
Robust Detection and Estimation of Change-Points
in a Time Series of Multivariate Images

Ammar Mian∗‡, Jean-Phillipe Ovarlez∗†, Guillaume Ginolhac‡ and Abdourahmane Atto‡
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Abstract—In this paper, we study the problem of detecting
and estimating change-points in a time series of multivariate
images. We extend existent works to take into account the
heterogeneity of the dataset on a spatial neighborhood. The
classic complex Gaussian assumption of the data is replaced by a
complex elliptically symmetric assumption. Then robust statistics
are derived using Generalized Likelihood Ratio Test (GLRT).
These statistics are coupled to an estimation strategy for one
or several changes. Performance of these robust statistics have
been analyzed in simulation and compared to the one associated
with standard multivariate normal assumption. When the data is
heterogeneous, the detection and estimation strategy yields better
results with the new statistics.

Index Terms—Image Time Series; Robust Change Detection;
Multivariate Images; Complex Elliptically Symmetric;

I. INTRODUCTION

Recent years have seen the increase of remotely sensed
imaging systems and the number of satellite images available
have grown significantly. Missions such as Sentinel-1 or
TerraSAR-X deliver daily Synthetic Aperture Radar (SAR)
images on a global scale. In this context, Change Detection
(CD) in Image Time Series (ITS) is a growing problematic.
The information about change is useful for many applications
such as environment monitoring or sea traffic surveillance.

New systems can provide multivariate images encompassing
a certain kind of diversity. For example, polarimetric radar
sensors record the backscattering of the scene for different
modes of polarization. For high-resolution (HR) Synthetic
Aperture Radar (SAR) images, a diversity can be found in
the spectral behaviour of the scatterers which may lead to
vectors of great size [1]. In hyperspectral images, the size of
vectors is also large since the scene is imaged in numerous
wavelengths. This large dimension of the vectors leads, in
usual CD tests, to the use of a greater spatial neighborhood. In
this case, the homogeneity assumption is no longer respected
on the spatial neighborhood of interest. The present paper
considers the problem of change-point detection in ITS of such
multivariate images.

CD literature is wide and many techniques have been
investigated in the past years [2]. When considering pixel-
based statistical techniques, classic schemes use a probability
model from which a statistic of decision is derived. Works
such as [3]–[5] have modeled the multivariate pixels as random
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Gaussian vectors and derived statistics of decision for bi-date
CD as a test of covariance matrix equality. Recently, [6], [7]
have considered and explored the problem of testing ITS. [8]
proposed a method to estimate the point of change in such
series using a Gaussian model.

However, as suggested previously, the assumption of ho-
mogeneity is no longer valid for HR SAR and hyperspectral
images. It has been shown that the Gaussian assumption re-
flects poorly the distribution observed [9], [10]. The Complex
Elliptically Symmetric (denoted CE) family of distributions
has been proposed to model the dataset and solid results have
been obtained in many applications. CD under non-Gaussian
context has been explored in [11] where a similarity measure
has been proposed under a bi-date framework. Recently, a
Generalized Likelihood Ratio Test (GLRT) for similar distri-
butions has been proposed by the present authors for bi-date
CD in [12].

In this paper, we consider the problem of change-point
detection in an ITS under CE distributions assumption. We
propose to adapt the methodology of [8] to this non-Gaussian
context and derive the necessary statistics under the new
formulation of the problem. The Complex Angular Elliptical
(denoted CAE) family will be used for mathematical deriva-
tions. We first remind the methodology of detection /estimation
and the statistics under Gaussian model. Then we derive the
new robust statistics by means of GLRT. Finally, we test the
algorithm of detection and estimation with the new statistics
in simulation and conclude.

II. THE DETECTION AND ESTIMATION ALGORITHM

A. Definitions and Problem
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Fig. 1. Illustration of spatial neighborhood (N = 9). The gray zone
corresponds to the local observations at each date.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1097



Assume we have T multivariate images of the same scene
at different dates. We define T = {1 . . . T}, p the size of the
vectors and N the number of observations on the local spatial
neighborhood (pixels) {x(t)

k , k = 1 . . . N} at a given date t.
On this local neighborhood, we model the pixels as the

realization of a random variable x with a probability density
function (PDF) px(x; θ), where θ is a parameter of the PDF.

Under classic schemes, the Gaussian assumption has been
privileged to model the data px(x; θ) = pCNx (x; Σ) where Σ
is the covariance matrix of the data and sole parameter of the
distribution since the mean is assumed to be null.

The problem considered presently is the following:
Consider a Time Series of random vectors x(t) ∼ px(x; θ(t));
given N independent observations {x(t)

k }k=1...N , find all tC ∈
T\{1} so that θ(tC−1) 6= θ(tC). The number of total changes
is unknown.

For simplification, the notation θ(t)
∆
= θt will be used

henceforth.

