

FEATURES EXTRACTION OF THE DOPPLER FREQUENCY SIGNATURE **OF A HUMAN WALKING AT 1 GHz** ONERA

Giovanni Manfredi¹, Jean-Philippe Ovarlez¹², Laetitia Thirion-Lefevre¹

¹SONDRA, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France

²Department of Electromagnetism and Radar (DEMR), ONERA, Université Paris-Saclay, Palaiseau, France

giovanni.manfredi@centralesupelec.fr

Aim of the research activity

The study has been carried out with a twofold objective: to analyse at 1 GHz the Doppler spectrum of a walking person; to highlight what timefrequency analysis between the short-time Fourier transform (STFT) [1], the reassignment spectrogram (RE-Spect) [2] and the Wigner-Ville distribution (WVD) [3] allows the best characterization of the Doppler signature of a human physical activity. The investigation at low frequency on the time variation of the Doppler spectrum of moving targets is of interest for emerging radar applications devoted to the detection of people in highly cluttered environment.

Analytical Doppler frequencies of the human body elements

A human model has been modelled as having 11 body parts to reproduce faithfully the cycle: head (H), neck (N), torso

THE FRENCH AEROSPACE LAB

	horn Antenna	LB-770-10	Dop				Dop					-4 $\overset{\texttt{omod}}{\texttt{od}}$	Dol					Pow
	gain	10 dB	0				0				. 1	4 5						5
	power	0 dBm	0	1 2 3	4 5 6 7	7 8 -4.5	0	1 2	3 4 5	56	7 8	-4.0	0	1 2	3 4	5 6 7	8	0
	frequency	1 GHz		slo	ow time (s)				slow time (s)	1 C	,			TT 7 T 7 T	slow time (s	S)		- 1
	bandwidth	0 Hz (CW)		STFT:	Doppler feature	?S		KE-S	pect: Dop	pler feat	ures			WVL): Dopple	er features		
	polarization	VV	Features	HanningHa2.84 Hz2	amming Gauss	KaiserFlapttop2.83 Hz2.81 Hz	Features	Hanning 2.81 Hz	Hamming	Gauss	Kaiser	Flapttop	Features (1)	Hanning 2.81 Hz	Hamming 2.81 Hz	Gauss Ka 2.82 Hz 2.82	ser Flapt	top Hz
	azimuth angle	0°	(2)	9.02 Hz	9.5 Hz 9.5 Hz	9.37 Hz 10.4 Hz	(2)	14.88 Hz	12.53 Hz	14.88 Hz	14.88 Hz	14.29 Hz	(2)	14.94 Hz	14.94 Hz	14.94 Hz 14.9	4 Hz 14.94	Hz
	elevation angle	0°	(3)	3.21 Hz 3	3.21 Hz 3.21 Hz 3.8 Hz 3.75 Hz	3.26 Hz 3.21 Hz	(3)	2.74 Hz	2.97 Hz 0.82 Hz	2.74 Hz 0.58 Hz	2.74 Hz 0.82 Hz	2.56 Hz 0 Hz	(3) (4)	2.77 Hz	2.77 Hz 3.46 Hz	2.77 Hz 2.77 2.64 Hz 2.64	$\begin{array}{c c} Hz \\ Hz \\ \hline 3.05 \end{array}$	Hz Hz
	sampling frequency	0 Hz	(4) (5)	1.97 s	$\begin{array}{c c} 3.98 \text{ Hz} \\ \hline 1.97 \text{ s} \\ \hline 2 \text{ s} \\ \hline \end{array}$	1.97 s 2.1 s	(1)	2 s	2.03 s	2 s	2 s	2.1 s	(5)	1.93 s	1.93 s	1.93 s 1.9	3 s 1.93	s
	CPI	3 ms				The Donnla	r foaturos	havo hoon c	ompared w	ith the an	alvtical or	nas nrasanta	d above					
																		•
	Conci	usions – –	,					Ungoi	ng rese	earcn	acuvi	ty –						
 Nun GH Thr app targ Five cha disc The frec phy 	merical tests have been z the Doppler spectrum ee joint time-freque lied to the backscatte get provided by a PO-k e Doppler features he racterize the freque criminate the best time e pseudo WVD pro- quency function to of sical activity of a real	en carried out analy m of a walking man ency techniques have red response of the based analytical mod ave been extracted uency signature e-frequency analysis oved to be the based detect and charact subject.	Asing at 1 a. ave been e moving del. d both to and to s est time- erize the		Experimental te subject walking v GOA Analysis at lov (UHF-band) of highly cluttere on the Doppler moving target. Measurem frequency	ests observing a within the forest L: v frequency f the impact of a d environment d environment spectrum of a hent Setup 1 GHz (CW)	Dopper frequency (Hz)	er spectrum 20 ef obstrum 10 0	n of a man fect of cting trees	walking w	within the	forest, anal	ysed at 1 G -40 -50 -60 -80	Normalised PSD (dB)	Man walk	<section-header></section-header>	<section-header></section-header>	
					antenna	Yagı		0	5 10	15	20	25 20	-90					

[1] V. C. Chen and S. Qian, "Joint Time-Frequency transform for Radar range-Doppler imaging," IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 2, pp. 486–499, 1998.

References

[2] I. Reinhold, J. Starkhammar, and M. Sandsten, "The scaled reassigned spectrogram adapted for detection and localisation of transient signals," in Signal Processing Conference (EUSIPCO), 2017 25th European. IEEE, 2017, pp. 907–911.

[3] R. Tan, H. S. Lim, A. B. Smits, R. I. A. Harmanny, and L. Cifola, "Improved micro-Doppler features extraction using Smoothed-Pseudo Wigner-Ville distribution," in Region 10 Conference (TENCON), 2016 IEEE. IEEE, 2016, pp. 730–733.

[4] M. Capecci, M. G. Ceravolo, F. Ferracuti, S. Iarlori, V. Kyrki, S. Longhi, L. Romeo, and F. Verdini, "Physical rehabilitation exercises assessment based on hidden semi-markov model by Kinect v2," in Biomedical and Health Informatics (BHI), 2016 IEEE-EMBS International Conference on. IEEE, Feb 2016, pp. 256–259.

[5] Y. Kim and H.Ling, "Human activity classification based on micro-Doppler signatures using a support vector machine," IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 5, pp. 1328–1337, 2009. 🥒

L = 16 m.

22, $7^{\circ} \leq \beta \leq 77, 4^{\circ}$

Averaged speed = 1,08 m/s.

Measured speed retrieved by the torso Doppler frequency.

		- *-	 detected estimate without 	l target s ed target the obst	peed speeds ructing tre	es
			W		NM1	
W						
0	$\overline{5}$	10	15	20	25	3

Measured and simulated Doppler features.							
Features		1 GHz					
) Torso Doppler	measured	3.48 Hz					
	simulated	5.5 Hz - 9.5 Hz					
2) Period	measured	0.42 s					
	simulated	0.4 s - 0.7 s					
B) Total BW	measured	28 Hz					
	simulated	18.6 Hz - 28.3 Hz					
) Offset	measured	14.19 Hz					
	simulated	9.2 Hz - 12.5 Hz					

The human body parts are shadowed by the trees. Consequently, a fragmentation of the Doppler spectrum is highlighted.

GRSS

IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium July 28 - August 2, 2019 • Yokohama, Japan