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Abstract—This paper deals with model order selection in
context of correlated noise. More precisely, one considers sources
embedded in an additive Complex Elliptically Symmetric (CES)
noise, with unknown parameters. The main difficultly for esti-
mating the model order lies into the noise correlation, namely
the scatter matrix of the corresponding CES distribution. In this
work, to tackle that problem, one adopts a two-step approach:
first, we develop two different methods based on a Toeplitz-
structured model for estimating this unknown scatter matrix and
for whitening the correlated noise. Then, we apply Maronna’s
M -estimators on the whitened signal to estimate the covariance
matrix of the “decorrelated” signal in order to estimate the
model order. The proposed methodology is based both on robust
estimation theory as well as large Random Matrix Theory,
and original results are derived, proving the efficiency of this
methodology. Indeed, the main theoretical contribution is to
derive consistent robust estimators for the covariance matrix of
the signal-plus-correlated noise in a large dimensional regime and
to propose efficient methodology to estimate the rank of signal
subspace. Finally, as shown in the analysis, these results show
a great improvement compared to the state-of-the-art, on both
simulated and real hyperspectral images.

Index Terms—Model order selection, RMT, correlated noise,
CES distribution, robust estimation.

I. INTRODUCTION

M
ODEL order selection is a challenging issue in sig-

nal processing for example in wireless communication

[1], array processing [2], or other related problems [3], [4].

Classically, for a white noise, statistical methods such as the

one based on the application of the information theoretic

criteria for model order selection, allow to estimate the model

order thanks to eigenvalues and eigenvectors of the covariance

matrix of the signal. This is the case of the Akaike Information

Criterion (AIC) [5] or the Minimum Description Length

(MDL) [6], [7]. Other examples are the problem of source

localization [8], where the estimation of the signal subspace

is done by the estimation of the eigenvalues of the covariance

matrix, channel identification [9], waveform estimation [10]

and many other parametric estimation problems. Though, all

these methods are no more relevant for large dimensional and

correlated data. Even if particular cases have been studied for

correlated signals as in [11] or [12], these methods can not be

generalized for all kind of signals and a whitening step, when

possible, can not be systematically set up [13]. Moreover, the

commonly used statistical model for this problem has not the

same matrix properties when the data are large and when they

are not: the covariance matrix is not correctly apprehended

and the methods fail to estimate the model order, for example

in [14], in [15] or in [16]. In the field of model order selection

for large dimensional regime, that is when the number of

snapshots N and the dimension of the signal m tend to infinity

with a constant positive ratio, and for white or whitened

noise, the Random Matrix Theory (RMT) proposes methods

to estimate the model order selection relying on the study of

the largest eigenvalues distribution of the covariance matrix

[17]. The RMT introduces new methodologies which correctly

handle the statistical properties of large matrices thanks to a

statistical and probability approach: see [18] for a review of

this theory, [19] for a general detection algorithm, [20] for an

adapted MUSIC detection algorithm, [21] for applications to

radar detection and [22] for an application on hyperspectral

imaging. When the noise is spatially correlated, it is still

possible to estimate the model order for example by evaluating

the distance between the eigenvalues of the covariance matrix

[23]. Nevertheless, these methods require a threshold that has

no explicit expression and can be fastidious to obtain [24].

In addition to the problem of the large dimension and the

correlation, another recurrent problem in signal processing is

the non-Gaussianity of the noise. To be less dependent of

the noise statistic, that is for the model order selection not

to be degraded with a noise more or less sightly different than

targeted, robust methods for model order selection have been

developed [25] in hyperspectral imaging [26]. Nevertheless,

these methods depend on unknown parameters [1] or are

not adapted for large data. Recent results in RMT enable to

correctly estimate the covariance matrix for textured signals

[27]. But the correlation matrix is assume to be known and

the signal is whitened before processed.

In this works, one considers a Complex Elliptically Symmetric

(CES) noise. The CES distributions modelling is often ex-

ploited in signal processing, because of its flexibility, that is

the ability to model a large panel of random signals. The signal

can be split in two parts: a texture and a speckle. They are

rather often used in various fields, as in [28] for hyperspectral

imaging, or [29] for radar clutter echoes modelling. This

article deals with large dimansional non-Gaussian data, and

proposes a robust method to estimate the model order. The

robustness of our method comes from the robust estimation

of the covariance matrix, with a Maronna M -estimator [30]

which assigns different weights according to the Mahalanobis

http://arxiv.org/abs/1710.06735v1


2

distance between the signals received by the different sensors.

It is a generalization of [27] and [31] to the case of left

hand side correlation (with an unknown covariance matrix).

Moreover, this article proposes a new algorithm to estimate

the model order.

In a first part, an estimator for the correlation matrix is

presented: the toeplitzified Sample Covariance Matrix (SCM),

that is, the SCM enforced to be of Toeplitz form [32]. Indeed,

as the covariance matrix is supposed to be Toeplitz, the SCM

is toeplitzified as in [33] to enhance the estimation. The data

are then whitened with this Toeplitz matrix and a robust

Maronna M -estimator of the covariance matrix is then used

after the data whitening. This robust estimation is studied and

a threshold on its eigenvalues can be derived to select the

model order. A second part presents the same procedure for

the toeplitzified Fixed-Point (FP) estimator [34] and [35]. The

third part presents some simulations on both simulated and real

hyperspectral images. Proofs of the main results are postponed

in the appendices.

Notations: Matrices are in bold and capital, vectors in bold.

Let X be a square matrix of size s× s, (λ)i(X), i ∈K1, ..., sJ,

are the eigenvalues of X. Tr(X) is the trace of the matrix

X. ‖X‖ stands for the spectral norm. Let A be a matrix,

AT is the transpose of A and AH the Hermitian transpose

of A. In is the n × n identity matrix. For any m−vector x,

L : x 7→ L(x) is the m ×m matrix defined as the Toeplitz

operator : ([L(x)]i,j)i≤j = xi−j and ([L(x)]i,j)i>j = x∗i−j .

For any matrix A of size m × m, T (A) represents the

matrix L(ǎ) where ǎ is a vector for which each component

ǎi, 0<i<m−1 contains the sum of the i−th diagonal of A

divided by m. For x ∈ R, δx is the Dirac measure at x.

For any complex z, z⋆ is the conjugate of z. The notation dist

stands for the distance associated to the L1 norm. supp is the

support of a set. Eventually, Re and Im stand respectively

for the real and the imaginary part for a complex number. The

notation
a.s.−→ means "tends to almost surely".

II. MODEL AND ASSUMPTIONS

This section introduces the model as well as the general

assumptions needed to derive the results. Let us consider

the following general sources-plus-noise model. Let Y =
[y0, . . . ,yN−1] be a matrix of size m × N , containing N

observations {yi}i∈J0,N−1K of size m, constituted of p mixed

sources corrupted with an additive noise:

yi =

p∑

j=1

si,j mj +
√
τi C

1/2 xi , i ∈ J0, N − 1K , (1)

which can be rewritten as

Y = MS+C1/2 XT1/2 , (2)

where the {τi}i∈J0,N−1K are positive random variables, and

T is the N×N -diagonal matrix containing the {τi}i∈J0,N−1K.

Moreover, the m × p matrix M with elements Mi,j =
(M)i,j = (mj)i is referred to as the mixing matrix and

contains the p vectors of the sources. In this work, the

additive noise is modelled thanks to the general family of

Complex Elliptically Symmetric (CES) distributions [36], [37]

(see also [38] for more details on CES as well as their use

in signal processing). Thus, each component of the noise is

characterized by a random vector xi uniformly distributed on

a sphere times an independent positive random scalar τi with

unspecified probability distribution function. The left hand side

spectral correlation is handled by the scatter matrix C.

Each element si,j of the p × N matrix S corresponds to

the power variation of each source in the received vector.

This matrix can be written S = δH
Γ1/2 where δ is a

N × p random matrix, independent of X, whose elements

are normally distributed with zero-mean and unit variance.