B. Detection problem: Binary Hypothesis testing

The first step consist in detecting the presence of a change in
the time series. If the series is stationary, we assume that there
is no change-point to be estimated. The so-called omnibus
test scheme is intended to chose between the two following
hypotheses:

Let (t1, t2) ∈ T2, so that t2 > t1,{
Ht1,t2

0,omni : θt1 = . . . = θt2 = θt1,t2
Ht1,t2

1,omni : ∃(t, t′) ∈ {t1, . . . , t2}2, θt 6= θt′

(1)

An appropriate statistic of the observations must be used to
choose between the two hypotheses. Under Gaussian assump-
tion (θt = Σt), several statistics have been derived for this
problem [13]–[15]. A comparative study can be found in [7].
We remind here the statistic obtained by using the GLRT of
the problem:

Λ̂t1,t2CN ,omni =

∣∣∣∣∣
t2∑
t=t1

Σ̂t

∣∣∣∣∣
(t2−t1)N

t2∏
t=t1

∣∣∣Σ̂t

∣∣∣N
H1

≷
H0

λ, (2)

where ∀t, Σ̂t = 1/N

(∑N
k=1 x

(t)
k x

(t)
k

H
)

are the Sample

Covariance Matrices (SCM) for each date, |•| is the determi-
nant operator and λ is a threshold of detection.

C. Estimation Strategy

The scheme 1 allows to determine if there is one or more
change. In case of a positive test, the location of the changes
in the time series is to be estimated. To this end, successive
bi-date detections scheme can be implemented:

∀t ∈ T \ {1},
{

Ht
0,bi−date : θt−1 = θt = θt−1,t

Ht
1,bi−date : θt−1 6= θt

(3)

However, this scheme exploits at most the data of two
successive dates which is sub-optimal. An alternative scheme
proposed in [8] is to consider successively the following
marginal hypotheses:

Consider (t1, t2) ∈ T2, so that t2 > t1,{
Ht1,t2

0,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 = θt2
Ht1,t2

1,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 6= θt2
(4)

In this scheme, the data which is not considered as a change
is used, which leads to a better estimation of the parameters.
The GLRT for these hypotheses under CN assumption has
been derived as well:

Λ̂t1,t2CN ,marg =

∣∣∣∣∣
t2∑
t=t1

Σ̂t

∣∣∣∣∣
(t2−t1)N

∣∣∣∣∣Σ̂t2

∣∣∣∣∣
N ∣∣∣∣∣

t2−1∑
t=t1

Σ̂t

∣∣∣∣∣
(t2−t1−1)N

H1

≷
H0

λ. (5)

D. The algorithm
Both detection and estimation can be done jointly using

problems (1) and (4). [8] has proposed the following algo-
rithm:

Algorithm 1 Change-Point Detection and Estimation
1: Initialize t1 ← 1
2: while Ht1,T

1,omni do . Omnibus test
3: Initialize r ← 1
4: while Ht1,t1+r

0,marg do . Successive marginal tests
5: Update r ← r + 1
6: end while
7: Store t1 + r − 1 as a change point
8: Update t1 ← t1 + r
9: end while

The presented algorithm allows to detect several change
points by first detecting a global change in the series and
then refining the detection by iterating on the number of
dates processed. One key-point in the algorithm is that the
statistics (2) and (5) have the Constant False Alarm (CFAR)
property which means that their distribution is independent of
the covariance matrix of the input data. Hence, the strength of
this method lies in the possibility to select detection thresholds
as a function of the probability of false alarm (PFA) and the
fact that the number of changes is not required to be known
a priori.

When considering heterogeneous images, the Gaussian as-
sumption is not realistic [10]. In this context, (2) and (5) are
not optimal for detection. We propose in the next section to
derive new statistics which are designed under CE model.

III. EXTENSION TO NON-GAUSSIAN CASE

A. CE and CAE distributions
A thorough description of CE family can be found in [16].

We remind the PDF for any vector x ∈ Cp:

pCEx (x; Σ, g) = Cp,g|Σ|−1
g
(
xHΣ−1x

)
, (6)
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where Σ ∈ SpH is a positive definite Hermitian matrix called
the scatter matrix, and g : R+ → R+ is a function called
density generator that satisfies regularity conditions. Cp,g is a
normalization constraint ensuring that

∫
Cp p

CE
x (x)dx = 1.

Under this assumption, we consider the problems (1),
(3) and (4) with θt = {gt,Σt}. However, the derivation is
impossible when the density generators gt are unknown.

