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ABSTRACT

Based on the Kennaugh-Huynen decomposition, the Target
Scattering Vector Model (TSVM) allows to extract four roll-
invariant parameters. Those parameters are necessary for an
unambiguous description of the target scattering mechanism.
The proposed method consists in applying the TSVM prior to
the GLRT-LQ detector for the detection of any oriented target.

Index Terms— Polarimetric Synthetic Aperture Radar,
Roll-invariant decomposition, Target detection.

1. INTRODUCTION

In this paper, a method is proposed for detecting Polarimetric
Synthetic Aperture Radar (PolSAR) targets. The proposed
method is a combination of the Target Scattering Vector
Model (TSVM) and the Generalized Likelihood Ratio Test -
Linear Quadratic (GLRT-LQ) detector. The TSVM provides
an unique and roll-invariant decomposition of the observed
target vector by means of four independent parameters. The
combination of those two methods will allow the detection of
any oriented targets (trihedral, dihedral, dipole, helix, . . .).

This paper is organized as follows. The context of the
study is first described. Then, the TSVM algorithm is ex-
posed. Next, the proposed algorithm for a roll-invariant tar-
get detection is presented. Then, some detection results are
shown on a real PolSAR data-set acquired by the RAMSES
sensor at X-band.

2. ROLL-INVARIANT TARGET DECOMPOSITION

2.1. Context

Let kdip and kdih be respectively the steering vectors in the
Pauli basis of two oriented dipole and dihedral. They are re-
spectively defined by:

kdip =
1√
2

 1
cos(2ψ)
sin(2ψ)

 and kdih =

 0
cos(2ψ)
sin(2ψ)

 (1)

where ψ is the orientation of the maximum polarization with
respect to the horizontal polarization [1].

Consequently, for a roll-invariant target dipole or dihe-
dral detection, the tilt angle ψ should be removed. In 1993,
Krogager has proposed an algorithm to derive ψ which uses
the phase difference between right-right (SRR) and left-left
(SLL) circular polarizations of the scattering matrix S [2]:

ψKrogager =
[
Arg
(
SRRS

∗
LL + π

)]
/4. (2)

where SRR and SLL are respectively defined by :{
SRR = (SHH − SV V + 2jSHV ) /2
SLL = (SV V − SHH + 2jSHV ) /2

This estimated orientation angle ψKrogager is valid under cer-
tain condition on the target. To overcome this problem, au-
thors propose to apply the TSVM method which provides an
unique and roll-invariant decomposition of any targets [1].

2.2. The Kennaugh-Huynen con-diagonalization

In PolSAR imagery, coherent targets are fully described
by their scattering matrix S. To retrieve parameters with
a physical meaning, Kennaugh and Huynen have proposed
to apply the characteristic decomposition on the scattering
matrix [3] [4] [5]. Under the reciprocity assumption, the
cross-polarization terms SHV ans SV H are equal. It yields:

S = R(ψ)T(τm)SdT(τm)R(−ψ), (3)

where R(ψ) and T(τm) are defined by :

R(ψ) =
[

cosψ − sinψ
sinψ cosψ

]
, (4)

and:

T(τm) =
[

cos τm −j sin τm
− j sin τm cos τm

]
. (5)

Sd is a diagonal matrix which contains the two complex con-
eigenvalues µ1 and µ2 of S as:

Sd =
[
me2j(ν+ρ) 0

0 m tan2 γ e−2j(ν−ρ)

]
=
[
µ1 0
0 µ2

]
.

(6)



The Kennaugh-Huynen con-diagonalization allows to charac-
terize a coherent target by means of six independent parame-
ters : ψ, τm, m, γ, ν and ρ. ψ is the rotation angle (see (1)).
This parameter is used for the subtraction of the target orien-
tation from the target vector, which leads to a roll-invariant
decomposition. This step is named desying. τm is the tar-
get helicity, it characterizes the symmetry of the target. m is
the maximum amplitude return. γ and ν are respectively the
characteristic and skip angles. ρ is the absolute phase of the
target. This term is not observable except for interferometric
applications.

2.3. The Target Scattering Vector Model

In 2007, Touzi has proposed a new model: the Target Scatter-
ing Vector Model (TSVM). It consists in the projection in the
Pauli basis of the scattering matrix con-diagonalized by the
Takagi method [1]. It leads:

−→eT SV = mejΦs

 1 0 0
0 cos(2ψ) − sin(2ψ)
0 sin(2ψ) cos(2ψ)


×

 cosαs cos(2τm)
sinαsejΦαs

− j cosαs sin(2τm)

 . (7)

αs and Φαs are the symmetric scattering type magnitude and
phase. They are derived from the con-eigenvalues µ1 and µ2

of the scattering matrix S by:

tan(αs) ejΦαs =
µ1 − µ2

µ1 + µ2
. (8)

The symmetric scattering type magnitude αs reduces to the
so-called α parameter issued from the Cloude-Pottier decom-
position for a symmetric scatterer (i.e. τm = 0).

