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Abstract
The Doppler signature of a man walking in a forested area analysed at L‐band is pre-
sented here. The aim is twofold: to assess the best time‐frequency distribution to char-
acterise the activity; to highlight the similarity of the simulated data to the measured ones
to validate the simulation tool. Indeed, the Doppler‐Time (DT) signal variation represents
the main characteristic of Artificial Neural Networks (ANNs) for classification. The more
accurately the DT characterises the activity, the higher the machine’s accuracy in classi-
fying it. Besides, in the training data frame, reliable simulated models may supply the
amount of data needed by ANN applications. Thus, a short‐time Fourier transform
(STFT), a reassigned spectrogram (RE‐Spect), and a pseudo‐Wigner–Ville distribution
have been applied to the measured and simulated data. The measurements have been
performed using a bistatic radar working at 1 GHz. Then, the measurement setup has
been replicated in simulation, and 3‐D human bodies walking in free space have been
computed using physical optics. The results show that the STFT is the most suitable
time‐frequency method for recognising and classifying the walk. Moreover, the simulated
data are in agreement with the measured data, regardless of the chosen Cohen’s
technique.

1 | INTRODUCTION

Human detection and the activity classification are significant
research topics for the surveillance, security, and search‐and‐
rescue operations. The Doppler radar is the widely used
technology for the identification and monitoring of human
subjects [1, 2]. The main issue for detecting humans is repre-
sented by the wide variety of physical activities and positions.

Kim et al. [3, 4] have carried out a classification of different
human activities, including running, boxing, walking, crawling,
and sitting still. The micro‐Doppler signatures have been
recorded by a radar working at 2.4 and 7.25 GHz. The clas-
sification has been performed by using a support vector ma-
chine (SVM) and a deep convolutional neural network
(DCNN). Bilik et al. [5] focussed on distinguishing people
from animals and wheeled vehicles using new features identi-
fication. The targets have been recorded by a 9‐GHz ground

surveillance pulse‐Doppler radar and the corresponding
spectrograms have been used for the classification. Park et al.
[6] have investigated the micro‐Doppler signatures in a more
challenging case to classify human activities on water. A
DCNN has been implemented to analyse the measured and
simulated data collected at 7.25 GHz. Fioranelli et al. have
classified the bistatic Doppler signature of indoor human
movements [7]. The activities of walking, getting up and sitting
from a chair, and picking up an object on the ground have
been analysed with a bistatic radar operating at 5.8 GHz (C‐
band). The impact of different aspect angles on unarmed
versus potentially armed personnel classification has been
analysed, instead, at 2.4 GHz (S‐band) using a multi‐static
radar [8].

Doppler radars have been also employed to detect hu-
man targets in urban centres. The main challenge is to deal
with the multipath propagation that may induce the wrong
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location of the target [9]. Linnehan et al. have analysed at
16.9 GHz, the Doppler response of a subject moving in
urban multipath environments [10]. The Doppler of
different walking persons have been analysed by using a
radar system behind corners working in continuous wave
(CW) at 10 GHz [11, 12].

The analysis of the Doppler response of humans moving
within forested areas is an active research topic that has not
yet been fully explored. Kilic et al. [13, 14] have presented a
study of the effects of the mutual coupling between the
forest and a moving subject. A Doppler analysis has been
carried out at 5 GHz based entirely on numerical tests. The
forest, as well as the human body, have been modelled as
being perfectly conductive. Davis has highlighted, with
experimental tests, that radars are more efficient operating in
L‐band (1.3 GHz) and in UHF‐band (400 MHz) to detect
animals, human subjects, and vehicles moving under heavily
wooded regions [15]. However, at these frequencies, the
Doppler signature of moving human bodies is expected to
be different, as shown by Dogaru et al. using simulated data
at 300 MHz in free space [16].

