Theoretical Analysis of an Improved Covariance Matrix Estimator in Non-Gaussian Noise

F. Pascal¹²³, P. Forster², J-P. Ovarlez¹, P. Larzabal³

- ¹ ONERA, Chemin de la Hunière, F-91761 Palaiseau Cedex, France
 - ² GEA, 1 Chemin Desvallières, F-92410 Ville d'Avray, France
- ³ ENS Cachan, 61 Avenue du Président Wilson, F-94235 Cachan Cedex, France

ICASSP - March 21, 2005

- **1 Basic results of Detection Theory Noise Characterization**
- 2 Detection Test and Covariance Matrix Estimation
- **3 Theoretical Analysis of the Fixed Point Estimator**
- 4 Application : Adaptive Detection Performance of the GLRT-LQ
- **5** Conclusions

Basic results of Detection Theory

In a *m*-dimensional observed vector y, the basic problem of detecting a complex signal
 s = α p (where p is a steering vector), embedded in an additive noise c, can be stated as the following binary hypothesis test:

Hypothesis
$$H_0$$
: $\mathbf{y} = \mathbf{c}$ $\mathbf{y}_i = \mathbf{c}_i$ $i = 1, ..., N$
Hypothesis H_1 : $\mathbf{y} = \mathbf{s} + \mathbf{c}$ $\mathbf{y}_i = \mathbf{c}_i$ $i = 1, ..., N$

where the c_i 's are N signal-free independent measurements (called secondary data) used to estimate, for example, the clutter covariance matrix.

- Detection: Neyman-Pearson criterion: Maximize the probability of detection P_d for a given probability of false alarm P_{fa}
 - Probability of detection P_d : Maximise the probability to decide H_1 when the signal is present.
 - Probability of false alarm P_{fa} : Probability to decide H_1 when the signal is missing.

 \Downarrow

When the noise PDF (probability density function) is known *a priori*, Maximum Likelihood Theory is used to decide the hypothesis.

Basic results of Detection Theory

Detection test: Comparison of the Likelihood Ratio $\Lambda(\mathbf{y})$ with a given threshold η :

$$\Lambda(\mathbf{y}) = rac{p_{\mathbf{y}}(\mathbf{y}/H_1)}{p_{\mathbf{y}}(\mathbf{y}/H_0)} \stackrel{H_0}{\underset{H_1}{>}} \eta \,,$$

to ensure $P_{fa} = \mathbb{P}(\Lambda(\mathbf{y}) > \eta/H_0)$.

Performance Analysis of the detection test for a given P_{fa} and when the target is present for different SNRs (Signal to Noise Ratio):

$$P_d = \mathbb{P}(\Lambda(\mathbf{y}) > \eta/H_1).$$

When some parameters θ (as range, velocity, clutter parameter, ...) have to be estimated, the associated detection test (GLRT) is said to be θ -CFAR if its statistics does not depend on θ

Basic results of Detection Theory

Failure of the basic detector with non-Gaussian background

• In Gaussian case, Optimal Gaussian Detector OGD is a quadratic detector:

- The detection threshold $\lambda_g = \sqrt{-\ln P_{fa}}$ calculated for Gaussian assumption ensures a fixed probability of false alarm.
- Threshold adjustment is optimal for Gaussian noise but generates false alarms when the noise is non-Gaussian with same power. Increasing the detection threshold $(\lambda_g \rightarrow \lambda_{opt})$ for the noise allows to adjust the wanted probability of false alarm but corrupts the detection.
 - $\Rightarrow \textbf{OGD detection performance significantly decreases when noise hypothesis are not valid} \\ \Rightarrow \textbf{Knowing the noise characterization is required.}$

Noise Characterization

\diamond CHARACTERIZATION WITH SPHERICALLY INVARIANT RANDOM PROCESSES (SIRP)

- Compound processes representation: $\mathbf{c} = \mathbf{x} \sqrt{\tau}$
 - x is a spherically complex Gaussian vector (*speckle*) with the covariance matrix 2M which can modelize, for example, the temporal fluctuations of the clutter,
 - τ is a positive random variable, independent from x, with statistic law $p(\tau)$ called the *texture* which can modelize the spatial fluctuations of the clutter power.
- Probability Density Function under H_0 : $p_{\mathbf{c}}(\mathbf{c}/H_0) = \int_0^{+\infty} \frac{1}{(2\pi\tau)^m |\mathbf{M}|} \exp\left(-\frac{\mathbf{c}^{\dagger} \mathbf{M}^{-1} \mathbf{c}}{2\tau}\right) p(\tau) d\tau$.