To address this problem, we consider the self-normalized
observations. Let x ∼ CE(0p, g,Σ) and define z = x/‖x‖2.
The self-normalized vector z has a Complex Angular Elliptical
distribution which is denoted as CAE(0p,Σ

′) [16], [17]. Since
the normalized observations are systematically on the unit
sphere of dimension p denoted CSp, they do not depend on
the density generators and their PDF are fully known:

pCAEz (z; Σ′) = Sp
−1|Σ′|−1

(
zHΣ′

−1
z
)−p

, (7)

where Sp = 2πp/Γ(p) and Γ is the gamma function. As
for the Gaussian case, the only parameter to consider is the
scatter matrix. The derivation of statistics for problems (1) and
(4) are done using θt = {Σ′t} and the PDF (7).

B. Omnibus Detection Test

Let us define, ∀k, ∀t, z
(t)
k = x

(t)
k /‖x(t)

k ‖2. To solve problem
(1), we consider the following GLRT:

Λ̂t1,t2CAE,omni =

max
{Σt1

,...,Σt2
}

t2∏
t=t1

N∏
k=1

pCAE
z
(t)
k

(z
(t)
k ; Σt)

max
{Σt1,t2

}

t2∏
t=t1

N∏
k=1

pCAE
z
(t)
k

(z
(t)
k ; Σt1,t2)

(8)

We treat both optimizations separately:
• First, let us consider the numerator. We have to maximize:

L =

t2∏
t=t1

N∏
k=1

pCAE
z
(t)
k

(z
(t)
k ; Σt)

∝
t2∏
t=t1

(
|Σt|−N

N∏
k=1

(
z

(t)
k

H
[Σt]

−1
z

(t)
k

)−p)
.

The optimization is performed by solving separately for
each {Σt}t∈{t1,...,t2}. The obtained solution is the well-
known Tyler’s estimator:

∀t, Σ̂TE
t =

p

N

N∑
k=1

z
(t)
k z

(t)
k

H

z
(t)
k

H
[Σ̂TE

t ]
−1

z
(t)
k

. (9)

• Now, let us consider the denominator. We have to maxi-
mize:

L =

t2∏
t=t1

N∏
k=1

pCAE
z
(t)
k

(z
(t)
k ; Σt1,t2)

∝
t2∏
t=t1

(
|Σt1,t2 |

−N
N∏
k=1

(
z

(t)
k

H
[Σt1,t2 ]

−1
z

(t)
k

)−p)
.

Optimizing L towards Σt1,t2 leads to:

Σ̂TE
t1,t2 =

p

(t2 − t1)N

N∑
k=1

t2∑
t=t1

z
(t)
k z

(t)
k

H

z
(t)
k

H
[Σ̂TE

t1,t2 ]
−1

z
(t)
k

. (10)

By replacing the estimates (9) and (10) in eq. (8) and we
obtain the final statistic:

Λ̂t1,t2CAE,omni =
|Σ̂TE

t1,t2
|(t2−t1)N

t2∏
t=t1

∣∣∣Σ̂TE
t

∣∣∣N
t2∏
t=t1

N∏
k=1

(
z

(t)
k

H
[Σ̂TE

t1,t2 ]
−1

z
(t)
k

)p
(

z
(t)
k

H
[Σ̂TE

t ]
−1

z
(t)
k

)p .
(11)

C. Marginal Detection Test

The GLRT statistic for the problem (4) is given by:

Λ̂t1,t2CAE,marg =

max
{Σt1,t2−1,Σt2

}

N∏
k=1

(
t2−1∏
t=t1

pCAE
z
(t)
k

(z
(t)
k ; Σt1,t2−1)

)
pCAE
z
(t2)

k

(z
(t2)
k ; Σt2)

max
{Σt1,t2

}

N∏
k=1

t2∏
t=t1

pCAE
z
(t)
k

(z
(t)
k ; Σt1,t2)

(12)
The derivation is similar to those of the omnibus test and

yields:

Λ̂t1,t2CAE,marg =

∣∣∣Σ̂TE
t1,t2

∣∣∣(t2−t1)N

∣∣∣Σ̂TE
t2

∣∣∣N ∣∣∣Σ̂TE
t1,t2−1

∣∣∣(t2−t1−1)N
×

N∏
k=1

t2∏
t=t1

(
z

(t)
k

H
[Σ̂TE

t1,t2 ]
−1

z
(t)
k

)p
(
t2−1∏
t=t1

(
z

(t)
k

H
[Σ̂TE

t1,t2−1]
−1

z
(t)
k

)p)(
z

(t2)
k

H
[Σ̂TE

t2 ]
−1

z
(t2)
k

)p ,
(13)

where the estimates have been given in eq. (9) and (10).

D. Properties of the new statistics

As for (2) and (5) statistics, the new statistics (11) and
(13) have the matrix CFAR property. The proof is omitted,
but is straightforward from the one presented in [12]. The
improvement comes from the fact that the new statistics
are independent of the density generator which makes them
more robust. This property is often referred as texture CFAR
property.

