For the LR-STAP
filter built from the SCM, numerical and theoretical SINR losses are
close for both . This validates (14) as well as the approximate expres-
sion (37) (texture has no influence on ). For the LR-STAP filter
built from the NSCM, numerical and theoretical SINR losses are close
for . When , the theoretical result is correct for large
(which validates (15)) but more mitigated for small . Note also as
expected in (38) that the texture distribution has a strong influence on
the SINR loss of the LR-STAP filter built from the NSCM (numerical
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and theoretical) which is not the case for the LR-STAP filter built from
the SCM.

V. CONCLUSION

In this paper, we analyzed the theoretical performance of two
LR-STAP filters built from the SCM and the NSCM by deriving
SINR loss expressions based on a perturbation analysis. Compared to
previous works, disturbance was modeled as the sum of a Low-Rank
SIRV clutter and a zero-mean white Gaussian noise. Numerical
simulations validated the theoretical formula even in a case of non
orthogonality of the target signal with respect to the clutter subspace
and allowed to show that the LR-STAP filter built from the SCM has
better performance than the one built from the NSCM. For strong
clutter to noise ratio, we also proved that the LR-STAP filter built
from the SCM leads to the same performance as in Gaussian clutter.
In a future work, we propose to investigate the performance of the

LR-STAP filter built from the NSCM for small K according to the dis-
tribution of the texture. It will be also interesting to investigate how the
SINR losses will be affected by a wrong estimation of r.
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