Γ is a N × N Hermitian covariance matrix. Eventually,

C = L
(
[c0, . . . , cm−1]

T
)

is a m×m Hermitian nonnegative

definite Toeplitz matrix:

C =




c0 c1 ... cm−1

c⋆1 c0 ... cm−2

...

c⋆m−1 c
⋆
m−2 ... c0


 .

In the sequel, we will consider the following assumptions:

Assumption 1: One assumes the usual random matrix regime,

i.e.: N → ∞, m→ ∞ and cN =
m

N
→ c > 0,

Assumption 2: for matrices C, T and X of equation (2), one

has:

• dist(λi(C), supp(ν)) → 0 with ν the limit of
1
N

∑
δλi(C) when N → ∞,

• {ck}k∈J0,m−1K are absolutely summable coefficients,

such that c0 6= 0,

• The random measure µN =
1

N

N∑

i=1

δτi satisfies

∫
τ µN (dτ)

a.s.−→ 1,

• X is a white noise, with independent and identically

distributed entries with zero-mean and with unit variance,

• ‖Γ‖ <∞ and ‖M‖ <∞.

Assumption 3:

• In each column of M, the coefficients are absolutely

summable that is, for all fixed j,

m∑

i=1

|Mi,j | < ∞. This is

a common assumption in several applications and especially

in hyperspectral imaging.

• Γ has coefficients absolutely summable.

Assumption 4: Let [Y]i,j = [yi]j , then the coefficients [yi]j
are absolutely summable, that is, for a fixed i,

∑

j

|[yi]j | exists.

III. MODEL ORDER SELECTION: A GAUSSIAN APPROACH

In this section, the consistency of the SCM is used to whiten

the signal and to estimate the model order thanks to a Maronna

M -estimator. The step which consists in directly evaluating the

model order with a Maronna M -estimator has been already

studied in [27] for the special case of spiked model with CES

white noise. In this work, one considers the more challenging

problem of correlated CES noise.
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A. Whitening Step

The noise being correlated, one proposes here to whiten it

using the Toeplitz structure of the noise covariance matrix. As

a reminder, the model under consideration is the following:

Y = M δH Γ1/2 +C1/2 XT1/2 . (3)

Let Y be written as Y = [y0, ...,yN−1] where yj =

(y0,j , y1,j, . . . , ym−1,j)
T

, j ∈ J0, N − 1K and let C̃SCM be

a biased Toeplitz estimation of the covariance matrix C such

that : [
C̃SCM

]
i,j

= [L(c̃SCM )]i,j (4)

with c̃SCM,k = 1
mN

m−1∑

i=0

N−1∑

j=0

yi,j y
⋆
i+k,j 10≤i+k<m

It can be equivalently stated as ĈSCM =
1

N
YYH and

C̃SCM = T (ĈSCM ). The following theorem establishes the

consistency of C̃SCM .

Theorem 1 (Consistency of C̃SCM ). Under above assump-

tions, one has the following result:
∥∥∥C̃SCM − E[τ ]C

∥∥∥ a.s.−→ 0 . (5)

The covariance matrix defined by ČSCM =
1

E(τ)
C̃SCM

characterizes the biased Toeplitz estimation of C.

Proof: The complete proof is in Appendix A.

This estimator is then used to whiten the samples:

Y̌wSCM = Č
−1/2
SCM M δHΓ1/2 + Č

−1/2
SCM C1/2 XT1/2 . (6)

In practice, E(τ) can be empirically estimated or is sup-

posed to be equal to 1.

B. Estimation of the covariance matrix

Once the signal Y has been whitened, a robust estimation

of the (unobservable) covariance matrix E
[
XXH

]
can be

performed through the samples Y̌wSCM . This estimation is

said to be robust in the sense that it can annihilate the high

values of the texture τ , which can alter the structure quality

of the estimated covariance matrix. The chosen estimator is a

Maronna’s M -estimator [30], which gives good performances

for CES signals. This robust estimation of the scatter matrix

is therefore a fixed-point estimator noted Σ̌SCM and defined

through Y̌wSCM = [y̌wS0, ..., y̌wSN−1] as the unique solu-

tion of the following equation:

Σ =
1

N

N−1∑

i=0

u

(
1

m
y̌H
wSi Σ

−1 y̌wSi

)
y̌wSiy̌

H
wSi , (7)

under

(i) u: [0, +∞) 7→ (0, +∞) nonnegative, continuous et non-

increasing function derived thanks to the probability dis-

tribution function of the CES (for the complete calculus,

see [39]),

(ii) φ : x 7→ xu(x) increasing and bounded, with

lim
x→∞

φ(x) = Φ∞ > 1,

(iii) lim
N−→∞

cN < Φ−1
∞ .

Next step consists in evaluating the rank of the signal

subspace from this matrix.

C. Model order selection

The mean idea is to study the eigenvalues distribution of

this Maronna M -estimator to find the model order or the

number of sources. Indeed, in a non-RMT regime, that is

if Assumption 1 is not satisfied, and in the case of a white

Gaussian noise, it is possible to set a threshold such that no

eigenvalues of the noise can be found upon. If eigenvalues

are found beyond this threshold, they are due to sources.

Here, under Assumption 1 and thanks to [11] in the case of a

white Gaussian noise plus an additive signal, no eigenvalues

outside the support of the Marchenko-Pastur law can belong

to the noise. However, due to the presence of the texture

matrix T, some eigenvalues could exist upon the right edge

of the Marchenko-Pastur distribution support. A more precise

threshold can then be derived to ensure that no eigenvalue

found upon are due to the noise. However, it does not ensure

that all the sources eigenvalues will be located beyond this

threshold. Indeed, this depends of the sources Signal to Noise

Ratio (SNR).

The proposed estimator Σ̌SCM has so to be analysed

for CES distribution. However, some characteristics such as

its eigenvalues distribution can not be easily and theoret-

ically studied when both m and N → ∞ as the term

u

(
1

m
y̌H
wSi Σ̌

−1
SCM y̌wSi

)
is not independent on y̌wSi. To fill

this gap, the following white model [27] is considered :

Yw = [yw0, . . . ,ywN−1] = C−1/2 M δHΓ1/2 +XT1/2 .

(8)

Notice that the difference between models (8) and (6) lies

in the empirical whitening. Then,

Ŝ
△
=

1

N

N−1∑

i=0

v (τi γ) ywi y
H
wi , (9)

which can be rewritten as Ŝ = Yw Dν Y
H
w where Dν a

diagonal matrix containing the {v(τi γ)}i, where:

(i) g : x 7→ x

1− c φ(x)
,

(ii) v : x 7→ u ◦ g−1(x), ψ : x 7→ x v(x), with lim
x→∞

ψ(x) =

Φ∞

1− cΦ∞
,

(iii) γ is the unique solution, if defined, of the equation in γ:

1 =
1

N

N∑

i=1

ψ (τi γ)

1 + c ψ(τi γ)
.

Moreover, it is proved in [27] that:
∥∥∥Σ̂− Ŝ

∥∥∥ a.s.−→ 0 . (10)

where Σ̂ is the unique solution (if it exists) of:

Σ =
1

N

N−1∑

i=0

u

(
1

m
yH
wiΣ

−1 ywi

)
ywi y

H
wi .
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The distribution of the eigenvalues of Ŝ can hence be

more efficiently studied, the terms [v (τi γ)]i∈J0, N−1K being

independent of the {xi}i. The goal being to study Σ̌SCM

which is the unique solution of (7), the following theorem

enables to establish the relationship between Σ̌SCM and Ŝ

thanks to (10).

Theorem 2 (Convergence of Σ̌SCM ).

With previous definitions, one has the following conver-

gence: ∥∥∥Σ̌SCM − Ŝ

∥∥∥ a.s.−→ 0 . (11)

Proof: The proof is provided in Appendix B.