In a previous work [17], we have analysed at L‐ and UHF‐
band, the time variation of the frequency signature of a subject
walking and running in a wooded area. We have presented the
walk and run’s measured spectrograms whose backscattering
signals have been collected employing a bistatic radar operating
at 1 GHz (L‐band) and 435 MHz (UHF‐band). In this paper,
we focus, instead, on the processing of the received signal.
Within the Cohen’s class, the short‐time Fourier transform
(STFT) is the most employed function to characterise human
activities [2–6, 8, 16]. A time‐frequency distribution provides
the Doppler‐Time (DT) variation of the reflected signal on
which machine learning classification is principally based [3, 4,
18–22]. The artificial learning accuracy, therefore, depends on
the reliability of the DT feature. In the frame of human sensing
in L‐band, we wondered which is the best Cohen’s class dis-
tribution to characterise the DT signature of a walk performed
in a forested area. To this purpose, the measured Doppler
spectrum has analysed applying the short‐time Fourier trans-
form STFT [23], the reassigned spectrogram RE‐Spect [24],
and the pseudo‐Wigner–Ville distribution PWVD [25]. They
represent the most used window‐based transformation func-
tions to explore the spectrum of a moving subject’s time
variation. The time‐frequency distributions have also been
applied to the simulated data representing the backscattered
response of a 3‐D human body walking in free space. The aim
is to evaluate the reliability of the simulated data with respect to
the measured ones. The assessment of the time‐frequency
techniques and simulated data has been performed by ana-
lysing four Doppler characteristics extracted from the spec-
trograms. The simulated and measured features have been
compared with those theoretically calculated by implementing
different human walking models.

The paper is organised as follows. The bistatic radar system
used for the measurements and the numerical tests are
described in Section 2. The Doppler frequencies of the walk,

theoretically calculated, and the extraction of the Doppler
features are analysed in Section 3. The measured and simulated
spectrograms relative to the different time‐frequency distri-
butions are commented in Section 4. An assessment of the
STFT, RE‐Spect, and PWVD based on the similarity index
between the simulated, measured, and theoretical Doppler
features is discussed in Section 5. Finally, the conclusions are
presented in Section 6.

2 | BISTATIC RADAR SETUP

The description of the bistatic radar and of the setup chosen
for both the numerical tests and the measurements has been
presented in the previous work [17]. We summarise the basic
parameters as follows.

Two Log periodic antennas have been used working in CW
at 1 GHz. The antennas have been mounted at 1.35 m above
the ground and located at 0° azimuth and 0° elevation. In
addition, the antennas have been positioned at L = 16 m apart,
so as to ensure a negligible mutual coupling between them.
Vertical polarisation has been chosen for the transmitting and
receiving antennas.

The measurements have been carried out in an outdoor
scene represented by a grass field with the presence of a row of
trees, as shown in Figure 1a. The subject has travelled a dis-
tance R = 30 m in approximately 30 s, walking towards the
antennas. In detail, the target started the walk close to the trees
at 40 m away from the antennas and he concluded the activity
at the distance of 10 m from the radar system, as depicted in
Figure 1b. It follows that L and R outline a tracking area
characterised by a bistatic angle β, linearly varying from 22.6°
to 77.4°.

Two temporal signals have been separately collected:
xclutter(t) denotes the contribution of the clutter to the back-
scattered field, and xtarget+clutter(t) that is the signal reflected by
the moving subject in this environment; t refers to the time of
the collection. The recorded signals have been first sampled at
fr = 10 kHz and the in‐phase (I ) and the quadrature‐phase (Q)
components have been extracted. Then, a clutter suppression
has been carried out as following:

xðtÞ ¼ xtargetþclutterðtÞ − xclutter ðtÞ: ð1Þ

The subtraction of clutter helps to reduce the impact of the
stationary background and antenna coupling. Conversely, it
may potentially increase the clutter due to moving branches
and leaves [26], albeit at a much lower Doppler shift than that
produced by a walking person. Thus, a high pass filter with a
cut‐off frequency fc = 0.1 Hz has been applied to x(t) to
decrease the surrounding environment’s impact on the walk’s
Doppler spectrum.

The measurement setup has been replicated in simulation.
A 3‐D human model walking at 0.9 m/s has been implemented
in MATLAB®, replacing each body part with canonical
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dielectric shapes (a sphere, cylinders, and a parallelepiped), as
represented in Figure 1c. The relative permittivity ɛr = 40.94
and the conductivity σ = 0.9 S/m have been chosen to simulate
the dielectric properties of the dry skin at 1 GHz [27]. The
backscattered responses of the moving target have been pro-
vided by a simulation tool based on the theory of the physical
optics (PO) [28].