\diamond **Advantages:**

- Modelize a random walk,
- The family of the SIRP includes an infinity of laws: Gauss, Rayleigh, Chi², Laplace, Cauchy, Weibull, K-distribution, Alpha-Stable, ...
- The SIRP statistics are invariant by linear filtering (Matched Filter, Doppler Filtering),
- The SIRP kernel is Gaussian: the target parameters estimates with the Maximum Likelihood are given by the maximization of the traditional matched filter.

Detection Test

When M is known and τ is a random variable, the resulting detection test is the GLRT-LQ [Conte, Gini, Jay]:

$$\Lambda(\mathbf{M}) = rac{|\mathbf{p}^{\dagger}\mathbf{M}^{-1}\mathbf{y}|^2}{(\mathbf{p}^{\dagger}\mathbf{M}^{-1}\mathbf{p})(\mathbf{y}^{\dagger}\mathbf{M}^{-1}\mathbf{y})} \stackrel{H_0}{\underset{H_1}{\overset{\leq}{>}} \lambda$$

- The Likelihood Ratio $\Lambda(\mathbf{M})$ statistic is independent of the texture statistic $p(\tau)$ under hypothesis H_0 ,
- Thus the relationship between P_{fa} and the detection threshold is independent of the texture statistic p(τ) under hypothesis H₀ and is expressed as:

$$\lambda = P_{fa}^{\frac{m}{1-m}} \tag{1}$$

Texture-CFAR property for the GLRT-LQ

LIMITATION: SIRP COVARIANCE MATRIX M IS GENERALLY UNKNOWN.

Covariance Matrix Estimation

Problem: In practice, SIRP covariance matrix M is unknown. When \widehat{M} estimates M with N (finite) measurements, the relationship $\lambda = P_{fa}^{\frac{m}{1-m}}$ is not valid any more because \widehat{M} is a random matrix.

$$\Downarrow$$
New Likelihood Ratio: $\hat{\Lambda}(\widehat{\mathbf{M}}) = \frac{|\mathbf{p}^{\dagger}\widehat{\mathbf{M}}^{-1}\mathbf{y}|^2}{(\mathbf{p}^{\dagger}\widehat{\mathbf{M}}^{-1}\mathbf{p})(\mathbf{y}^{\dagger}\widehat{\mathbf{M}}^{-1}\mathbf{y})}$

<u>Consequence</u>: As the distribution and the properties of $\hat{\Lambda}(\widehat{\mathbf{M}})$ depend on the nature of $\widehat{\mathbf{M}}$, the 3 following estimators will be analyzed:

• $\widehat{\mathbf{M}}_{\mathcal{W}} = \sum_{i=1}^{N} \mathbf{x}_i \, \mathbf{x}_i^{\dagger}$: the Sample Covariance Matrix which is Wishart distributed and is only used in a theoretical work or for Gaussian process,

• $\widehat{\mathbf{M}}_{NSCM} = \frac{m}{N} \sum_{i=1}^{N} \frac{\mathbf{c}_i \, \mathbf{c}_i^{\dagger}}{\mathbf{c}_i^{\dagger} \, \mathbf{c}_i} = \frac{m}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_i \, \mathbf{x}_i^{\dagger}}{\mathbf{x}_i^{\dagger} \, \mathbf{x}_i}$: the Normalized Sample Covariance Matrix [Conte 1994], classically used in the radar literature,

•
$$\widehat{\mathbf{M}}_{fp}$$
, solution of $\widehat{\mathbf{M}} = \frac{m}{N} \sum_{i=1}^{N} \left(\frac{\mathbf{c}_i \mathbf{c}_i^{\dagger}}{\mathbf{c}_i^{\dagger} \widehat{\mathbf{M}}^{-1} \mathbf{c}_i} \right)$, equation resulting from the Maximum Likelihood.

Wishart: Theoretical Results

Following results have been derived from works of Kraut and Scharf.