As the eigenvalues distribution of Ŝ can be theoretically
analysed when N , m → ∞, it can characterize also those of
Σ̌SCM thanks to (11). Under the hypothesis that there is no
source present in the signal, it is possible to set a threshold
similarly to [27]. Indeed, in this case:

∥

∥

∥
Ŝ

∥

∥

∥
=

∥

∥

∥

∥

∥

1

N

N−1
∑

i=0

τi v(τi γ)xi x
H
i

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

1

N

N−1
∑

i=0

1

γ
ψ(τi γ)xi x

H
i

∥

∥

∥

∥

∥

,

≤
Φ∞

γ (1− cΦ∞)

∥

∥

∥

∥

∥

1

N

N−1
∑

i=0

xi x
H
i

∥

∥

∥

∥

∥

.

Thanks to [11], and the bounds of the Marchenko Pastur

distribution support, this inequality becomes
∥∥∥Ŝ
∥∥∥ ≤ t , (12)

where the threshold t is defined for the covariance matrix

Σ̌SCM by:

t =
Φ∞ (1 +

√
c)

2

γ (1− cΦ∞)
. (13)

Then, if the signal contains sources of sufficiently high SNR,

eigenvalues might be found upon this threshold t and all these

eigenvalues correspond to sources. Let
{
λi(Σ̌SCM )

}
i∈J1,NK

be the sorted eigenvalues of Σ̌SCM when sources are present

in the samples. As all sources are assumed to be independent,

the estimated number of sources p̂ which corresponds to the

rank of the signal subspace is then given by p̂ = min
k

(λk > t),

if p << min (N,m).

D. Results

This section is devoted to the presentation of some sim-

ulations relative to the estimation of the covariance matrix.

Samples are considered here sources-free. The parameters

are set to c = 0.45, m = 900 and N = 2000. Thus,

Y = C1/2 XT1/2 with C = L
((
ρ0, ρ1, . . . , ρm−1

)T)

where ρ = 0.7 and X is a zero-mean complex Gaussian noise

with identity covariance matrix. The texture matrix T is a

diagonal N × N -matrix containing the {τi}i∈J0,N−1K on its

diagonal where {τi}i are i.i.d. inverse gamma distributed with

mean equal to 1 and with shape parameter equal to 10. The

function u is here defined as u : x 7→ 1 + α

x+ α
where α is a

fixed parameter equal to 0.1.

Figure 1 shows the eigenvalues of the estimated covari-

ance matrix Σ̌SCM when samples Y have been whitened

by Č
−1/2
SCM . On the figure 2, the signal Y has not been

0 1 2 3
0

2

4

6

·10−2

Histogram of Eigenvalues

Ŝ

Σ̌SCM

Threshold t

Fig. 1. Eigenvalues of the covariance matrices Σ̌SCM and Ŝ when the
signal Y has been whitened by ČSCM and the corresponding threshold t
(ρ = 0.7, m = 900, N = 2000, τ = inverse gamma, α = 0.1).

0 2 4 6 8
0

0.1

0.2

0.3

Histogram of Eigenvalues

Č
1/2
SCMΣ̌SCMČ

1/2
SCM

Ŝ

Threshold t

Fig. 2. Eigenvalues of the covariance matrices Σ̌SCM and Ŝ when the
signal Y has not been whitened by ČSCM and the corresponding threshold
t (ρ = 0.7, m = 900, N = 2000, τ = inverse gamma, α = 0.1).

whitened. The green histogram corresponds to the eigenvalues

distribution of Ŝ whose histogram is expected to coincide with

the distribution of the eigenvalues of Σ̌SCM as the equation

(11) indicates. Moreover, the threshold t =
(1 + α) (1 +

√
c)2

γ (1− c (1 + α))
given by (13) has been estimated and drawn in red, in order to

confirm that the eigenvalues are all smallest than the threshold.

As the eigenvalues distribution of Σ̌SCM are closed to

those of Ŝ, the fixed-point estimator correctly annihilates the

influence of the textures τi’s and the whitening balances the

matrix of correlation. On Figure 1, we can observe that the

eigenvalues do not exceed the upper bound t. When the signal

has not been whitened, this threshold t does not theoretically

correspond. Indeed, in Figure 2, the threshold is found to

be smaller than the largest eigenvalues of the estimated

covariance matrix. These figures illustrate first the results of

Theorem 2 and show the importance of the whitening process.

Figure 3 presents the eigenvalues distributions of Ŝ and

ČSCM for samples distributed according to a different CES

distribution. Here, the texture T is a diagonal matrix contain-

ing the {τi}i∈J0,,N−1K on its diagonal where each τi is inde-

pendent and identically distributed and follows a distribution
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equal to t2 where t is a Student-t distributed random variable

with parameter 100 and α = 0.1. The eigenvalues are not so

close than the eigenvalues of Ŝ and are found to get closer to

the threshold t. If the distribution of τ is getting away to the

one for which the function u has been calculated, the method

seems so to be less reliable. To fill this gap, we propose to

enhance the proposed SCM-based method for the whitening

through robust M -estimators-based method.

0
5 · 10−2 0.1 0.15 0.2 0.25

0

2

4

6

·10−2

Histogram of Eigenvalues

Σ̌SCM

Ŝ

Threshold t

Fig. 3. Eigenvalues of the covariance matrices Σ̌SCM and Ŝ when the signal
is whitened by ČSCM and the calculated threshold (ρ = 0.7, m = 900,
N = 2000, τ = t2, α = 0.1).

IV. MODEL ORDER SELECTION: A ROBUST METHOD

APPROACH

This section aims at developing a robust estimator based

technique to whiten the signal instead of the previous SCM-

based one. This section follows the same steps than in the

previous section but by using a M -estimator in the whitening

process.

A. Whitening Step

Let C̃FP be an biased estimator of the covariance matrix C

such that C̃FP = T (ĈFP ) where ĈFP is the unique solution

to the Maronna’s M -estimator [30]:

Z =
1

N

N−1∑

i=0

u

(
1

m
yH
i Z−1 yi

)
yi y

H
i .

As in the previous section, u(.) is a function derived thanks to

the probability distribution function of the CES noise: u: [0,

+∞) 7→ (0, +∞) nonnegative, continuous and non-increasing.

The following theorem stands for C̃FP :

Theorem 3 (Consistency of C̃FP ). Let C̃FP be a fixed-point

estimator of the covariance matrix C as defined above, the

following result holds:
∥∥∥C̃FP − E [v(τ γ) τ ] C

∥∥∥ a.s.−→ 0 , (14)

where:

i) φ : x 7→ xu(x) increasing and bounded, with

lim
x→∞

φ(x) = Φ∞ > 1,

ii) lim
N→∞

cN < Φ−1
∞ ,

iii) g : x 7→ x

1− c φ(x)
,

iv) v : x 7→ u ◦ g−1(x), ψ : x 7→ x v(x),
v) γ is the unique solution, if defined, of: 1 =

1

N

N∑

i=1

ψ (τi γ)

1 + c ψ(τi γ)
.

The covariance matrix ČFP =
C̃FP

E [v(τ γ) τ ]
characterizes the

estimator of the true covariance matrix C.

Proof: The proof, inspired by [31] and [40], is provided

in Appendix B.

Remark: [17] proves that C̃SCM = φ−1(1) C̃FP . When the

function u is well chosen, it is possible to have φ−1(1) = 1
and C̃SCM = C̃FP , as it will be the case for the u chosen

in the following sections. But even in this case, ČSCM and

ČFP differ up to a scale factor as ČSCM =
E [v(τγ) τ ]

E(τ)
ČFP .

As in the previous section, the samples Y can then be

whitened thanks to Č
−1/2
FP . Let Y̌wFP = [y̌wF0, ...y̌wF N−1]

be the whitened samples:

Y̌wFP = Č
−1/2
FP M δH Γ1/2 + Č

−1/2
FP C1/2 XT1/2 .

The parameter E[τ ] can be in practice evaluated with the

empirical estimator of the mean, or, as in the previous section,

be considered as equal to one. The quantity E[v(τ γ) τ ] can

be also evaluated through an estimate γ̂ of γ as explained in

the Results section.

