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I. Some theory about hybrid estimation and MSE Lower Bound

Hybrid Es ma on problem:
Suppose we have N i.i.d observa ons {xk ∈ Cp|1 ≤ k ≤ N} of a

random vector : x ∼ fx;θ(x; θ).
We denote by θ̂(x) an es mator of the hybrid parameter θ ∈ Θ
of dimension M . Hybrid means that:

θ = [θd, θr]T

Determinis c Random

MSE lower bound:
We want to have the lower bound on the Mean Square Error

(MSE) of the es mator with regards to the true value. The MSE

is defined as:

MSE(θ̂) = Ex,θd,θr

{
(θ̂(x) − θ)(θ̂(x) − θ)T}

, (1)

A lower-bound can be obtained using the covariance equality:

MSE(θ̂) � VP−1VT, (2)

where V is a M × M matrix whose elements are given by

(V)k,l = Ex,θd,θr

{(
(θ̂(x))k − (θ)k

)
Ψl(x, θ)

}
,

P is a M × M matrix whose elements are given by

(P)k,l = Ex,θd,θr
{Ψk(x, θ)Ψl(x, θ)}

and {Ψk(x, θ) | k ∈ J1, MK} are real-valued func ons.

Example of the Cramer-Rao Bound (CRB):
MSE(θ̂) � F−1, where F = −Ex,θr

{
∂2fx,θ

∂θ∂θT

}
Problem 1: What if hybrid es ma on problem?

Problem 2: What if θ ∈ Θ where Θ is discrete (��
��HHHH∂θ)?

→ Use an hybrid lower-bound:

VP−1VT =




Bound on θr

Bound on θdCross-correla ons

In this paper, we consider the hybrid Cramer-Rao and

Weiss-Weinstein lower bound, which we will denote

HCRWWB.

II. Change-point estimation in SAR image time series analysis

Figure 1. Example of UAVSAR/JPL image me-series between 2008 and

2018 over California

Direction of moving radar

Figure 2. SAR acquis on principle

SAR images are useful to monitor changes for large areas

(several km) over a long me-period (several years).

Data model: On a local window, the Sample Covariance

Matrix (SCM) is assumed to be Wishart distributed:

fXt;Σ(Xt; Σ) = |Xt|N−p

Γp(N) |Σ|N
etr

(
Σ−1Xt

)
, (3)

where, Γp(N) = πp(p−1)/2 ∏p
j=1 Γ(N − j + 1), Γ(.) is the Gamma

func on and etr(.) is the exponen al trace func on.
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Figure 3. Local data selec on for compu ng SCM

Single change point es ma on problem:
For a single pixel, we consider the following model:{

Xt ∼ CW(p, N, Σ0) for t = 1, . . . , tC

Xt ∼ CW(p, N, Σ1) for t = tC + 1, . . . , T
. (4)

The objec ve is to esimate Σ0, Σ1 and tC called the

change-point. We assume a uniform prior this parameter.

Tuning problem:
The performance of any es mator of tC depends on the

set of parameters (p, N) (dimension of each pixel, number

of samples in the local windows) which can be controlled.

How can we tune the methods to have a desired

performance ?

→ Since the MSE of the es mators is untractable, we

focus on obtaining a lower-bound !

We consider a CRB on the determinis c unknown

covariances Σ0, Σ1 and the bayesian Weiss Weinstein

Bound (WWB) on the random unknown change-point tC.

III. Statement of the result

In the context of change-point es ma on, the right-hand

side of the inequality at eq. (2) can be obtained by using the

semi closed-form expression provided in [1]:

V =
[
−I2p2 02p2,1
01,2p2 v22

]
andP =

[
P11 P12
P12

T P22

]
, (5)

where the block-matrices are defined as follows:

P11 = T/2 diag (F(Σ0), F(Σ1)), where F(Σ0) (resp. F(Σ1))
is the Fisher informa on matrix with regards to Σ0 (resp.

Σ1).

