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ABSTRACT

This paper deals with hyperspectral detection in impulsive
and/or non homogeneous background contexts. In hyperspec-
tral imaging applications, the detection performance of the
detectors (target detection or anomaly detection like Maha-
lanobis distance) is typically evaluated on Gaussian assump-
tion. However, it is well known that hyperspectral imaging
data exhibit spatial heterogeneity and non-Gaussian behav-
ior leading to a poor performance for all the conventional
Gaussian detectors. Many works have been already derived
in the context of radar detection in non-homogeneous and
non-Gaussian clutter. These works can be easily extended
in the context of hyperspectral detection. The aim of this pa-
per is twofold. In the context of Spherically Invariant Ran-
dom Vectors (SIRV) modeling for the background, we re-
call some properties of different non-Gaussian detectors built
with a nice and robust estimate of the background Covari-
ance Matrix. Secondly, we present some results on regulation
of false alarm obtained on experimental background hyper-
spectral data. These results demonstrate the interest of the
proposed detection scheme, and show an excellent correspon-
dence between experimental and theoretical results.

Index Terms— Hyperspectral Imaging, Anomaly Detec-
tion, SIRV, non-Gaussian process.

1. INTRODUCTION

Anomaly detection and detection of targets or activity such as
chemical plumes, aerosols, vehicles, anomalous targets, arise
in many military and civilian applications [1]. Hyperspectral
imaging sensors provide 2D spatial image data containing
spectral information. This information can be used to address
such detection tasks. Hyperspectral imaging sensors measure
the radiance of the materials within each pixel area at a very
large number spectral bands.

It is often assumed that signals, interferences, noises,
background are Gaussian stochastic processes. Indeed, this
assumption makes sense in many applications. In these con-
texts, Gaussian models have been widely investigated in the

framework of Statistical Estimation and Detection Theory.
They have led to appealing and well known algorithms such
as the Matched Filter and its adaptive variants in radar de-
tection [2, 3]. The mathematical framework for the design
and evaluation of detection algorithms is provided by the well
known binary hypothesis testing procedure. The detection
problem is typically formulated as a binary hypothesis test
with two competing hypotheses: background only or target
and background. In practice the background statistics are
unknown and have to be estimated from the data. Generally,
the statistical parameters (covariance matrix, mean, ...) of the
background can be estimated by using all pixels within an
area of interest. The size of the area has to be chosen large
enough to ensure the invertibility of the covariance matrix
and small enough to justify both spectral homogeneity (sta-
tionarity) and spatial homogeneity. Since the two hypotheses
contain unknown parameters (for example, the covariance
matrix of the background) that have to be estimated from the
data, the detector has to be adaptive, and it is usually designed
by using the Generalized-Likelihood-Ratio Test (GLRT) ap-
proach.

However, such widespread techniques are sub-optimal
when the noise process is a non-Gaussian stochastic pro-
cess. Therefore, non-Gaussian noise modeling has gained
much interest these last decades and presently leads to active
researches in the literature. In radar applications, experi-
mental clutter measurements, made by institutions like MIT
[4], showed that these data are not correctly described by
Gaussian statistical models. In hyperspectral imaging, the
actual response of a detector to the background pixels dif-
fers from the theoretically predicted distribution for Gaussian
backgrounds. In fact, as stated in [5, 6], the empirical distri-
bution usually has heavier tails compared to the theoretical
distribution, and these tails strongly influence the observed
false-alarm rate of the detector.

One of the most general and elegant impulsive noise
model is provided by the so-called Spherically Invariant
Random Vectors (SIRV). Indeed, these processes encompass
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a large number of non Gaussian distributions, included of
course Gaussian processes. SIRV and their variants have
been used in various problems of radar clutter echoes. A
SIRV is a compound process, it is the product of a Gaussian
multivariate process and the square root of a non-negative
random scalar variable called the texture. Thus, the SIRV is
fully characterized by the texture (representing an unknown
intensity) and the unknown covariance matrix of the Gaus-
sian vector. One of the major challenging difficulties in SIRV
modeling, is to estimate these two unknown quantities. For
example, the classical Sample Covariance Matrix used in
adaptive detection in Gaussian noise is not at all the best
estimate and does not correspond to the Maximum Likeli-
hood estimator. These problems have been investigated in
[7] for the texture estimation while [8] and [9] have proposed
different estimates for the covariance matrix. A complete
statistical analysis of these covariance matrix estimates has
been realized in [10].