B. Robust estimation of the covariance matrix and model

order selection

The robust estimation of the covariance matrix and the

model order selection are done as previously. The robust

estimator of the scatter matrix of the whitened signal Y̌wFP

is a fixed-point estimator denoted by Σ̌FP and defined as the

unique solution of the equation:

Σ =
1

N

N−1∑

i=0

u

(
1

m
y̌H
wFiΣ

−1 y̌wFi

)
y̌wFi y̌

H
wFi . (15)

Thus, Σ̌FP is a robust estimator of the covariance matrix of

the whitened signal.

The equation (11) is still effective when replacing Σ̌SCM

by Σ̌FP . Indeed, Theorem 2 can be adapted as follows:

Theorem 4. The following convergence holds:

∥∥∥Σ̌FP − Ŝ

∥∥∥ a.s.−→ 0 . (16)

Proof: The proof is the same as in Theorem 2 and is

provided in Appendix B.

The same threshold t given by equation (13) can be

used on the eigenvalues of Σ̌FP to estimate p. The final

corresponding algorithm is presented below.
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Fig. 4. Eigenvalues of the covariance matrices Ŝ and Σ̌FP when the signal
is whitened through ČFP and the corresponding threshold t (ρ = 0.7, m =
900, N = 2000, τ ∼ inverse gamma).
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Fig. 5. Eigenvalues of the covariance matrices Ŝ and Σ̌FP when the signal is
whitened through ČFP and the corresponding threshold (ρ = 0.7, m = 900,
N = 2000, τ = t2, t ∼ student)

C. Results

As in the previous section, it seems interesting to analyse

the eigenvalues distributions of Ŝ and Σ̌FP . For the next simu-

lations, source-free samples are considered and the parameters

are set to c = 0.45, m = 900 and N = 2000. The function

u chosen for the FP and Maronna M -estimators is the same

function as before with α = 0.1.

Figure 4 presents the eigenvalues distribution of the covariance

matrices Ŝ and Σ̌FP when the signal has been whitened by

ČFP . One can notice that the results are the same as Figure 1:

for N large, the distribution of eigenvalues is almost the same

as those of Ŝ. However, as the rate of convergence of (14) is

faster than in (5), it is more interesting to consider the robust

method. Moreover, if a robust estimator is not used after the

whitening process, the eigenvalues distribution will not follow

those of Ŝ and will exceed the threshold t.

For robustness analysis (not the same texture distribution

for the u function and the observed samples), Figure 5 shows

quite good results when T is a diagonal matrix containing the

{τi}i∈J0,N−1K on its diagonal where {τi}i∈J0,N−1K are i.i.d.

and follow a distribution equal to t2 with t a Student-t random

variable with parameter 100 and α = 0.1.

Figure 6 presents the same histograms as in Figure 4 for a

single source of SNR equal to 10 dB present in the samples.

One can observe that only single eigenvalue exceeds the

threshold and that the noise eigenvalues distribution of Σ̌FP

fits well those of Ŝ.

0 1 2 3
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Histogram of eigenvalues

Ŝ

Σ̌FP

Threshold t

Fig. 6. Eigenvalues of the covariance matrices Ŝ and Σ̌FP for a single source
with SNR = 10dB present in the samples and the calculated threshold
ρ = 0.7, m = 900, N = 2000, τ ∼ inverse gamma

The results are better for this robust method than in the

previous section (e.g. figure 3). Indeed, the robust method

provides robustness with respect to the distribution of τ : if

the distribution of the texture differs to those for which the

function u has been computed, the method is still reliable, this

can be explained by the robustness of the covariance matrix

estimation. As for the non-whitening case, the eigenvalues get

over the threshold and no conclusion or model order can be

deducted. These results have so extended the paper of [31]

to the left hand side correlated noise case. The L2-norm of

the estimated covariance matrix compared to the SCM tends

to zero when N and m tends to infinity with a constant ratio

c. As a lot of estimation methods for the rank of the signal

subspace are based on the estimation of the eigenvalues of the

covariance matrix, this new estimator improves the consistency

for resolution of this problem.

V. RESULTS AND COMPARISONS

In this section some results of order selection are presented,

on both simulated and real hyperspectral images. The simula-

tions are based on Σ̌SCM and Σ̌FP .

A. Estimation of the model order

In order to test the proposed method, we simulate

hyperspectral images, before dealing with real images. As

a reminder, we first whiten the received signal thanks to

a Toeplitz matrix coming from the SCM or a Fixed-Point

estimator. Thus, a M -estimator is used to estimate the

scatter matrix of the whitened signal. The distribution of

its eigenvalues is then studied: a threshold is applied to

count how many eigenvalues are higher than this threshold,

providing the estimated model order p̂.
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Fig. 7. Estimation of the number p̂ of sources (4 trials) embedded in CES
correlated noise (m = 400, c = 0.2, p = 4 source, ρ = 0.7) versus SNR.
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Fig. 8. Estimation of the number p of sources (4 trials) embedded in CES
correlated noise (m = 400, c = 0.2, p = 4 sources, ρ = 0.7) versus SNR.

For simulated and correlated (ρ = 0.7) CES noise, the

{τi}i∈J0,N−1K are inverse gamma distributed with parameter

ν = 0.1. On Figure 7 (m = 400 and N = 2000), p = 4
sources are added in the observations with a SNR varying from

−15 to 20dB. For this figure, the number of sources p̂ (average

on 4 trials) is estimated through three methods: AIC, the non-

whitened signal and the two proposed methods: when the

signal is whitened with the Toeplitz version of the SCM and

the one of the FP. The proposed method starts to find sources

from a SNR equal to −5dB. The FP method seems to better

evaluate the number of sources. For a greater SNR, whereas it

systematically gives the correct number of sources, the other

methods overestimate it. On Figure 8 the same simulation is

done for p = 4 but with the {τi}i following a distribution equal

to t2 where t is a Student-t random variable, as before. On

Figure 8, one notice that the proposed estimators still present

better performance than the others, and allow to find sources

with SNR greater than 0 dB.

Now, we compare the results obtained with three different

methods on several real hyperspectral images found in public

access: Indian Pines, SalinasA from AVIRIS database and

PaviaU from ROSIS database [41]. Let M1 be the proposed

method with a whitening made with the SCM estimator, M2
be the proposed method with a whitening made with a Fixed-

Point estimator, M3 be the method consisting in threshold-

ing the eigenvalues of the Fixed-Point estimator without the

whitening step, and the usual AIC method. For the function

u(.) corresponding to the Student-t distribution, we choose

ν = 0.1 for the whitening process if it is done by a fixed-

point estimator, and zero for the estimation process. As we do

not have any access to the true distribution of the noise, an

empirical estimator of γ is used, γ̂ =
1

N

N∑

i=1

1

m
yH
i Σ̌−1

(i) yi,

where Σ̌(i) = Σ̌ − 1

N
u

(
1

m
yH
i Σ̌−1 yi

)
yi y

H
i . Then [27]

shows that γ − γ̂
a.s.−→ 0. Moreover, as the distribution of τ is

unknown, we choose to consider that E [τ ] and E [v(τ γ) τ ]
are equal to 1. Further works can be carried out to estimate

correctly these unknown quantities. However, we can reason-

ably assume than E [v(τ γ) τ ] and E [τ ] are not to large and

that the estimation error will not impact the results a lot. The

results are summarized in table I. On each image, the result

tends to be better than those of classical methods.

TABLE I
ESTIMATED p FOR DIFFERENT HYPERSPECTRAL IMAGES.

Images Indian Pines SalinasA PaviaU Cars
p 16 9 9 6

p̂ M1 11 9 1 3
p̂ M2 12 9 1 3
p̂ M3 220 204 103 1
p̂ AIC 219 203 102 143

VI. CONCLUSION

The model order selection for large dimensional data and

for sources embedded in correlated CES noise is tackled in

this article. Two Toeplitz-based covariance matrix estimators

are first introduced, and their consistency has been proved. As

for the CES texture, it is handled with any M -estimator, which

can then be used to estimate the correct structure of the scatter

matrix built on whitened observations. The Random Matrix

Theory provides tools to correctly estimate the model order.