• $\hat{\Lambda}(\widehat{\mathbf{M}}_{\mathcal{W}})$ distribution:

$$g_{N,m}(x) = \frac{(N-m+1)(m-1)}{(N-1)} \frac{{}_{2}F_{1}(a,a;b;x)}{(1-x)^{N-m}} \Pi_{[0,1]}(x)$$

where a = N - m + 2, b = N + 2 and $_2F_1$ is the hypergeometric function.

• **Relationship** *P*_{*fa*}- **threshold**:

$$P_{fa} = \eta^{-\frac{a-1}{m}} {}_{2}F_{1}\left(a, a-1; b-1; 1-\eta^{-\frac{1}{m}}\right)$$

$$= (1-\lambda)^{a-1} {}_{2}F_{1}(a, a-1; b-1; \lambda)$$
(2)

with $\lambda = 1 - \eta^{-\frac{1}{m}}$

Wishart: Monte-Carlo Simulations

- Figure 1: The Monte Carlo simulations confirm the theoretical result given by (2).
- Figure 2: Convergence of (2) to (1) when N tends to infinity (The estimate covariance matrix tends to the true one).

Theoretical Analysis of the Fixed Point Estimator $\widehat{\mathbf{M}}_{fp}$

When the τ_i 's are assumed to be deterministic in the $N c_i$'s used to estimate the covariance matrix M, the Maximum Likelihood Estimator (called the FPE) is given as THE solution of the following equation :

 $\widehat{\mathbf{M}} = f(\widehat{\mathbf{M}})$

where the function
$$f$$
 is defined as follows: $f(\widehat{\mathbf{M}}) = \frac{m}{N} \sum_{i=1}^{N} \left(\frac{\mathbf{c}_i \mathbf{c}_i^{\dagger}}{\mathbf{c}_i^{\dagger} \widehat{\mathbf{M}}^{-1} \mathbf{c}_i} \right)$.

The study of function f allows to establish the following results :

- **1.** the function f admits a single fixed point, called $\widehat{\mathbf{M}}_{fp}$;
- 2. The fixed point can be easily obtained with recursive algorithm;
- **3.** $\widehat{\mathbf{M}}_{fp}$ is unbiased;

4. New Likelihood Ratio:
$$\hat{\Lambda}(\widehat{\mathbf{M}}_{fp}) = \frac{|\mathbf{p}^{\dagger} \, \widehat{\mathbf{M}}_{fp}^{-1} \, \mathbf{y}|^2}{(\mathbf{p}^{\dagger} \, \widehat{\mathbf{M}}_{fp} \, \mathbf{p})(\mathbf{y}^{\dagger} \, \widehat{\mathbf{M}}_{fp}^{-1} \, \mathbf{y})}$$

5. The distribution of $\hat{\Lambda}(\widehat{\mathbf{M}}_{fp})$ has a closed-form expression which allows to find the value of the threshold λ for a given P_{fa} .

Comparison of the 3 estimators

	Â	FPE: $\widehat{\mathbf{M}}_{fp}$	$\widehat{\mathbf{M}}_{NSCM}$	Wishart: $\widehat{\mathbf{M}}_{\mathcal{W}}$
Asymptotical	$\mathbb{E}\left(\operatorname{vec}(\widehat{\mathbf{M}}) \ \operatorname{vec}(\widehat{\mathbf{M}})^{\top} ight)$	$\frac{m+1}{m}$ \mathbf{C}_{as}	$\frac{m}{m+1}$ \mathbf{C}_{as}	\mathbf{C}_{as}
Properties	$\mathbb{E}\left(\operatorname{vec}(\widehat{\mathbf{M}}) \operatorname{vec}(\widehat{\mathbf{M}})^* ight)$	$\frac{m+1}{m}$ \mathbf{B}_{as}	$\frac{m}{m+1}$ \mathbf{B}_{as}	\mathbf{B}_{as}
	Bias of $\widehat{\mathbf{M}}$	Unbiased	Biased	Unbiased

- $\mathbf{C}_{as} = \mathbf{P} \frac{1}{m} \left(\operatorname{vec}(\mathbf{I}_m) \right) \left(\operatorname{vec}(\mathbf{I}_m) \right)^{\top}$ and **P** is a given permutation matrix.
- $\mathbf{B}_{as} = \mathbf{I}_{m^2} \frac{1}{m} \left(\operatorname{vec}(\mathbf{I}_m) \right) \left(\operatorname{vec}(\mathbf{I}_m) \right)^\top$.