P22 =
u(h)

(
ρ|h| (εh(2s)) + ρ|h| (εh(2s − 1))

)
− 2u(2h)ρ|h| (εh(s)),

where:

u(h) ∆=
{

(T − 1 − |h|) /(T − 1) if |h| < T − 1
0 otherwise ,

εh(s) =
{

s if h > 0
1 − s if h < 0 and

ρ(s) ∆=
∫
Sp
H

f s
Xt;Σ0

(Xt; Σ0)f 1−s
Xt;Σ1

(Xt; Σ1) dXt . (6)

v22 = hu(h)ρ|h|(εh(s)).
[1] L. Bacharach, M. N. E. Korso, A. Renaux and J. Tourneret, ”A Hybrid

Lower Bound for Parameter Es ma on of Signals With Mul ple

Change-Points,” in IEEE Transac ons on Signal Processing

P12 =
[
pT, qT]T

, where the elements of vectors p and q
are given by:

(p)` = −hu(h)ρ|h|−1 (εh(s)) φσ0,` (εh(s)) ,

(q)` = hu(h)ρ|h|−1 (εh(s)) φσ1,` (εh(s)) ,

and given j ∈ {0, 1}, ` ∈ J1, p2K, s ∈]0, 1[:

φσj,`(s) ∆=
∫
Sp
H

∂ ln fXt;Σ(Xt; Σ)
∂ ([vech (Σ)]CR)`

∣∣∣∣∣
Σ=Σj

×

f s
Xt;Σ0

(Xt; Σ0) f 1−s
Xt;Σ1

(Xt; Σ1) dXt .

(7)

Deriva ons lead to:

ρ(s) =
∣∣sΣ−1

0 + (1 − s)Σ−1
1
∣∣−N

|Σ0|sN |Σ1|(1−s)N .

F(Σ) = fCR
(
NDp

T(Σ−1 ⊗ Σ−1)Dp

)
, where Dp is the

duplica on matrix defined for any matrix X ∈ Cp×p, by

Dpvech (X) = vec (X) .

The different terms of φσj,`(s) for ` ∈ J1, p2K, j ∈ {0, 1} are

given by φσj,`(s) = ([vech (Φj(s))]CR)`, where Φj(s) is a
p × p matrix given by:

Φj(s) =Nρ(s)Σ−1
j

(
sΣ−1

0 + (1 − s)Σ−1
1
)−1 Σ−1

j

− Nρ(s)Σ−1
j .

IV. Simulation results

Es mators:
Two es mators of the change-point have been considered:

The Maximum A Posteriori (MAP) es mator which has the

knowledge of the covariance matrices before and a er the

change:

t̂C = argmax
tC∈J1,T−1K

fx,tC
(x, tC) . (8)

The following Maximum A Posteriori/Maximum Likelihood

es mator:

t̂C = argmax
tC∈J1,T−1K

fx,tC ;σ̂(x, tC; σ̂) , (9)

where σ̂ =
[
[vech(Σ̂0)]TCR, [vec(Σ̂1)]TCR

]T
with:

Σ̂0 = 1
tCN

tC∑
t=1

Xt and Σ̂1 = 1
(T − tC)N

T∑
t=tC+1

Xt .

Tuning example:
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Figure 4. Evolu on of log10

√
(HCRWWB)M,M for several parameters p

and N , T = 100, α0 = 0.1 and α1 = 0.3. The dashed line corresponds to

the region where
√

(HCRWWB)M,M = 10−2.

Valida on of the bound:
In order to validate the bound derived in this paper, Wishart

me series subjected to a change-point as described in eq.

(4) have been generated. tC is generated using a uniform

random prior and the covariance matrices have been chosen

as Toeplitz matrices of the form: (Σk=0,1)i,j = α
|i−j|
k .
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Figure 5. MSE on the change-point for p = 3, T = 50, α0 = 0.1, α1 = 0.3.
The es mators curves have been computed with 106 Monte Carlo trials.

Table 1. Time-consump on in seconds.

N HCRWWB MAP Hybrid es mator

10 0.17 305 310

102 0.17 510 568

103 0.17 1462 1476

https://uavsar.jpl.nasa.gov/