Results obtained on real and simulated hyperspectral images

are promising. Moreover, the proposed method can be applied

on a lot of other kind of model order selection problems such

as radar clutter rank estimation, sources localization or any

hyperspectral problems such as anomaly detection or linear or

non-linear unmixing techniques.

APPENDIX A

PROOFS OF THEOREM 1 AND THEOREM 3

The proofs of Theorem 1 and Theorem 3 are inspired

by [31]. For these theorems, we will use the lemma 4.1 in

[42], that is, for T = L
(
(t0, . . . , tm−1)

T
)

a Toeplitz Hermi-

tian m×m-matrix with {tk}k∈J0,m−1K absolutely summable

(t−k = t∗k), we can define the function f(.) such that for any

λ ∈ [0, 2 π], f(λ) =

m−1∑

k=1−m

tk e
iλk and Mf characterizes its

essential supremum:

‖T‖ ≤Mf = sup
λ∈[0,2π)

∣∣∣∣∣

m−1∑

k=1−m

tk e
iλk

∣∣∣∣∣ . (17)
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A. Proof of Theorem 1

As in the main body of this article, let Y = M δH Γ1/2 +
C1/2 XT1/2 and let T be the Toeplitz operator as defined in

the introduction and for any m-vector x,
(
[L(x)]i,j

)
i≤j

=

xi−j and
(
[L(x)]i,j

)
i>j

= x∗i−j , of size m × m. Un-

der Assumption 1, Assumption 2, Assumption 3 and as

T
(

1

N
YYH

)
and E[τ ]C are Toepltiz matrices, one can

write, thanks to (17):
∥∥∥∥T
(

1

N
YYH

)
− E[τ ]C

∥∥∥∥ ≤ sup
λ∈[0,2π)

|γ̂m(λ) − E[τ ] γm(λ)| ,
(18)

where γm(λ) =

m−1∑

k=1−m

ck,m ei k λ with c−k = c⋆k and

γ̂m(λ) =

m−1∑

k=1−m

čk,m ei k λ with č−k = č⋆k.

The following lemma is essential for the development of

the proof:

Lemma 5. The quantity γ̂m(λ) can be rewritten as:

γ̂m(λ) = dH
m(λ)

YYH

N
dm(λ) , (19)

with dm(λ) =
1√
m

(
1, e−i λ, . . . , e−i (m−1)λ

)T
.

Proof: The proof draws his inspiration from the one of

Appendix A1 in [31]. Equation (19) can be rewritten as:

dH
m(λ)

YYH

N
dm(λ) =

1

mN

m−1∑

l,l′=0

e−i (l′−l)λ
[
YYH

]
l,l′

,

=

m−1∑

k=1−m

e−i k λ 1

mN

m−1∑

i=0

N−1∑

j=0

yi,j y
⋆
i+k,j10≤i+k≤m ,

=

m−1∑

k=1−m

čk e
−i k λ .

Thereby, we have:

γ̂ m(λ) = dH
m(λ)

YYH

N
dm(λ) ,

= dH
m(λ)

MδH Γ δMH

N
dm(λ)

+ dH
m(λ)

C1/2 XT1/2 Γ1/2 δMH

N
dm(λ)

+ dH
m(λ)

M δHΓ1/2 T1/2 XH C1/2

N
dm(λ)

+ dH
m(λ)

C1/2 XTXH C1/2

N
dm(λ) . (20)

And we note : γ̂signm (λ) = dH
m(λ) Mδ

H
Γ δM

H

N dm(λ),

γ̂crossm (λ) =

dH
m(λ) C

1/2
XT

1/2
Γ

1/2
δM

H+M δ
H
Γ

1/2
T

1/2
X

H
C

1/2

N dm(λ)

γ̂noisem (λ) = dH
m(λ) C

1/2
XTX

H
C

1/2

N dm(λ) .

And the equation (18) becomes:

∥∥∥∥T
(

1

N
YYH

)
− E[τ ]C

∥∥∥∥ ≤ sup
λ∈[0,2π)

|γ̂noisem (λ)

+γ̂signm (λ) + γ̂crossm (λ) − E[τ ] γm(λ)| . (21)

This leads to:
∥∥∥∥T
(

1

N
YYH

)
− E[τ ]C

∥∥∥∥
≤ sup

λ∈[0,2π)

∣∣γ̂noisem (λ)− E
[
γ̂noisem (λ)

]∣∣

+ sup
λ∈[0,2π)

∣∣E
[
γ̂noisem (λ)

]
− E(τ) γm(λ)

∣∣

+ sup
λ∈[0,2π)

∣∣γ̂signm (λ)
∣∣ + sup

λ∈[0,2π)

|γ̂crossm (λ)| . (22)

We will now analyse each term of (22).

1) Analysis of sup
λ∈[0,2π)

∣∣E
[
γ̂noisem (λ)

]
− E(τ) γm(λ)

∣∣ : We

first need the following lemma:

Lemma 6.

E
[
γ̂noisem (λ)

]
= E[τ ]dH

m(λ)Cdm(λ) = E[τ ] γm(λ) . (23)

Proof: The equation (20) gives E
[
γ̂noisem (λ)

]
=

dH
m(λ)E

[
C1/2XTXHC1/2

N

]
dm(λ). Let V = C1/2X

and (V)i,j = vi,j . We obtain E
[
γ̂noisem (λ)

]
=

dH
m(λ)E

[
VTVH

N

]
dm(λ). As

(
E
[
VTVH

])
ij

=

N∑

k=1

E[τ ]E
[
v∗j,k vik

]
and ck′ = E

[
vp,n v

∗
p+k′,n

]
, we have

(
E
[
VTVH

])
ij

=

N∑

k=1

E[τ ] cj−i = N E[τ ] cj−i. This leads

to

E
[
γ̂noisem (λ)

]
=
N E(τ)

N
dH
m(λ)Cdm(λ) = E[τ ] γm(λ) .

Thereby, the second term of (22) leads to:

sup
λ∈[0,2π)

∣∣E
[
γ̂noisem (λ)

]
− E(τ) γm(λ)

∣∣

= sup
λ∈[0,2π)

| E(τ) γm(λ)− E(τ) γm(λ) |= 0 .

The second term is equal to zero.

2) Analysis of sup
λ∈[0,2π)

∣∣γ̂noisem (λ) − E
[
γ̂noisem (λ)

]∣∣: As in

[31], the method consists in proving for a λi ∈ [0, 2π) and

a real x > 0 that P
[∣∣γ̂noisem (λi)− E

[
γnoisem (λi)

]∣∣ > x
]
→

0. After that, it remains to prove that

P

[
sup

λ∈[λi,λi+1)

∣∣γnoisem (λ) − γnoisem (λi)
∣∣ > x

]
→ 0 and

that P

[
sup

λ∈[λi,λi+1)

∣∣Eγnoisem (λi)− Eγnoisem (λ)
∣∣ > x

]
→ 0.
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Let ⌊·⌋ be the floor function, choosing a β > 2,

I =
[
0, . . . , ⌊Nβ⌋ − 1

]
, λi = 2 π i

⌊Nβ⌋
, i ∈ I:

sup
λ∈[0,2π)

∣∣γ̂noisem (λ) − E
[
γ̂noisem (λ)

]∣∣

6 max
i∈I

sup
λ∈[λiλi+1]

∣∣γ̂noisem (λ) − γ̂noisem (λi)
∣∣

+max
i∈I

∣∣γ̂noisem (λi)− E
[
γ̂noisem (λi)

]∣∣

+max
i∈I

sup
λ∈[λiλi+1]

∣∣E
[
γ̂noisem (λi)

]
− E

[
γ̂noisem (λ)

]∣∣ ,

△
= χ1 + χ2 + χ3 . (24)

The idea of the proof in [31] is then to provide concentration

inequalities for the term χ1 and χ2 (random terms) and a

bound on χ3. The only difference with [31] is the presence

of the matrix T in γ̂noisem (λ) and the left side correlation of

the noise. Let note ‖γ‖∞ the sup norm of the function γ :

λ −→
∞∑

k=−∞

ck e
−ikλ for λ ∈ [0 2π). The convergence of the

first term χ1 is proposed in the following lemma.