3 | CHARACTERISATION OF THE
FREQUENCY SIGNATURE OF A
WALKING MAN AT 1 GHz

The walk of different moving subjects has been first ana-
lysed at 1 GHz theoretically. The Doppler frequencies have
been calculated to characterise the physical activity by the

F I GURE 1 Bistatic radar setup: (a) outdoor scene, (b) parameters of the bistatic configuration, (c) 3‐D human body model. The subject performed a walk
wearing a jacket. The measurements have been carried out in the presence of moderate wind
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extraction of representative features. To this purpose, four
subjects have been simulated, with walking speeds ranging
from 0.9 to 1.4 m/s. The motions have been recorded at
120 Hz by the Motion Capture Lab [29]. 3‐D human
models have been implemented as having 11 body parts to
reproduce faithfully the motions of a human walking cycle:
right arm (RA), left arm (LA), right forearm (RFA), left
forearm (LFA), right thigh (RT), left thigh (LT), right leg
(RL) and left leg (LL), head (H), neck (N), and torso (T).
Their sizes have been chosen to be equivalent to the average
human body sizes [30, 31].

The Doppler frequency modulations have been analytically
calculated according to the following equation [32]:

FD ¼
2‖ v!‖

λ

� �

cos
β
2

� �

; ð2Þ

where FD denotes the Doppler shift, v! the vector velocity, λ
the radar wavelength, and β the bistatic angle. The individual
Doppler contributions of the body parts of a subject walking at
0.9 m/s are shown in Figure 2 in an interval time of 4 s, as a
representative case. The Doppler frequencies due to the mo-
tions of the head, the neck, and the torso are superimposed
and less distinguishable from each other. The highest and
lowest Doppler shifts are instead caused by the movements of
the limbs.

Four features have been chosen to characterise the
Doppler signature of the walk [3, 33]: (1) the torso Doppler
frequency, (2) the period, (3) the total bandwidth (BW) of the
Doppler signal, and (4) the offset. The torso Doppler fre-
quency (1) is related to the speed of the walking man. Period
(2) is the time period of the Doppler response from the torso.
It corresponds to the half swings rate of the legs. The total BW
of the Doppler signal (3) is provided by the highest speed of
the upper and the lower limbs. The offset (4) outlines, instead,
the asymmetry between the forward and backward motions
of the arms and the legs.

The four features have been automatically extracted by
processing the data over each time bin. In the representative
case depicted in Figure 2, the torso Doppler frequency (1) is
the average frequency of the Doppler contributions provided
by the bobbing torso. The result is shown in Figure 3. In the
spectra presented in Section 4, the torso Doppler frequency (1)
corresponds to the average frequency of the peak signal in
intensity processed over each time bin. Then, according to
Equation (2), the radial speed is calculated. The period (2) is
the time period of the Doppler from the torso shown in
Figure 3. The calculation of the features 3) and 4) has been
carried out identifying two envelopes [33, 34]: the high‐
frequency envelope (HFE) and the low‐frequency envelope
(LFE). Figure 4 shows the two extracted curves by processing

F I GURE 2 Doppler frequencies of a subject walking at 0.9 m/s
simulated at 1 GHz

F I GURE 3 Doppler frequencies of the bobbing torso

F I GURE 4 Doppler frequency envelopes of a human body model
walking at 0.9 m/s: the high‐frequency envelope (HFE) (dashed line), the
low‐frequency envelope (LFE) (continuous line). The square marker
represents the largest frequency of HFE, and the diamond marker
represents the smallest frequency of LFE. The offset (cross marker) is the
mean value between the largest and smallest frequency
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the Doppler contributions of a human phantom walking at
0.9 m/s, analysed at 1 GHz. At each time bin, HFE is made up
by the highest Doppler frequency, whereas LFE is made up by
the lowest Doppler frequency. Thus, the total BW (3) is
calculated as the averaged difference between the highest fre-
quency of HFE and the lowest frequency of LFE. The offset
(4) is the mean value between the largest frequency of HFE
and the smallest of LFE, as shown in Figure 4.

The ranges of values of the Doppler features theoretically
calculated are indicated in Table 1. Those characteristics have
been used for comparison with those obtained by the simu-
lations and the experimental test. The comparison allows
evaluating the best time‐frequency analysis for the Doppler
characterisation of the walk.

