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Basic results of Detection Theory

• In a m-dimensional observed vector y, the basic problem of detecting a complex signal
s = α p (where p is a steering vector), embedded in an additive noise c, can be stated as the following
binary hypothesis test:

 Hypothesis H0 : y = c yi = ci i = 1, . . . , N

Hypothesis H1 : y = s + c yi = ci i = 1, . . . , N

where the ci’s are N signal-free independent measurements (called secondary data) used to
estimate, for example, the clutter covariance matrix .

• Detection: Neyman-Pearson criterion: Maximize the probability of detection Pd for a given
probability of false alarm Pfa

– Probability of detection Pd: Maximise the probability to decide H1 when the signal is present .

– Probability of false alarm Pfa: Probability to decide H1 when the signal is missing .

⇓
When the noise PDF (probability density function) is known a priori, Maximum Likelihood Theory is

used to decide the hypothesis .



Basic results of Detection Theory

Detection test: Comparison of the Likelihood Ratio Λ(y) with a given threshold η:

Λ(y) =
py(y/H1)
py(y/H0)

H0
<
>
H1

η ,

to ensure Pfa = P(Λ(y) > η/H0).

Performance Analysis of the detection test for a given Pfa and when the target is present for different
SNRs (Signal to Noise Ratio):

Pd = P(Λ(y) > η/H1).

When some parameters θ (as range, velocity, clutter parameter, ...) have to be estimated, the associated
detection test (GLRT) is said to be θ-CFAR if its statistics does not depend on θ



Basic results of Detection Theory

Failure of the basic detector with non-Gaussian background

• In Gaussian case, Optimal Gaussian Detector OGD is a quadratic detector:

Λ(y) =
|p†M−1y|2
p†M−1p

H0
<
>
H1

λg
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• The detection threshold λg =
√− lnPfa calculated for Gaussian assumption ensures a fixed

probability of false alarm .

• Threshold adjustment is optimal for Gaussian noise but generates false alarms when the noise is
non-Gaussian with same power . Increasing the detection threshold (λg → λopt) for the noise allows
to adjust the wanted probability of false alarm but corrupts the detection .

⇒ OGD detection performance significantly decreases when noise hypothesis are not valid
⇒ Knowing the noise characterization is required.



Noise Characterization

� CHARACTERIZATION WITH SPHERICALLY INVARIANT RANDOM PROCESSES (SIRP)

• Compound processes representation: c = x
√

τ

– x is a spherically complex Gaussian vector (speckle) with the covariance matrix 2M which can
modelize, for example, the temporal fluctuations of the clutter ,

– τ is a positive random variable, independent from x, with statistic law p(τ) called the texture
which can modelize the spatial fluctuations of the clutter power .

• Probability Density Function under H0: pc(c/H0) =
∫ +∞

0

1
(2 π τ)m|M| exp

(
−c† M−1 c

2 τ

)
p(τ) dτ .

� ADVANTAGES:

• Modelize a random walk ,

• The family of the SIRP includes an infinity of laws: Gauss, Rayleigh, Chi2, Laplace, Cauchy,
Weibull, K-distribution, Alpha-Stable, ...

• The SIRP statistics are invariant by linear filtering (Matched Filter, Doppler Filtering),

• The SIRP kernel is Gaussian: the target parameters estimates with the Maximum Likelihood are
given by the maximization of the traditional matched filter.



Detection Test
When M is known and τ is a random variable, the resulting detection test is the GLRT-LQ [Conte, Gini,

Jay] :

Λ(M) =
|p†M−1y|2

(p†M−1p)(y†M−1y)

H0
<
>
H1

λ .

• The Likelihood Ratio Λ(M) statistic is independent of
the texture statistic p(τ) under hypothesis H0,

• Thus the relationship between Pfa and the detection
threshold is independent of the texture statistic p(τ)
under hypothesis H0 and is expressed as:

λ = P
m

1−m

fa (1)
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LIMITATION: SIRP COVARIANCE MATRIX M IS GENERALLY
UNKNOWN.



Covariance Matrix Estimation

Problem: In practice, SIRP covariance matrix M is unknown. When M̂ estimates M with N (finite)

measurements, the relationship λ = P
m

1−m

fa is not valid any more because M̂ is a random matrix .

⇓

New Likelihood Ratio: Λ̂(M̂) =
|p†M̂

−1
y|2

(p†M̂
−1

p)(y†M̂
−1

y)

Consequence : As the distribution and the properties of Λ̂(M̂) depend on the nature of M̂, the 3 following
estimators will be analyzed:

• M̂W =
N∑

i=1

xi x†i : the Sample Covariance Matrix which is Wishart distributed and is only used in a

theoretical work or for Gaussian process,

• M̂NSCM =
m

N

N∑
i=1

ci c†i
c†i ci

=
m

N

N∑
i=1

xi x†i
x†i xi

: the Normalized Sample Covariance Matrix [Conte 1994],

classically used in the radar literature,

• M̂fp , solution of M̂ =
m

N

N∑
i=1

(
cic

†
i

c†i M̂
−1

ci

)
, equation resulting from the Maximum Likelihood.