Lemma 7. A constant A > 0 can be found

such that, for any x > 0 and N large enough,

P [χ1 > x] ≤ exp

(

−
cN2

‖T‖∞

(

xNβ−2

A ‖γ‖∞
− log

(

xNβ−2

A ‖γ‖∞

)

− 1

))

.

Proof: As already mentioned, the proof is the same as

in [31] except for two points: the presence of the matrix T

and the left side correlation of the noise instead of right side

in [31]. The inequality:
∥∥VN TVH

N

∥∥ 6 ‖T‖∞
∥∥VN VH

N

∥∥ ≤
‖T‖∞ ‖C‖

∥∥∥XXH
∥∥∥ enables to write:

∣∣γ̂noisem (λ)− γ̂noisem (λi)
∣∣

=

∣∣∣∣d
H
m(λ)

VTVH

N
dm(λ)− dH

m(λi)
VTVH

N
dm(λi)

∣∣∣∣ ,

≤ 2

N
|dm(λ)− dm(λi)| ‖C‖ ‖T‖∞

∥∥∥XXH
∥∥∥ .

And then the end of the proof is exactly the same as those of

the Lemma 4 in [31] replacing c by
c

‖T‖∞
in the exponential.

The left correlation is without consequences on the proof.

The convergence of the second term χ2 is proposed in the

following lemma.

Lemma 8.

P [χ2 > x] ≤ 2Nβ exp

(

−
cN

‖T‖∞

(

x

‖γ‖∞
− log

(

x

‖γ‖∞
+ 1

)))

.

Proof: The proof is the same as those of the Lemma 5

in [31], with the
c

‖T‖∞
on the denominator.

The convergence of the third term χ3 is proposed in the

following lemma.

Lemma 9.

χ3 ≤ A ‖γ‖∞ N−β+1 .

Proof: The proof is the same as those of the lemma 6 of

[31], still with the
c

‖T‖∞
on the denominator.

These inequalities proves that

P

[
sup

λ∈[0,2π)

∣∣γ̂noisem (λ) − E
[
γ̂noisem (λ)

]∣∣ > x

]
a.s.−→ 0 for

any x positive real and with a e−N2

rate of decrease.

3) Analysis of sup
λ∈[0,2π)

|γ̂crossm (λ)|: To prove the conver-

gence of the last term of (22), let us recall that

γ̂crossm (λ) = dH
m(λ)

C1/2 XT1/2 Γ1/2 δMH

N
dm(λ)

+ dH
m(λ)

M δHΓ1/2 T1/2 XH C1/2

N
dm(λ) .

Let Im be a m × m matrix containing 1 everywhere and

Dm(λ) be the matrix containing the elements of dm(λ) on

its diagonal. It can be easily verified that, for any matrix A,

dH
m(λ)Adm(λ) = Tr

(
DH

m(λ)ADm(λ) Im
)
. We obtain:

γ̂crossm (λ) =

2Re
[
1

N
Tr
(
XT1/2 Γ1/2 δMH Dm(λ) Im DH

m(λ)C1/2
)]

.

For readability, let E(λ) = Dm(λ) Im DH
m(λ) defined as:

E(λ) =




1 eiλ . . . ei(m−1)λ

e−iλ 1 . . . ei(m−2)λ

e−i(m−1)λ . . . . . . 1


 ,

let G(λ) = MH E(λ)C1/2 X and J = T1/2 Γ1/2 δ, two

matrices respectively of size p × N and N × p. Moreover,

let g(λ) = [g1(λ), . . . , gN p(λ)]
T

= vec(G(λ)) and j =

[j1, . . . , jN p]
T
= vec(J). We obtain:

γ̂crossm (λ) =
2

N
Re
(
vecT (G(λ)) vec(J)

)
,

=
2

N

N p∑

k=1

Re(gk(λ))Re(jk)− Im(gk(λ)) Im(jk) .

This expression can be transformed by introducing A =
MH EC1/2 ⊗ IN , B = T1/2 Γ1/2 ⊗ Ip, g̃(λ) = A−1 g(λ)

j̃ = B−1 j, ak =

N p∑

l=1

(
AT
)
l,k

and bk =

N p∑

s=1

(B)s,k:

γ̂crossm (λ)

=
2

N
Re
((

A−1 g(λ)
)T

AT B
(
B−1 j

))

=
2

N

N p∑

k=1

Re
(

N p∑

l=1

(
AT
)
l,k

g̃k(λ)

)
Re
(

N p∑

s=1

(B)s,k j̃k

)

− Im
(

N p∑

l=1

(
AT
)
l,k

g̃k(λ)

)
Im

(
N p∑

s=1

(B)s,k j̃k

)
,

=
2

N

N p∑

k=1

Re (ak g̃k(λ)) Re
(
bk j̃k

)

− Im (ak g̃k(λ)) Im
(
bk j̃k

)
.

The variables ak g̃k(λ) and bk j̃k are two independent com-

plex Gaussian variables with variances respectively equal to

|ãk(λ)|2 and |bk|2. We can apply the following lemma:
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Lemma 10. Let x and y be two independent Gaussian N (0, 1)

scalar random variables, then for any τ ∈ (−1 1), then

E [exp (τ x y)] = (1− τ2)−1/2.

Proof: The proof is derived in [31] through lemma 13.

Let ν > 0 a real such that : ν−1 >

sup
k∈J1,NpK,λ∈[0,2π)

(
|ãk(λ)|2 |bk|2

)
. Then, for a fixed

λ ∈ [0 2π), from Lemma 10 and from the Markov

Inequality:

P [γ̂crossm (λ) > x | T]

= P [exp (N ν γ̂crossm (λ)) > exp (N ν x) | T]

≤ exp (−N ν x)E

[
exp

(
2 ν

N p∑

k=1

[
Re (akg̃k(λ)) Re

(
bkj̃k

)

−Im (ak g̃k(λ)) Im
(
bk j̃k

)])]

≤ exp (−N ν x)

Np∏

k=1

(
1− 4 ν2

|ãk(λ)|2
2

|bk|2
2

)−1/2

(
1− 4 ν2

|ãk(λ)|2
2

|bk|2
2

)−1/2

≤ exp

(
−Nνx−

N p∑

k=1

log
(
1− ν2 |ãk(λ)|2 |bk|2

)−1

)

Moreover, since the Γi,j are absolutely summable (Assumption

3), it exists a constant K such that:

|bk|2 =

∣∣∣∣∣

Np∑

l=1

√
τl Γ

1/2
l,k

∣∣∣∣∣

2

≤ K

Np∑

l=1

τl .

Furthermore, since
1

N

Np∑

l=1

τl −→
N−→∞

E(τi) = 1, we obtain

|bk|2 ≤ N K . To deal with |ãk(λ)|, let K1 and K2 be some

constants and remind that, for a fixed j, the {ci,j}i and the

{Mi,j}i are absolutely summable:

|ak(λ)| =
1

m

∣∣∣∣∣∣

p∑

s=1

m∑

l,j=1

cl,kM
⋆
j,s e

i(l−j) λ

∣∣∣∣∣∣
,

≤ 1

m

m∑

l=1

|cl,k| m
p,m∑

s,j=1

∣∣M⋆
j,s

∣∣ ,

≤ pK2 max
s




m∑

j=1

∣∣M⋆
j,s

∣∣

 = pK1 .

We obtain ν2 |ãk(λ)|2 |bk|2 ≤ ν2N2 p2KK2
1 with p ≪ N .