4 | TIME‐FREQUENCY
DISTRIBUTIONS

The simulated and measured backscattered responses of the
walking target have been post‐processed by performing an
STFT [23], an RE‐Spect [35, 36], and a PWVD [37]. The
STFT is the widely time‐frequency transform used for the
identification and classification of different types of human
motions [3, 4, 10–13]. The STFT is not characterised by
interferences but is known to have very poor joint time‐
frequency resolutions [38]. The RE‐Spect is a technique
for refocussing the time‐frequency data to achieve high‐
resolution spectral representations [24]. The PWVD pro-
vides more accurate instantaneous frequency and group
delay values of the non‐stationary multi‐component signals
[25]. It has moderate performance in terms of joint time‐
frequency resolution [39]. The three distributions mainly
describe the potentiality of performance proposed by the
Cohen class.

In a previous work [33], we have highlighted that the
choice of a frequency window (Hanning, Hamming, Gauss,
Kaiser, and Flattop) does not affect the characterisation of the
Doppler signature. Therefore, the Hanning window has been
employed within the time‐frequency distributions. A coherent
processing interval (CPI) equal to 0.5 s has been chosen, which
implies a frequency resolution Δf equal to 2 Hz.

The simulated and measured Doppler spectra have been
normalised and plotted in dB scale (Figures 5a–7b), where the

x‐axis represents the slow time, and the y‐axis the Doppler
frequencies. The normalisation has been carried out to high-
light the Doppler frequency distributions of the simulated and
measured walk in the same dB range.

4.1 | Short‐time Fourier transform

The first analysis focussed on the STFT of the signal back-
scattered by the target walking towards the antennas. The
STFT is defined in continuous time as [23]

Fxðt; f Þ ¼ ∫ ∞
−∞xðuÞ h

�
ðu − tÞ e−i2πf u du; ð3Þ

where x(.) denotes the signal reflected by the moving target,
h(⋅) the smoothing Hanning window, ∗ the complex conjugate,
and Sx(t, f ) the spectrogram distribution. The so‐called spec-
trogram is defined as the square modulus of the STFT:

TABLE 1 Doppler characteristics of simulated walking subjects,
analytically calculated at 1 GHz

Features 1 GHz

(1) Torso Doppler 5.98–9.74 Hz

(2) Period 0.51–0.72 s

(3) Total BW 15.95–32.99 Hz

(4) Offset 7.49–9.8 Hz

Radial speeds 0.9–1.46 m/s

Abbreviation: BW, bandwidth.

(a)

(b)

F I GURE 5 Doppler frequency signature of a walking man analysed at
1 GHz by using the short‐time Fourier transform: (a) simulated data,
(b) measured data
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Sxðt; f Þ ¼ Fxðt; f Þj j
2
: ð4Þ

The simulated and measured results are shown in
Figure 5a,b, respectively. The corresponding Doppler features
are listed in Table 2.

As concerns the simulated signature, the physical activity
caused positive Doppler shifts, centred around 6 Hz,
meaning a target approaching the antennas. The spectrogram
is marked by a high intensity sinusoidal shaped, highlighted
by the orange‐red pattern depicted in Figure 5a. The pattern
is principally related to the swaying torso, head, and neck
from which the strongest signal is reflected. It is charac-
terised by the feature (1) equal to 5.97 Hz, which implies a
speed equal to 0.9 m/s. The Doppler spectrum appears
quite uniform with a period (2) equal to 0.56 s. The cyan
spikes observed at the lower and upper edges of the pattern,
instead, can be related to the motions of the arms and legs
[3, 4]. The speeds of the limbs of the simulated human
phantom determine a total BW (3) of 22.53 Hz and their
asymmetric movement corresponds to an offset (4) around
6 Hz, as presented in Table 2.

The measured Doppler shifts due to the walking towards
the antennas are shown in Figure 5b. The spectrum exhibits a
periodic trend which is saw‐tooth shaped, well observed
starting from 5 s. The detected torso Doppler (1) is 6.25 Hz
that corresponds to a speed of 0.94 m/s. The forward motions
of the limbs are more detected than those backwards, identified
in the positive Doppler pattern by the cyan spikes. Their
movement are asymmetric with an offset (4) of 5.1 Hz and
characterised by a BW (3) equal to 25.31 Hz. Negative Doppler

contributions are also observed in Figure 5b in the first 10 s,
highlighted by the green‐cyan spikes weak in magnitude. They
could be associated to the presence of echoes not related to the
main activity. It has to be noted that the measurements have
been performed in the presence of moderate wind. Therefore,
the slight movements of the undergrowth along with the path,
and of the jacket worn by the target, may have caused the
observed negative Doppler shifts.