Due to the con-eigenvalue phase ambiguity, the Kennaugh-
Huynen decomposition is not unique. Huynen’s orientation
angle ψ should be re-evaluated. To remove this ambiguity, the
following relation is applied to restrict the domain definition
of ψ to the interval [−π/4, π/4]:
−→eT SV(Φs, ψ, τm,m, αs,Φαs)

= −→eT SV(Φs, ψ ±
π

2
,−τm,m,−αs,Φαs). (9)

As the last term of (7) is independent of the target orienta-
tion angle, it yields that the four parameters m, αs, Φαs and
τm are roll-invariant. In the following, the TSVM method
is first applied on the original PolSAR data-set to provide a
roll-invariant target vector. To compute the target orientation
angle with the TSVM decomposition, the following relation
is implemented [5] [6] [7]:

ψTSVM =
1
2

Arctan

 2<e
{

(S∗HH + S∗V V )SHV
}

<e
{

(S∗HH + S∗V V )(SHH − SV V )
}
 .

(10)

2.4. Comparison between ψTSVM and ψKrogager

According to the TSVM, the following relation between the
orientation angle ψTSVM estimated by the TSVM method
and ψKrogager estimated with the phase difference be-
tween right-right and left-left circular polarizations can be
proved [8]:

ψTSVM = ψKrogager −
1

4
Arctan

„
tan(αs) sin(Φαs)

tan(αs) cos(Φαs) + sin(2τm)

«
+

1

4
Arctan

„
tan(αs) sin(Φαs)

tan(αs) cos(Φαs)− sin(2τm)

«
. (11)

Fig. 1 shows a comparison between the orientation angle
ψTSVM estimated via the TSVM and ψKrogager as a func-
tion of three roll-invariant TSVM parameters: τm, Φαs and
αs. Fig. 1(a) shows the evolution of ψTSVM and ψKrogager
with the helicity τm for αs = π/3 and Φαs = π/3. Fig. 1(b)
and Fig. 1(c) show respectively this relation as a function of
the target scattering phase Φαs for αs = π/3 and τm = π/8,
and as a function of αs for Φαs = π/3 and τm = π/8. For
τm = 0, the target is symmetric. It leads that ψTSVM is equal
to ψKrogager, as observed in black in Fig. 1(a). Moreover, for
a null target scattering phase Φαs , ψKrogager and ψTSVM
are equal. Similar observations can be done for αs = 0 and
αs = π/2 as shown in Fig. 1(c).

For τm = 0, Φαs = 0, αs = 0 or αs = π/2, the orien-
tation angle estimated by the phase difference between right-
right and left-left circular polarizations is equal to this esti-
mated by the TSVM. It leads that both tilt angles are equal
for a wide class of targets including trihedral, dihedral, helix,
dipole, quarter wave, . . . For all other cases, the orientation
angle ψKrogager is biased, and ψTSVM should be used in-
stead for a roll-invariant target characterization.

3. ROLL-INVARIANT TARGET DETECTION

The general principle of the proposed roll-invariant target de-
tection algorithm can be divided into five steps. First, the
orientation angle ψ is computed and the "roll-invariant" tar-
get vector is extracted. This step is named desying. Then, the
covariance matrix [M ] of the clutter is estimated. Next, the
similarity measure between the steering vector and the "roll-
invariant" target vector is computed. The false alarm proba-
bility is fixed, and finally we conclude or not on the detection.

3.1. Binary hypothesis test

The target detection problem can be formulated as a binary
hypothesis test shown in (12). Under the null hypothesis H0,
the observed target vector k is only the clutter c. Under the
alternative hypothesis H1, the backscattered signal can be de-
composed as the sum of the reference signal p times an un-
known scalar complex parameter α with the clutter c. Here,
the clutter is modeled as a Spherically Invariant Random Vec-
tor (SIRV), i.e. c =

√
τz. c is defined as the product of a



(a)

(b)

(c)

Fig. 1. Comparison between ψTSVM and ψKrogager: (a) as
a function of τm for αs = π/3 and Φαs = π/3, (b) as a
function of Φαs for αs = π/3 and τm = π/8 and (c) as a
function of αs for Φαs = π/3 and τm = π/8

square root of a positive random variable τ (representing the
texture) with an independent circular complex Gaussian vec-
tor z with zero-mean and covariance matrix [M ] = E{zzH}
(representing the speckle).

