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Basic results of Detection Theory

e |n am-dimensional observed vector vy, the basic problem of detecting a complex signal

s= ap (wherepisasteering vector), embedded in an additive noise c, can be stated as the following
binary hypothesistest:

HypothesisHy: y==c y,=¢ i=1,....N
HypothesisH,: y=s+c y,=¢ i=1,...,N

wherethec;’sare IV signal-freeindependent measurements (called secondary data) used to
estimate, for example, the clutter covariance matrix.

e Detection: Neyman-Pear son criterion: Maximizethe probability of detection P, for a given
probability of falsealarm Py,

— Probability of detection P,;: Maximisethe probability to decide H, when the signal is present.
— Probability of false alarm P¢,: Probability to decide /1; when the signal ismissing.
U

When the noise PDF (probability density function) isknown a priori, Maximum Likelihood Theory is
used to decidethe hypothesis.



Basic results of Detection Theory

Detection test: Comparison of the Likelihood Ratio A(y) with a given threshold 7:

Hy

~ py(y/Hy) S

M= byt "

toensure Py, = P(A(y) > n/Hy).

Performance Analysis of the detection test for a given P, and when thetarget is present for different
SNRs (Signal to Noise Ratio):
Py =P(A(y) > n/H1).

When some parametersd (asrange, velocity, clutter parameter, ...) haveto be estimated, the associated
detection test (GLRT) issaid to be #-CFAR if its statistics does not depend on 6



Basic results of Detection Theory
Failure of the basic detector with non-Gaussian background

e |n Gaussian case, Optimal Gaussian Detector OGD is a quadratic detector:

aa—1y12
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e Thedetection threshold ),
probability of falsealarm.

Log of Gaussian Detector OGD Likelihood Ratio
T T T T

Thermic Noise Likelihood . .
—— OGD theoretical threshold ImPUIswe Noise
Br ) - Monte Carlo threshold J

Log of Gaussian Detector OGD Likelihood Ratio
T T T T

N
o

——— Likelihood
—— OGD theoretical threshold
- - Monte Carlo threshold

n
o
T

n
o
T

Likelihood
o
>
Likelihood
>

T A g A LU s Ll il
500 1000 1500 2000 2500 500 1000 1500 2000 2500
Range bins Range bins

= /— In P, calculated for Gaussian assumption ensures a fixed

e Threshold adjustment isoptimal for Gaussian noise but gener atesfalse alarmswhen thenoiseis
non-Gaussian with same power . Increasing the detection threshold (A, — A,,¢) for the noise allows
to adjust the wanted probability of false alarm but corruptsthe detection .

= OGD detection performance significantly decreases when noise hypothesisare not valid
= Knowing the noise characterization isrequired.



Noise Characterization

o CHARACTERIZATION WITH SPHERICALLY INVARIANT RANDOM PROCESSES (S| RP)

e Compound processesrepresentation: ¢ = x /7
— X isa spherically complex Gaussian vector (speckle) with the covariance matrix 2M which can
modelize, for example, the temporal fluctuations of the clutter ,

— 7 isapostiverandom variable, independent from x, with statistic law p(7) called the texture
which can modelize the spatial fluctuations of the clutter power .
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e Probability Density Function under Hy: pc(c/Hy) = / ( ) p(T)dr.
0

o ADVANTAGES:
e Modelize arandom walk

e Thefamily of the SIRP includes an infinity of laws: Gauss, Rayleigh, Chi?2, Laplace, Cauchy,
Weibull, K-distribution, Alpha-Stable, ...

e The SIRP statisticsareinvariant by linear filtering (Matched Filter, Doppler Filtering),

e The SIRP kernel isGaussian: thetarget parameter s estimates with the Maximum Likelihood are
given by the maximization of the traditional matched filter.



Detection Test

When M isknown and 7 isarandom variable, theresulting detection test isthe GLRT-LQ [Conte, Gini,

Jay] : .
pfM~ly|? <

AM) = — —— > A.
(PTM ™ p)(YTM y) H:
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CFAR property of Asymptotic BORD for different SIRVs

e Thelikelihood Ratio A(M) statistic isindependent of
the texture statistic p(7) under hypothesis H,
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o Theoretic
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e Thusthe relationship between P;, and the detection
threshold is independent of the texture statistic p(7)
under hypothesis Hy and is expressed as.
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Texture-CFAR property for the GLRT-LQ

LIMITATION: SIRP COVARIANCE MATRIX M IS GENERALLY
UNKNOWN.



Covariance M atrix Estimation

Problem: In practice, SIRP covariance matrix M isunknown. When M estimatesM with N (finite)
measurements, therelationship A = Pflc;—m iIsnot valid any more because M isarandom matrix.