Overall, the measured and simulated features fall within the
ranges theoretically calculated (Table 1), except for the offset,
as shown in Table 2. The difference may be related to the high
variability of asymmetry occurring in the movements of the
lower and upper limbs. Indeed, it depends on the performed
physical activity, speed, gender and sizes of the subject that are
not entirely included in our database. However, the simulated
data are in agreement with the measured ones, with differences
of around 10%. It is worth noting that the simulation imple-
ments a human body walking in free space. Therefore, such
differences are considered negligible.

4.2 | Reassigned spectrogram

The simulated and measured data have been further analysed
by using the RE‐Spect. This technique enhances the resolution
both in the time and in the frequency domain, making the
spectrogram less blurred around the single instantaneous fre-
quencies [40]. The RE‐Spect [35, 41] is acting on Equation (4)
according to

SðrÞx t0; f 0
� �

¼ ∫ þ∞
−∞ ∫ þ∞

−∞ Sxðt; f Þ δ t0 − t̂ðx; t; f Þð Þ

δ f 0 − f̂ ðx; t; f Þ
� �

dt df ;
ð5Þ

where the new corresponding centres of energy t̂ðx; t; f Þ in
time and f̂ ðx; t; f Þ in frequency are given by the following:

t̂ðx; t; f Þ ¼ t þ Re
Fx t; f ;Thð Þ

Fxðt; f ; hÞ

� �

; ð6Þ

f̂ ðx; t; f Þ ¼ f − Im
Fx t; f ;Dhð Þ

Fxðt; f ; hÞ

� �

; ð7Þ

with Fx(t, f ) defined in Equation (3) and where Th tð Þ ¼ t h tð Þ
and Dh tð Þ ¼ dh tð Þ=dt represent, respectively, the operators of
multiplication and differentiation, where δ is the Dirac delta
function and Re ⋅f g, Im ⋅f g stand for the real and imaginary
parts, respectively, of the resulting complex number.

The simulated and measured results are shown in
Figure 6a,b, respectively. The time‐frequency plots look
sharper than those observed in Figure 5a,b. The simulated
and measured Doppler patterns of the main reflective area
of the moving body characterised by the features (1) are
equal to 5.96 and 5.63 Hz, as presented in Table 3. They
denote radial speeds equal to 0.89 and 0.84 m/s,

TABLE 2 Short‐time Fourier transform: theoretical, simulated, and
measured Doppler features of a subject walking near the forest, analysed at
1 GHz

Features Data 1 GHz

(1) Torso Doppler theoretical 5.98–9.74 Hz

simulated 5.97 Hz

measured 6.25 Hz

(2) Period theoretical 0.51–0.72 s

simulated 0.56 s

measured 0.68 s

(3) Total BW theoretical 15.95–32.99 Hz

simulated 22.53 Hz

measured 25.31 Hz

(4) Offset theoretical 7.49–9.8 Hz

simulated 5.96 Hz

measured 5.1 Hz

Radial speeds theoretical 0.9–1.46 m/s

simulated 0.9 m/s

measured 0.94 m/s
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respectively, nearly in agreement with the theoretical ones.
The Doppler pattern looks periodic and saw‐tooth shaped
with period (2) equal to 0.71 and 0.67 s, relative to the
simulated and measured frequency signatures.

The Doppler shifts due to the limb motions are difficult to
detect and observable only in the time interval 20–30 s.
Consequently, the routine process makes a mistake, evaluating
a Doppler BW (3) smaller than those observed in Table 2,
applying the STFT, and an offset (4) outside the theoretical
range presented in Table 1. An explanation is that the Doppler
contributions due to the movement of the body parts are less
separated and distinguishable from each other, due to the low
chosen working frequency. Unfortunately, one of the main
constraints in the reassignment‐based technique is the sepa-
rability condition on the individual signal components. The
Doppler frequencies are correctly reassigned to their corre-
sponding mode, as long as the criteria for separability are
fulfilled [42, 43].