{
H0 : k = c
H1 : k = αp + c (12)

The optimal detector under the SIRV hypothesis is given by
the following relation:

Λ ([M ]) =
pk(k/H1)
pk(k/H0)

=
hp

(
(k− p)H [M ]−1(k− p)

)
hp

(
kH [M ]−1k

) H1

≷
H0

λ.

where hp (·) is the density generator function. Its expression
is given by:

hp (x) =

+∞∫
0

1
τp

exp
(
−x
τ

)
pτ (τ) dτ.

This optimal detector depends on the texture probability den-
sity function pτ .

3.2. GLRT-LQ detector

The Generalized Likelihood Ratio Test - Linear Quadratic
(GLRT-LQ) detector can be used to detect a particular tar-
get. Let p be a steering vector and k the observed signal. The
GLRT-LQ between p and k is given by [9]:

Λ ([M ]) =
|pH [M ]−1k|2

(pH [M ]−1p) (kH [M ]−1k)

H1

≷
H0

λ, (13)

where [M ] is the covariance matrix of the population under
the null hypothesis H0, i.e. the observed signal is only the
clutter.

In general, the covariance matrix is unknown. One so-
lution consists in estimating the covariance matrix [M ] by
[M̂ ]FP , the fixed point covariance matrix estimator. It is the
maximum likelihood estimator of the normalized covariance
matrix under the deterministic texture in a Spherically Invari-
ant Random Process. Its expression is given by the solution
of the following recursive equation [10]:

[M̂ ]FP = f([M̂ ]FP ) =
p

N

N∑
i=1

kikHi
kHi [M̂ ]−1

FPki
. (14)

Replacing [M ] by [M̂ ]FP in (13) leads to an adaptive version
of the GLRT-LQ detector.

If the covariance matrix is estimated by the fixed point es-
timator (14), it has been proved, for large N , the relation be-
tween the false alarm probability pfa and the detection thresh-
old λ:

pfa = (1− λ)(a−1)
2F1(a, a− 1; b− 1;λ), (15)

with a =
p

p+ 1
N − p + 2 and b =

p

p+ 1
N + 2. N is

the number of pixels used to estimate the covariance matrix
[M ]. p is the dimension of the target vector (p = 3 for the
monostatic case). 2F1(·, ·; ·; ·) is the Gauss hypergeometric
function.

4. DETECTION RESULTS ON A RAMSES X-BAND
DATA-SET

In this section, a real data-set acquired by the RAMSES sen-
sor at X-band is analyzed. Fig. 2 shows a colored composi-
tion in the Pauli basis of the target vector. This data-set is



(a) (b)

Fig. 2. Toulouse, RAMSES PolSAR data, X-band (150×150
pixels). Colored composition in the Pauli basis of the target
vector [k]1-[k]3-[k]2. Images containing a dihedral (a) and a
narrow diplane (b).

composed by two particular targets: a dihedral (in green on
Fig. 2(a)) and a narrow diplane (in red on Fig. 2(b)). Both
GLRT-LQ Krogager and GLRT-LQ TSVM detectors (tilt an-
gle estimated respectively by ψKrogager and ψTSVM ) are ap-
plied on this data-set. Table. 1 shows the criterion character-
istics for the dihedral and the narrow diplane. As those two
targets have theoretically a null target helicity τm, both detec-
tors should have similar performance. For a fixed false alarm
probability of 5× 10−3, the detection threshold is λ = 0.931.
For the dihedral, The GLRT-LQ TSVM is able to detect the
target (0.956 > λ) whereas the GLRT-LQ Krogager detector
fails (0.912 < λ).

Similar conclusions can be done for the narrow diplane as
observed on Table. 1.

dihedral
GLRT-LQ ψ αs Φαs τm

Krogager 0.912 0.761
TSVM 0.956 0.770 -1.453 0.450 -0.178

Pure target 1.571 ∞ 0

narrow diplane
GLRT-LQ ψ αs Φαs τm

Krogager 0.828 -0.023
TSVM 0.849 -0.026 1.210 -0.172 0.052

Pure target 1.249 0 0

Table 1. Detector characteristics for the dihedral and the the narrow
diplane.

5. CONCLUSION

In this paper, authors have proposed to the use Target Scat-
tering Vector Model to extract the roll-invariant target vector.
Some comparisons have been done between the orientation
angle estimated with the phase difference between right-right
and left-left circular polarizations and this issued from the
TSVM. Next, authors have proposed to use the TSVM for a
roll-invariant target detection. The GLRT-LQ similarity mea-
sure has been implemented and validated on high resolution

PolSAR data for the detection of particular targets such as an
oriented dihedral.

Further works will deal with the use of optimal detectors
based on the statistics of the PolSAR clutter. Special inter-
est will also be dedicated to bistatic PolSAR imagery where
the cross-polarization terms of the scattering matrix S are not
equal in general [11]. In this case, two orientation angles, one
at the emission and one at the reception, should be taken into
account.
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