The covariance matrix C of the asymptotic Gaussian law is perfectly defined by the two quantities : $\mathbb{E}\left(\operatorname{vec}(\widehat{M})\operatorname{vec}(\widehat{M})^{\top}\right)$ and $\mathbb{E}\left(\operatorname{vec}(\widehat{M})\operatorname{vec}(\widehat{M})^{*}\right)$.

Comparison of the 3 estimators

- ◊ Table interpretation : Asymptotical properties
 - Estimators covariance matrix :

Â	FPE: $\widehat{\mathbf{M}}_{fp}$	$\widehat{\mathbf{M}}_{NSCM}$	Wishart: $\widehat{\mathbf{M}}_{\mathcal{W}}$
$\mathbb{E}\left(\operatorname{vec}(\widehat{\mathbf{M}}) \operatorname{vec}(\widehat{\mathbf{M}})^{\top} ight)$	$\frac{m+1}{m}$ C _{as}	$\frac{m}{m+1}$ \mathbf{C}_{as}	\mathbf{C}_{as}
$\mathbb{E}\left(\operatorname{vec}(\widehat{\mathbf{M}}) \operatorname{vec}(\widehat{\mathbf{M}})^* ight)$	$\frac{m+1}{m}$ B _{as}	$\frac{m}{m+1}$ \mathbf{B}_{as}	\mathbf{B}_{as}

- $\widehat{\mathbf{M}}_{\mathcal{W}}, \widehat{\mathbf{M}}_{fp}$ et $\widehat{\mathbf{M}}_{NSCM}$ have the same covariance matrix up to a scaling factor. <u>Signification:</u> the relationship " P_{fa} -threshold" (2) established with $\widehat{\mathbf{M}}_{\mathcal{W}}$ and for N secondary data, is still valid with $\widehat{\mathbf{M}}_{fp}$ when the number of secondary data is $\frac{m}{m+1} N$.
- Estimators bias :

Â	FPE : $\widehat{\mathbf{M}}_{fp}$	$\widehat{\mathbf{M}}_{NSCM}$	Wishart: $\widehat{M}_{\mathcal{W}}$
Bias of $\widehat{\mathbf{M}}$	Unbiased	Biased	Unbiased

Comparison of the 3 estimators

• Independence of $\hat{\Lambda}(\widehat{\mathbf{M}})$ with the texture :

	Ŵ	Point Fixe: $\widehat{\mathbf{M}}_{fp}$	$\widehat{\mathbf{M}}_{NSCM}$	Wishart: $\widehat{\mathbf{M}}_{\mathcal{W}}$
	CFAR-texture of $\hat{\Lambda}(\widehat{\mathbf{M}})$	Yes	Yes	No
$\hat{\Lambda}(\widehat{\mathbf{M}}_{fp})$ and $\overline{\hat{\Lambda}(\widehat{\mathbf{M}}_{NSCME})}$ are both independent of the texture.				

• Independence of $\hat{\Lambda}(\widehat{\mathbf{M}})$ with the covariance matrix M :

Ŵ	Point Fixe: $\widehat{\mathbf{M}}_{fp}$	$\widehat{\mathbf{M}}_{NSCM}$	Wishart: $\widehat{\mathbf{M}}_{\mathcal{W}}$
CFAR-matrix of $\hat{\Lambda}(\widehat{\mathbf{M}})$	Yes	No	Yes

 $\hat{\Lambda}(\widehat{\mathbf{M}}_{fp})$ is independent of M in opposite with $\hat{\Lambda}(\widehat{\mathbf{M}}_{NSCM})$.

Application : Adaptive Detection Performances of the GLRT-LQ on radar data

The set of parameters is m = 8 pulses and N = 24 secondary data.

THEORY AND REALITY PERFECTLY CORRESPOND.

Conclusions

- Theoretical analysis of an improved estimator, the FPE :
 - Gaussian asymptotic distribution
 - unbiasedness
 - covariance matrix
- Same asymptotic distribution as Wishart matrix with $\frac{m}{m+1}$ N degrees of freedom.
- Very good agreements with real data.