Therefore, the RE‐Spect method proves not to be suitable
faithfully for the characterisation and classification of the walk
at 1 GHz.

4.3 | Pseudo‐Wigner–Ville distribution

At last, the PWVD has been applied to the simulated and
measured backscattered data. The distribution is given by the
following expression [25, 44]:

PWVDxðt; f Þ ¼ ∫ þ∞
−∞hðτÞKxðt; τÞ e−i2πf τ dτ; ð8Þ

where Kx(t, τ) is the kernel function of the Wigner–Ville
distribution defined as

Kxðt; τÞ ¼ xðt − τ=2Þ x*ðtþ τ=2Þ: ð9Þ

The spectrograms are shown in Figure 7 and the corre-
sponding features listed in Table 4. The PWVD, as well as the
RE‐Spect, allows to accurately detect the instantaneous fre-
quency and group delay values characterising the observed
walk. The torso Doppler feature (1) of around 5.9 Hz implies a
simulated and measured speed equal to 0.89 m/s, thus, in
perfect agreement with each other. Moreover, the radial speeds
of the Table 4, as well as the simulated and measured period
(2), are in accordance with the corresponding ranges theoret-
ically calculated and listed in Table 1.

Reversely, the Doppler contributions due to the forward
and backward motions of the arms and legs are strongly
blurred by unwanted frequency components, represented by
the cyan bands shown in Figure 7a,b. Indeed, due to the bili-
nearity transform of the PWVD, the Doppler spectra are
affected by interference terms, especially when the frequencies

(a)

(b)

F I GURE 6 Doppler frequency signature of a walking man analysed at
1 GHz by using the RE‐Spect: (a) simulated data, (b) measured data

TABLE 3 Reassignment spectrogram: theoretical, simulated, and
measured Doppler features of a subject walking near the forest, analysed at
1 GHz

Features Data 1 GHz

(1) Torso Doppler theoretical 5.98–9.74 Hz

simulated 5.96 Hz

measured 5.63 Hz

(2) Period theoretical 0.51–0.72 s

simulated 0.71 s

measured 0.67 s

(3) Total BW theoretical 15.95–32.99 Hz

simulated 18.19 Hz

measured 21.15 Hz

4) Offset theoretical 7.49–9.8 Hz

simulated 6.49 Hz

measured 5.1 Hz

Radial speeds theoretical 0.9–1.46 m/s

simulated 0.89 m/s

measured 0.84 m/s
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swiftly change [45]. As a result, the BW (3) and the offset (4)
equal to 60 and 20 Hz prove to be unreasonable and do not
allow to correctly identify the walk.

5 | DISCUSSIONS

A final evaluation of the used Doppler techniques is sum-
marised in this section. For this purpose, a ratio between the
data presented in Table 1 and those listed in Tables 2–4 was
performed for each Doppler characteristic and radial speed.
Thus, the similarity index is (value between 0 and 1) of the
measured and simulated data with respect to the theoretical
ones is calculated. The final result is represented through
stars as shown in Table 5. The index is allows discriminating
the best window‐based transformation function to charac-
terise the walk’s frequency signature at 1 GHz through its
Doppler features. Furthermore, it highlights the simulated
data’s conformity with the measured ones.

The period, torso Doppler, and, consequently, the walk’s
radial speed are well identified independently of the performed
joint time‐frequency analysis, as shown in the Table A1,
although RE‐Spect provides a lower similarity index than
STFT and PWVD. However, these features are not sufficient to
characterise physical activity. The Doppler bandwidth and the
offset allow distinguishing walks performed at different speeds
or other activities such as running, boxing, and crawling
[17, 34]. In this respect, PWVD provides unreasonable values
that do not allow the observed physical activity’s correct
characterisation. Better values of offset and Doppler band-
width are obtained by applying an STFT and an RE‐Spect
instead. Offset continues to be the most critical parameter to
detect from a spectrogram. Nevertheless, we believe that the
differences between the simulated and measured data with
those theoretically calculated are due to a database that is still
not sufficiently robust. It does not incorporate the enormous
variability of asymmetries that a walk can originate based on
the gender, size, and speed under examination. Further walking
models must therefore be integrated into the database.