The analytic distribution of both Λ̂t1,t2CAE,omni and Λ̂t1,t2CAE,marg

under H0 is unfortunately unknown. The problem will be
considered in future developments. The selection of thresholds
is done by obtaining the PFA vs threshold of detection (a.k.a
PFA − λ) curve by means of Monte-Carlo (M-C) Trials.

IV. SIMULATIONS

A. Description of simulation

The new statistics have been tested in simulation and
compared to the Gaussian ones. Complex Compound Gaussian
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t 1 2 3 4 5

Image (coded in RGB)

Gaussian Statistics

Robust statistics

Fig. 3. Example of detection/estimation on synthetic images. T = 5, p = 3, N = 25, PFA = 10−4. The background has parameters α = 0.3, β = 0.1, ρ =
0.99. For the cross pattern: α = 0.3, β = 1, SNR = 10 dB, ρ = 0.3 and the circle pattern: α = 0.3, β = 1, SNR = 10 dB, ρ = 0.2.

TABLE I
SIMULATION-RELEVANT PARAMETERS

α, β ρt p N T

Shape and Scale
for Γ-distribution

Coefficients for
Toeplitz matrices

Size of
vector

Number of
observations

Number of
Images

(CCG) random vectors, which is sub-family of the CE distri-
butions, have been considered. They are random vectors of
the form x =

√
τ x̃ where τ is a random monovariate variable

with a given PDF, referred as the texture, and x̃ ∼ CN (0p,Σ).
We choose τ ∼ Γ(α, β), where Γ(α, β) denotes the Gamma
distribution with shape parameter α and scale parameter β.

The covariance matrices are chosen to be Toeplitz of the
form Σt(m,n) = ρ

|m−n|
t . ρt is the sole parameter governing

the change over time.
Table I summarizes the relevant parameters for the simula-

tions presented hereafter.

B. False alarm regulation

We first consider the regulation of false alarms for both
robust and the Gaussian one. To this end, PFA−λ curves have
been computed, by means of M-C trials, in figure 2. Figure
shows the plots for Gaussian model and CCG one with several
parameters for the texture. We observe that the curves are not
the same for Gaussian statistics while for robust ones, the
curves are equivalent. This result confirms the texture CFAR
property of the robust statistics.

C. Detection on Synthetic images

We test the algorithm 1 on synthetic images in figure 3. The
background is a CCG noise. A cross-shaped pattern appears,
moves and disappears while a circle grows over time. The
patterns correspond to realizations of CCG vectors where
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Fig. 2. PFA−λ relationships for several parameters of the CCG distribution.

the covariance matrix is different than for the background.
The parameter β has been used to set the Signal to Noise
Ratio (SNR) of the patterns. Figure 3 presents the different
images of the series and the result of detection/estimation
using algorithm 1 with both Gaussian and robust statistics.
A white point on the resulting image t and position (x, y)
corresponds to a point that has been detected as a change in
the time series at position (x, y) and estimated to be at time t.
The thresholds have been chosen to guarantee a PFA = 10−4

using theoretical relationship for Gaussian statistics (given in
[8] for example) while M-C trials have been used for the robust
one. Results show that for Gaussian statistics, the PFA chosen is
not respected: a significant number of false alarms is present.
Results with robust statistics show that the number of false
alarms is greatly reduced. This outcome was expected since
the Gaussian statistics do not account for the nature of the
data.
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D. Probability of detection

To compare the performance of detection, we choose to
compute the probability of detection at the good date PD,
through means of M-C trials, on a simple situation where there
is only one change at a date tC . Before the change, we choose
ρt<tC = 0.01 and after the change several values have been
used. Both Gaussian and CCG models have been simulated
and the experimental thresholds, for the given noise, have
been chosen for the selected PFA. The Bartlett distance [18]
on covariance matrices is used as a measure of the amplitude
of the change:

dB(Σ1,Σ2) = log(
|Σ1 + Σ2|2

|Σ1| |Σ2|
)− 2p log(2). (14)

The results, presented at Figure 4, have also been compared
to the bi-date scheme presented at eq. (3).
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Fig. 4. Probability of detection versus Bartlett distance.

When the data follows a Gaussian distribution, we notice
that the performance is lower for robust statistics in compar-
ison to the Gaussian ones. This result is expected since for
Gaussian data, the Tyler estimator have lower performance
compared to the SCM. The plot also shows that even for
a single change, the algorithm 1 performs better than the
bi-date one. When the data follows a CCG distribution, the
performance do not change for robust statistics while they
strongly decrease with Gaussian ones.

V. CONCLUSION

The present paper has studied the problem of change-point
detection in an ITS under non-Gaussian assumption. Robust
statistics have been derived and we showed in simulation, that
these new statistics yields better results when the image are
heterogeneous. Future works concern the performance analysis
of this methodology on real experimental HR SAR data.
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