4

New Likelihood Ratio: A(M) =

Consequence: Asthedistribution and the properties of A( ) depend on the nature of M, the 3 following
estimatorswill be analyzed.:

o My = sz : the Sample Covariance M atrix which is Wishart distributed and isonly used in a
theoretlcal work or for Gaussian process,

N + N
m m Cz' C’i m X
o = — [ —
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classically used in theradar Ilterature

N )
~ ~ m C;C;
e My, ,solutionof M = ~ E <T—> equation resulting from the Maximum L ikelihood.



Wishart: Theoretical Results

Following results have been derived from works of Kraut and Scharf.

o A(Myy) distribution:

(N—m+1)(m—1) 2Fi(a,a;b;x)
(N —1) (1 —z)N-m 1,1y ()

gNm(T) =

wherea =N —m + 2,b= N + 2 and 5 F} isthe hypergeometric function.

e Relationship P¢,- threshold:

a—1

Pro = n~ ™ oF (a,a—l;b—l;l—ﬁ_%> (2)
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Wishart: Monte-Carlo Simulations

,  Comparison between theoretic curves and Monte-Carlo simulations Convergence to P, - (1-m/m)
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Validation of therelation (2) Convergenceof (2) to (1)

e Figurel: The Monte Carlo simulations confirm the theoretical result given by (2) .

e Figure2: Convergenceof (2) to (1) when N tendsto infinity (The estimate covariance matrix tends
tothetrueone).



Theoretical Analysis of the Fixed Point Estimator I\A/pr

When the 7;’sare assumed to be deterministicin the NV ¢;’sused to estimate the covariance matrix M,
the Maximum Likelihood Estimator (called the FPE) is given as THE solution of the following equation :

AN

M = f(M)

~ 1

cM ¢

1

o o omL [ cd
wherethefunction f isdefined asfollows: f(M) = N :
=1

The study of function f allowsto establish the following results:

1. thefunction f admitsa singlefixed point, called pr;
2. Thefixed point can be easily obtained with recursive algorithm;
3. pr Is unbiased;
~ —1
pTM, yI?
~ ~ —1
(PTM £ P) (YT My, y)

5. Thedistribution of ]\(I\A/I #p) hasa closed-form expression which allowsto find the value of the
threshold A for a given Py,.

4. New Likelihood Ratio: A(M ;) =



Comparison of the 3 estimators

M FPE: I\A/pr Myscn | Wishart: My,
Asymptotical ]E(vec(I\A/I)vec(l\A/I)T) il Cus | 725 Coas Cus
Properties ]E(vec(h7|)vec(ﬁ)*> mtl B, e Bas B,s
Bias of M Unbiased | Biased Unbiased

1 T
o Cps =P~ — (VeC(lm)> (VeC(lm)) and P isa given permutation matrix.

® Bos = |2 — % (vec(lm)> (vec(lm))T.

The covariance matrix C of the asymptotic Gaussian law is perfectly defined by the two quantities:
E (vec(I\A/I) vec(I\A/I)T) and E (vec(I\A/I) vec(l\7|)*> .



Comparison of the 3 estimators
o Tableinterpretation: Asymptotical properties

e Estimatorscovariance matrix:

M FPE: I\A/pr Myscn | Wishart: My
E(vec(l\A/I)vec(I\A/I)T> ML Cus | 725 Cas Coas
E (vec(M) vec(M)7) || ™1 Byo | 525 Ba, Bas

— l\7|W : pr et I\7INSCM have the same covariance matrix up to a scaling factor.
Signification: therelationship " Py, -thresnold" (2) established with I\7IW and for IV secondary

data, isstill valid with I\A/pr when the number of secondary datais %5 N.

e Estimatorshbias:

AN

M FPE: My, | Myson | Wishart: Myy
Biasof M || Unbiased | Biased Unbiased




Comparison of the 3 estimators

e Independenceof A(M) with thetexture:

A AN

M Point Fixe: I\A/pr I\7INSCM Wishart: I\7IW
CFAR-textureof A(M) Yes Yes No
A(M¢,) and f\(l\ﬁ Nscm e ) areboth independent of thetexture.
e Independence of A(M) with the covariance matrix M :
M Point Fixe: I\A/pr Mysca | Wishart: My
CFAR-matrix of A(M) Yes No Yes

/A\(I\A/I #p) isindependent of M in opposite with f\(l\7| NSCM)-




Application : Adaptive Detection Performances of the GLRT-LQ on
radar data

Clutter map Curves "PFA-threshold" — CFAR property
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The set of parametersism = 8 pulsesand N = 24 secondary data.

THEORY AND REALITY PERFECTLY CORRESPOND.



Conclusions

e Theoretical analysisof an improved estimator, the FPE :
— Gaussian asymptotic distribution
— unbiasedness

— covariance matrix
e Sameasymptotic distribution as Wishart matrix with == N degrees of freedom.

e Very good agreementswith real data.