Since the noise parameters estimates are fully character-
ized, it is now a major issue to use them in the hyperspectral
detection process. The first contribution of this paper is
the study of adaptive non-Gaussian detector built with an
improved covariance matrix estimate, the Fixed Point Covari-
ance Matrix. Constant False Alarm Rate (CFAR) properties
allow this detector to be independent of nuisance parameters.
Then, a theoretical relationship for false alarm regulation is
introduced and validated on real hyperspectral data. This
application allows to study the detector behavior in realistic
scenario.

2. PROBLEM FORMULATION

In this section, we introduce the SIRV noise model under
study and the associated adaptive detector built with the Fixed
Point estimate. In the following, H denotes the conjugate
transpose operator, E(.) stands for the statistical mean.

2.1. Statistical Framework

The basic problem of detecting a complex signal corrupted by
an additive SIRV noise c in a m-dimensional complex vector
y can be stated as the following binary hypothesis test:{

H0 : y = c yi = ci i = 1, . . . ,K
H1 : y = s + c yi = ci i = 1, . . . ,K

(1)

where y is the cell under test and where the yi’s are K signal-
free independent measurements, traditionally called the sec-
ondary data, used to estimate the background covariance ma-
trix. Generally, these K secondary data are collected using
a 2D sliding window (mask) centered on the cell under test.
Under hypothesis H1, it is assumed that the observed data
consists in the sum of a signal s = α p and clutter c, where p
is a perfectly known complex steering vector (characterizing
for example the spectral material to detect) and α is the signal

amplitude.
Let us recap some SIRV theory results. A noise mod-

eled as a SIRV is a non-homogeneous Gaussian process with
random power. More precisely, a SIRV [11] is the product
c =

√
τ x of the square root of a positive random variable

τ (texture) and a m-dimensional independent complex cir-
cular Gaussian vector x (speckle) with mean µ and covari-
ance matrix M = E[(x − µ) (x − µ)H ] with normalization
Tr(M) = m.The SIRV Probability Density Function (PDF)
expression is given by:

pm(c) =

∫ +∞

0

1

(π τ)m |M|
exp

(
− (c− µ)H M−1 (c− µ)

τ

)
p(τ) dτ .

The SIRV family encompasses an infinity of distributions,
notably the Gaussian one, the Weibull distribution, the K-
distribution or the T-distribution.

The SIRV modelling has been used to derive several
Generalized Likelihood Ratio Tests like the GLRT-Linear
Quadratic (GLRT-LQ) in [12, 13] defined by

Λ(M,µ) =
|pH M−1 (y− µ)|2

(pH M−1 p)((y− µ)H M−1 (y− µ))

H1

≷
H0

λ ,

(2)
where p is the spectral steering vector, y the observed vector
and λ the detection threshold associated to this detector. Note
that the mean µ is generally omitted in radar detection (and
therefore not estimated) as the noise is always zero mean. So,
in hyperspectral Imaging context, as the data represent inten-
sity and are positive, we have to estimate it, jointly with the
covariance matrix M.

In many problems, non-Gaussian noise can be character-
ized by SIRVs but the covariance matrix M is generally not
known and an estimate M̂ is required. It can be noted here that
the classical Sample Covariance Matrix is not at all a good so-
lution. The next section is devoted to an adaptive GLRT built
from an Approximate Maximum Likelihood (AML) estimate
of the SIRV background covariance matrix.

2.2. The ANMF with the Fixed Point Matrix Estimate

Let us now present the adaptive GLRT, i.e. the adaptive ver-
sion of (2) and called the Adaptive Normalized Matched Fil-
ter (ANMF) or ACE (Adaptive Cosine Estimator), used for
the detection problem under study:

Λ(M̂, µ̂) =
|pH M̂

−1
(y− µ̂)|2

(pH M̂
−1

p)((y− µ̂)H M̂
−1

(y− µ̂))

H1

≷
H0

λ .