Let q and ǫ be two positive reals small enough and such that:

ν2 =
( q

N1/2+ǫ

)2
<
KK2

1

N
.

Then lim
N−→∞

ν2 |ak(λ)|2 |bk|2 = 0 and

log
(
1− ν2 |ãk(λ)|2 |bk|2

)−1

∼ ν2 |ãk(λ)|2 |bk|2. Thereby,

with A defining a constant, it can be obtained:

P [γ̂crossm (λ) > x | T] ≤ exp
(
−N1/2−ǫ q x−A

)
.

Then, integrating with respect to any density pT(.) of T leads

to:

P [γ̂crossm (λ) > x] =

∫
P [γ̂crossm (λ) > x | T] pT(T) dT

≤ exp
(
−N1/2−ǫ q x−A

)
.

This proves that, for any λi, P [γ̂crossm (λi) > x] →
N→∞

0.

It remains now to prove that

max
i∈I

sup
λ∈[λi λi+1]

|γ̂crossm (λ) − γ̂crossm (λi)| a.s.−→ 0. This will

be left to the reader as it follows the same proof as for χ1 of

(24). We have so P

[
sup

λ∈[0 2π)

γ̂crossm (λ) > x

]
−→

N−→∞
0.

4) Analysis of sup
λ∈[0,2π)

∣∣γ̂signm (λ)
∣∣: The proof of conver-

gence of this quantity follows the same principles. We have:

γ̂signm (λ) = dH
m(λ)

M δH Γ δMH

N
dm(λ) .

As previously, let Im be a m × m matrix containing 1

everywhere and let E(λ) = Dm(λ) Im DH
m(λ). Then:

γ̂signm (λ) = 2Re
[
1

N
Tr
(
M δΓ δH MHE

)]
.

Let A(λ) = MH EM δ and B = Γ δH be two matrix respec-

tively of size p×N and N × p. Defining a(λ) = vec(A(λ))
and b = vec(B), we have:

γ̂signm (λ) =
2

N
Re
(
vecT (A(λ)) vec(B)

)
,

=
2

N
Re
(
aT (λ)

(
MH EM⊗ IN

)−T

(
MH EM⊗ IN

)T
(Γ⊗ Ip) (Γ⊗ Ip)

−1
j
)
,

=
2

N

N p∑

k=1

Re(ak(λ))Re(bk)− Im(ak(λ)) Im(bk) .

Let us define C(λ) = MH EM⊗IN , D = Γ⊗Ip, ã(λ) =

C−1(λ)a(λ), b̃ = D−1 b, ck =

N p∑

l=1

(
CT (λ)

)
l,k

and dk =

N p∑

s=1

(D)s,k. Using Lemma 10 and the Markov inequality, it

can be shown that, for any fixed λ ∈ [0 2π) and a constant µ

such that 0 < µ <

(
sup

λ∈[0,2π)

‖C(λ)‖ sup ‖D‖
)−1

:

P
[
γ̂signm (λ) > x

]

≤ exp

(
−N ν x−

N p∑

k=1

log
(
1− µ2 |ck(λ)|2 |dk|2

)−1
)
.

As the matrix Γ is absolutely summable, then, for all k,

|dk|2 ≤ K where K is a constant. Now, for all k, we have

|ck(λ)| =

∣∣∣∣∣∣

p∑

s=1




m∑

l=1

Ml,s

m∑

j=1

Mj,k e
i (j−l)λ



∣∣∣∣∣∣
,

≤
p∑

s=1




m∑

l=1

|Ml,s|
m∑

j=1

|Mj,k|


 .
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The columns of M are absolutely summable. As p is fixed

and p ≪ N , with K a constant, we have |ck(λ)| ≤ K . The

coefficients of the matrix Γ being absolutely summable, for

all k, we have find a constant K1 such that |dk | ≤ K1 . By

defining w as a constant small enough and µ =
w√
N

such that

µ2 |ck |2 |dk|2 −→
N−→∞

0, then, for all x > 0 and A a constant,

we have the following inequality:

P[γ̂signm (λ) > x] ≤ exp
(
−N1/2w x−A

)
.

As for γcrossm (λ), it remains to prove than

max
i∈I

sup
λ∈[λi λi+1]

|γ̂signm (λ) − γ̂signm (λi)| a.s.−→ 0 and this

will left to the reader as it is the same as the proof of χ1. We

have proven than P

[
sup

λ∈[0 2π)

γ̂signm (λ) > x

]
−→

N−→∞
0. As the

right term of (21) tends to zero when N is tends to infinity,

the proof of Theorem 1 is completed.

B. Proof of Theorem 3

The proof follow the same idea. With the notation ČFP =
T (ĈFP ) where T is the Toeplitz operator defined in the

introduction, the equation to prove becomes:
∥∥∥T (ĈFP )− E [v(τγ) τ ] C

∥∥∥ a.s.−→ 0 . (25)

This equation can be split as:
∥∥∥T
(
ĈFP

)
− E [v(τγ) τ ] C

∥∥∥

≤
∥∥∥T
(
ĈFP − Ŝ

)∥∥∥+
∥∥∥T
(
Ŝ
)
− E [v(τ γ) τ ] C

∥∥∥ .

Let us considering the following notations:

• Ŝ the matrix such as

∥∥∥Σ̌− Ŝ

∥∥∥ a.s.−→ 0, as Theorem 3 has

stated. As a reminder, Ŝ is the matrix defined by:

Ŝ =
1

N

N∑

i=1

v (τi γ) ywi y
H
wi ,

where γ is the unique solution (if defined) of:

1 =
1

N

N∑

i=1

ψ(τi γ)

1 + c ψ(τi γ)
,

where g : x 7→ x

1− c φ(x)
, v : x 7→ u o g−1(x) and

ψ : x 7→ x v(x).

• If A = T
(
(a0, . . . , am−1)

T
)

is a Toeplitz matrix

(a−k = a∗k), we can define the spectral density as:

γA(λ)
∆
=

m−1∑

k=1−m

ak e
i k λ .

Finally, we denote by γ̂A(λ) the estimated spectral den-

sity of Toeplitz matrix A.

To prove the consistency, we will decompose, as for Theo-

rem 1, the equation (26) in two parts. As matrices T
(
ĈFP

)

and C are Toeplitz, it follows through (17):
∥∥∥T
(
ĈFP

)
− E[v(τ γ) τ ]C

∥∥∥

≤ sup
λ∈[0,2 π)

∣∣∣γ̂Ŝ(λ) − γE[v(τ γ) τ ]C(λ)
∣∣∣+
∥∥∥T
(
ĈFP − Ŝ

)∥∥∥

≤ χ1 + χ2, (26)

where χ1 = sup
λ∈[0,2 π)

∣∣∣γ̂Ŝ(λ)− γE[v(τ γ) τ ]C(λ)
∣∣∣ and

χ2 =
∥∥∥T (ĈFP − Ŝ)

∥∥∥.

1) Part 1: convergence of χ1 =

sup
λ∈[0,2π)

∣∣∣γ̂Ŝ(λ)− γE[v(τ γ) τ ]C(λ)
∣∣∣: We will split χ1

into two sub-terms:

sup
λ∈[0,2π)

∣∣∣γ̂Ŝ(λ)− γE[v(τ γ) τ ]C(λ)
∣∣∣

≤ sup
λ∈[0,2π)

∣∣∣γ̂Ŝ(λ)− E

[
γ̂Ŝ(λ)

]∣∣∣

+ sup
λ∈[0,2π)

∣∣∣E
[
γ̂Ŝ(λ)

]
− γE[v(τ γ) τ ]C(λ)

∣∣∣ ,

≤ χ11 + χ12 ,

where χ11 = sup
λ∈[0,2π)

∣∣∣γ̂Ŝ(λ)− E

[
γ̂Ŝ(λ)

]∣∣∣ and

χ12 = sup
λ∈[0,2π)

∣∣∣E
[
γ̂Ŝ(λ)

]
− γE[v(τ γ) τ ]C(λ)

∣∣∣.