Wishart: Theoretical Results

Following results have been derived from works of Kraut and Scharf.

• Λ̂(M̂W) distribution:

gN,m(x) =
(N − m + 1)(m − 1)

(N − 1)
2F1(a, a; b; x)
(1 − x)N−m

Π[0,1](x)

where a = N − m + 2, b = N + 2 and 2F1 is the hypergeometric function .

• Relationship Pfa- threshold:

Pfa = η− a−1
m 2F1

(
a, a − 1; b − 1; 1 − η− 1

m

)
(2)

= (1 − λ)a−1
2F1(a, a − 1; b − 1; λ)

with λ = 1 − η− 1
m



Wishart: Monte-Carlo Simulations
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• Figure 1: The Monte Carlo simulations confirm the theoretical result given by (2) .

• Figure 2: Convergence of (2) to (1) when N tends to infinity (The estimate covariance matrix tends
to the true one).



Theoretical Analysis of the Fixed Point Estimator M̂fp

When the τi’s are assumed to be deterministic in the N ci’s used to estimate the covariance matrix M,
the Maximum Likelihood Estimator (called the FPE) is given as THE solution of the following equation :

M̂ = f(M̂)

where the function f is defined as follows : f(M̂) =
m

N

N∑
i=1

(
cic

†
i

c†i M̂
−1

ci

)
.

The study of function f allows to establish the following results :

1. the function f admits a single fixed point, called M̂fp;

2. The fixed point can be easily obtained with recursive algorithm;

3. M̂fp is unbiased;

4. New Likelihood Ratio: Λ̂(M̂fp) =
|p† M̂

−1

fp y|2

(p† M̂fp p)(y† M̂
−1

fp y)

5. The distribution of Λ̂(M̂fp) has a closed-form expression which allows to find the value of the
threshold λ for a given Pfa.



Comparison of the 3 estimators

M̂ FPE: M̂fp M̂NSCM Wishart: M̂W

Asymptotical E

(
vec(M̂) vec(M̂)�

)
m+1

m Cas
m

m+1 Cas Cas

Properties E

(
vec(M̂) vec(M̂)∗

)
m+1

m Bas
m

m+1 Bas Bas

Bias of M̂ Unbiased Biased Unbiased

• Cas = P − 1
m

(
vec(Im)

)(
vec(Im)

)�
and P is a given permutation matrix.

• Bas = Im2 − 1
m

(
vec(Im)

)(
vec(Im)

)�
.

The covariance matrix C of the asymptotic Gaussian law is perfectly defined by the two quantities :

E

(
vec(M̂) vec(M̂)�

)
and E

(
vec(M̂) vec(M̂)∗

)
.



Comparison of the 3 estimators
� Table interpretation : Asymptotical properties

• Estimators covariance matrix :

M̂ FPE: M̂fp M̂NSCM Wishart: M̂W

E

(
vec(M̂) vec(M̂)�

)
m+1

m Cas
m

m+1 Cas Cas

E

(
vec(M̂) vec(M̂)∗

)
m+1

m Bas
m

m+1 Bas Bas

– M̂W , M̂fp et M̂NSCM have the same covariance matrix up to a scaling factor.
Signification: the relationship "Pfa-threshold" (2) established with M̂W and for N secondary

data, is still valid with M̂fp when the number of secondary data is m
m+1 N .

• Estimators bias :

M̂ FPE : M̂fp M̂NSCM Wishart: M̂W

Bias of M̂ Unbiased Biased Unbiased



Comparison of the 3 estimators

• Independence of Λ̂(M̂) with the texture :

M̂ Point Fixe: M̂fp M̂NSCM Wishart: M̂W

CFAR-texture of Λ̂(M̂) Yes Yes No

Λ̂(M̂fp) and Λ̂(M̂NSCME) are both independent of the texture.

• Independence of Λ̂(M̂) with the covariance matrix M :

M̂ Point Fixe: M̂fp M̂NSCM Wishart: M̂W

CFAR-matrix of Λ̂(M̂) Yes No Yes

Λ̂(M̂fp) is independent of M in opposite with Λ̂(M̂NSCM ).



Application : Adaptive Detection Performances of the GLRT-LQ on

radar data
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Range bins

A
zi

m
ut

h

100 200 300 400 500 600 700 800

10

20

30

40

50

60

70
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

−3

10
−2

10
−1

threshold λ

P
FA

Curves "PFA−threshold" − CFAR property

NSCME
FPE
M hat
M known

Azimut/range bins map Relationship "Pfa-threshold"

The set of parameters is m = 8 pulses and N = 24 secondary data .

THEORY AND REALITY PERFECTLY CORRESPOND.



Conclusions

• Theoretical analysis of an improved estimator, the FPE :

– Gaussian asymptotic distribution

– unbiasedness

– covariance matrix

• Same asymptotic distribution as Wishart matrix with m
m+1 N degrees of freedom.

• Very good agreements with real data.