(3)
Moreover, for µ = 0, Conte and Gini in [8, 9] have shown

that an Approximate Maximum Likelihood (AML) estimate
M̂ of M is a solution of the following equation:

M̂ =
m

K

K∑
i=1

ci cHi
cHi M̂

−1
ci
. (4)



Existence and uniqueness of the solution to the above
equation, denoted M̂FP have already been investigated in
[14] while its performance analysis has been studied by [10]
in which it was shown that the Fixed Point estimate is the
covariance matrix estimate that has a better match to the
problem under study thanks to its statistical performance
and its easy implementation and practical use. Eq. (4) obvi-
ously implies that M̂FP is independent of the τi’s. The main
results of the statistical properties of M̂FP are recapped:
M̂FP is a consistent and unbiased estimate of M; its asymp-
totic distribution is Gaussian and its covariance matrix is
fully characterized in [15]; its asymptotic distribution is the
same as the asymptotic distribution of a Wishart matrix with
mN/(m+ 1) degrees of freedom.

When the noise is not centered, as in hyperspectral imag-
ing, the joint estimation of M and µ leads to [16]:

M̂FP =
1

K

K∑
k=1

(ck − µ̂) (ck − µ̂)H

(ck − µ̂)H M̂−1FP (ck − µ̂)
, (5)

and

µ̂ =

K∑
k=1

ck

(ck − µ̂)H M̂−1FP (ck − µ̂)

K∑
k=1

1

(ck − µ̂)H M̂−1FP (ck − µ̂)

. (6)

These two estimates given by implicit equations (Fixed Point
Equation) can be easily computed using a recursive approach.
In the section dealing with applications to experimental hy-
perspectral data, we will use the GLRT-FP Λ̂(M̂FP , µ̂) as
detector. This detector has essential CFAR properties like
texture-CFAR (independent of the distribution of τ ), matrix-
CFAR (independent of M) and mean-CFAR (independent
of µ). One of the first deduction of previous results is that
regardless of the SIRV used, for different distributions of the
texture and for different covariance matrices, the resulting
GLRT Λ(M̂FP , µ̂)) follows the same distribution. This is
of a major interest in areas of background transition like for
example, in coastal areas (ground and sea) or at the edge
of forests (fields and trees) because the detector should be
insensitive to the different clutter areas.

A theoretical relationship between the detection threshold
λ and the Probability of False Alarm (PFA) Pfa = P(Λ >
λ|H0) has been established:

Pfa = (1− λ)a−1 2F1(a, a− 1; b− 1;λ) , (7)

where a =
m

m+ 1
K −m+ 2, b =

m

m+ 1
K + 2 and 2F1 is

the Hypergeometric function.

Note that the previous Pfa-threshold relationship (7) has
been derived assuming radar data being complex and is not

valid for real data. As the hyperspectral data are positive and
real, they have been passed through an Hilbert filter to render
them complex. The following section presents some results
relative to the regulation of false alarm obtained on experi-
mental data.

3. DETECTION RESULTS ON EXPERIMENTAL
HYPERSPECTRAL DATA

The experimental set of data was provided by DSO National
Laboratories (see figure 1). The figure 2 shows the regula-
tion of the false alarm for the conventional Adaptive Matched
Filter built with the classical Sample Covariance Matrix. The
figure 3 shows the results obtained with the ANMF or ACE
given in (3) built with the Fixed Point and the mean given re-
spectively in (5) and (6). These preliminary results show a
better regulation for the proposed detection scheme than the
conventional one.

4. CONCLUSIONS

The SIRV modelling as pointed out in [5, 6] is shown to be
very interesting when dealing with heterogeneity and/or non
Gaussian data. All the previous works that have been done
in the context of radar detection can be applied successfully
on hyperspectral imagery for the purpose of detection. The
ACE detector built not with the conventional SCM but with
the proposed Fixed Point estimate is shown to be SIRV CFAR.
These preliminary results have to be of course evaluated fur-
ther. They have been shown to have a good potential for target
detection in hyperspectral sensing. These works1 can also be
used for anomaly detection purpose.

Fig. 1. Normalized hyperspectral data set

1The authors would like to thank french DGA for its financial support.
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Fig. 2. Pfa-Threshold behaviors for the Adaptive Matched
Filter applied on data (in black) and for the theoretical one (in
red) for uniform spectral target. The spatial window used is
here 13 × 13 with one guard cell around the cell under test
(K = 132 − 9 for m = 20 wavelengths)
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Fig. 3. Pfa-Threshold behaviors for the Adaptive Normalized
Matched Filter applied on data (in red) and for the theoretical
one (in black) given by (7) for uniform spectral shape target.
The spatial window used is here 13 × 13 (K = 132 − 9 for
m = 20 wavelengths)
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