Part 1.1: convergence of χ11: We will need the following

lemma:

Lemma 11.

γ̂Ŝ(λ) = dH
m(λ) Ŝ dm(λ) , (27)

and:

E

[
γ̂Ŝ(λ)

]
= E [v(τ γ) τ ] dH

m(λ) Im dm(λ) , (28)

where dm(λ) =
1√
m

[
1, e−i λ, . . . , e−i (m−1)λ

]T
.

Proof: This is the same idea than for Lemma 5. First, we

can write:

γ̂Ŝ(λ) =

m−1∑

k=1−m

šk e
i k λ ,

=
1

mN

m−1∑

k=1−m

ei k λ
m−1∑

j=0

N−1∑

n=0

ŝj,n ŝ
⋆
j+k,n 10≤j+k<m ,

=
1

mN

m−1∑

l,l′=0

e−i (l′−l) λ
N−1∑

n=0

ŝl,n ŝ
⋆
l′,n = dH

m(λ) Ŝ dm(λ) .

The first part of the Lemma is then proven. Concerning

E

[
γ̂Ŝ(λ)

]
, we can define D as the diagonal matrix containing

the {v(τi γ)}i∈J0,N−1K. We obtain:

E

[
γ̂Ŝ(λ)

]
= dH

m(λ)E
[
Ŝ
]
dm(λ) ,

= dH
m(λ)E

[
Yw DYH

w

N

]
dm(λ) .
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Then expliciting each element of E
[
Yw DYH

w

]
leads to:

(
E
[
Yw DYH

w

])
i,j

= E

[
N−1∑

n=0

v(τn γ) yw i,n y
⋆
w j,n

]
,

=

N−1∑

n=0

E [v(τn γ) τn] = N E [v(τn γ) τn] .

We obtain the following result: E

[
γ̂Ŝ(λ)

]
=

E [v(τ γ) τ ] dH
m(λ) Im dm(λ).

The rest of the proof for χ11 is the same as for Theorem

1 γ̂noise, but with T containing the {τi}i on its diagonal,

we will have ‖T‖∞ ‖D‖∞ instead of ‖T‖∞. We obtain so

χ11
a.s.−→ 0 as m −→ ∞.

Part 1.2: convergence of χ12: Lemma 11 and (27) give us

E

[
γ̂Ŝ(λ)

]
= E [v(τ γ) τ ] dH

m(λ)Cdm(λ) .

and E [v(τ γ) τ ] γC(λ) = E [v(τ γ) τ ] dH
m(λ)Cdm(λ). This

yields χ12 = 0.

2) Part 2: convergence of χ2 =
∥∥∥T
(
ĈFP − Ŝ

)∥∥∥: It is

proven, in [43] that

∥∥∥ĈFP − Ŝ

∥∥∥ a.s.−→ 0. Let J be a matrix

such that (J)j−i=1 = 1 and 0 elsewhere. Jk contains 1 only

on the kth diagonal. As before, thanks to (17), we have:

∥∥∥T
(
ĈFP − Ŝ

)∥∥∥ ≤ sup
λ∈[0,2π)

∣∣∣∣∣

m−1∑

k=1−m

(
f̌ pk − šk

)
ei k λ

∣∣∣∣∣ .

Let us define T
(
ĈFP

)
= L

((
f̌ p0, . . . , f̌pm−1

)T)
with

f̌ p−k = f̌ p
∗

k and T
(
Ŝ
)

= L
(
(š0, . . . , šm−1)

T
)

with

š−k = š∗k. We have:

sup
λ∈[0,2π)

∣∣∣∣∣

m−1∑

k=1−m

(
f̌ pk − šk

)
ei k λ

∣∣∣∣∣

= sup
λ∈[0,2π)

∣∣∣∣∣

m−1∑

k=1−m

1

m

m∑

p−1

(
f̌ pk − šk

)
ei k λ

10≤p+k≤m

∣∣∣∣∣ ,

= sup
λ∈[0,2π)

∣∣∣∣∣Tr
((

ĈFP − Ŝ
) 1

m

m−1∑

k=1−m

(
JT
)k
ei k λ

)∣∣∣∣∣ .

Moreover
1

m

m−1∑

k=1−m

(
JT
)k
ei k λ = dm(λ)dH

m(λ). This

leads to:
∥∥∥T
(
ĈFP − Ŝ

)∥∥∥

≤ sup
λ∈[0,2π)

∣∣∣Tr
((

ĈFP − Ŝ
)
dm(λ)dH

m(λ)
)∣∣∣

= sup
λ∈[0,2π)

∣∣∣dH
m(λ)

(
ĈFP − Ŝ

)
dm(λ)

∣∣∣ .

For any vector x, the last equation becomes:

sup
λ∈[0,2π)

∣∣∣dH
m(λ)

(
ĈFP − Ŝ

)
dm(λ)

∣∣∣

≤ sup
‖x‖

2
=1

∣∣∣xH
(
ĈFP − Ŝ

)
x

∣∣∣ ,

≤ sup
‖x‖

2
=1

∥∥∥
(
ĈFP − Ŝ

)
x

∥∥∥
2
≤
∥∥∥ĈFP − Ŝ

∥∥∥ .

Finally, we obtain:
∥∥∥T
(
ĈFP − Ŝ

)∥∥∥ ≤
∥∥∥ĈFP − Ŝ

∥∥∥ .

As

∥∥∥ĈFP − Ŝ

∥∥∥ a.s.−→ 0 then χ2
a.s.−→ 0 and the proof of

Theorem 3 is completed.

APPENDIX B

PROOF OF THEOREM 2

As the proof is the same for Σ̌SCM and Σ̌FP , let Σ̌

denote one or the other of these matrices.

From the equations (7) and (15), as y̌wi = Č−1/2 yi, Σ̌ is the

unique solution of:

Σ =
1

N

N−1∑

i=0

u

(
1

m
yH
i Č−1/2 Σ−1 Č−1/2 yi

)
×

Č−1/2 yi y
H
i Č−1/2 .

Rewriting this equation with the {y̌wi}i
C−1/2Č1/2 ΣČ1/2 C−1/2

=
1

N

N−1∑

i=0

u

(
1

m
y̌H
wi

(
C−1/2 Č1/2 ΣČ1/2 C−1/2

)−1

×

y̌wi) y̌wi y̌
H
wi ,

we obtain the following relationship between Σ̌ and Σ̂:

Σ̌ = Č−1/2 C1/2 Σ̂C1/2 Č−1/2 . (29)

Then, equation (11) can be rewritten as
∥∥∥Σ̌− Ŝ

∥∥∥ ≤
∥∥∥Σ̌− Σ̂

∥∥∥ +
∥∥∥Σ̂− Ŝ

∥∥∥ . (30)

Concerning the second term of the right hand side of (30),

it is proven in [27] that the matrix Ŝ given by (9) is such that
∥∥∥Σ̂− Ŝ

∥∥∥ a.s.−→ 0 . (31)

With (29), the first term of right hand side of (30) can be

rewritten as:∥∥∥Σ̌− Σ̂

∥∥∥ ≤
∥∥∥Č−1/2 C1/2 Σ̂C1/2 Č−1/2 − Σ̂C1/2 Č−1/2

∥∥∥

+
∥∥∥Σ̂C1/2 Č−1/2 − Σ̂

∥∥∥ . (32)

After left and right factorizations, we obtain:
∥∥∥Σ̌− Σ̂

∥∥∥ ≤
∥∥∥Č−1/2 C1/2 − Im

∥∥∥
∥∥∥Σ̂
∥∥∥
(∥∥∥C1/2 Č−1/2

∥∥∥+ 1
)
.

As ‖C‖ has a bounded support, ‖Č‖ is bounded too since its

eigenvalues support converges almost surely toward the true

distribution. Moreover, Theorem 1 and Theorem 2 have proved

the consistency
∥∥C− Č

∥∥ a.s.−→ 0. This ensures the proof.
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