(a)

(b)

F I GURE 7 Doppler frequency signature of a walking man analysed at
1 GHz by using the pseudo‐Wigner–Ville distribution: (a) simulated data,
(b) measured data

TABLE 4 Pseudo‐Wigner–Vile distribution: theoretical, simulated,
and measured Doppler features of a subject walking near the forest,
analysed at 1 GHz

Features Data 1 GHz

(1) Torso Doppler theoretical 5.98–9.74 Hz

simulated 5.97 Hz

measured 5.95 Hz

(2) Period theoretical 0.51–0.72 s

simulated 0.72 s

measured 0.66 s

(3) Total BW theoretical 15.95–32.99 Hz

simulated 60 Hz

measured 60 Hz

(4) Offset theoretical 7.49–9.8 Hz

simulated 20 Hz

measured 20 Hz

Radial speeds theoretical 0.9–1.46 m/s

simulated 0.89 m/s

measured 0.89 m/s

TABLE 5 Rating based on the similarity index is

is range values Rating

(0.95, 1) ⋆ ⋆ ⋆ ⋆ ⋆

(0.8, 0.95) ⋆ ⋆ ⋆ ⋆

(0.65, 0.8) ⋆ ⋆ ⋆

(0.5, 0.65) ⋆ ⋆

(<0.5) ⋆
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Overall, the STFT is the Doppler technique that best
classifies the walk at 1 GHz. The low time‐frequency resolu-
tion did not influence the correctness of the data, as shown in
Table 2 comparing the experimental and simulated data with
the theoretical ones, and highlighted by the is values of each
feature listed in Table A1.

Finally, it is worth noting that the simulated data are always in
almost complete agreement with the experimental data,
regardless of the used technique. The simulations have been
performed by faithfully reproducing the experimental setup but
without modelling the surrounding environment. The 3‐D hu-
man body models move in free space. The simulated spectro-
grams are in perfect agreement with the measured ones
regarding the received signal strength, Doppler signature peri-
odicity, mean Doppler frequency, and Doppler band dynamics.
These are distinctive features of the spectrumof physical activity.
The only difference is the initial shape of the spectrum, char-
acterised by an acceleration of the target, which is not considered
in the simulation. This difference is not relevant in the detection,
characterisation, and classification of the observed activity as
demonstrated by the conformity of the simulated datawith those
measured in Tables 2–4. The simulation tool proves to be suf-
ficiently accurate for our purposes. At low frequency, the char-
acterisation and classification of physical activities carried out in
forest areas could be performed through machine learning in
future work. Therefore, the availability of valid models for hu-
man scattering can overcome the problem of the amount of
needed data that cannot be supplied by measurements alone.

6 | CONCLUSIONS

In this paper, the assessment of the best window‐based
transformation function to identify the Doppler spectrum of
a man walking in a forested area at 1 GHz has been presented.
To this purpose, the STFT, the RE‐Spect, and the PWVD have
been applied to the simulated and measured data. Besides, four
Doppler features have been extracted from the spectra to
characterise the physical activity. The RE‐Spect and the PWVD
provide accurate Torso Doppler frequency, and consequently,
they allow the detection of the radial speed assumed by the
moving target accurately. On the other hand, either the
Doppler shifts caused by the asymmetric limb motions are not
easily detectable with the RE‐Spect, or the cross‐terms of the
PWVD blur them. Conversely, the STFT correctly provides the
Doppler characteristics of the physical activity, proving suitable
for the characterisation and classification at 1 GHz of a walk
performed in an outdoor scene.
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APPENDIX A
Table A1 shows the rating of the STFT, RE‐Spect, and PWVD
applied to the simulated and measured data.

TABLE A1 Assessment of the STFT,
RE‐Spect, and PWVD, through the analysis of
the index is between the simulated/measured
Doppler features and the theoretical ones

STFT RE‐Spect PWVD

Doppler features Simulated Measured Simulated Measured Simulated Measured

(1) Torso Doppler ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

(2) Period ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

(3) Total BW ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

(4) Offset ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Radial speed ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Abbreviations: BW, bandwidth; PWVD, pseudo‐Wigner–Ville distribution; RE‐Spect, reassigned spectrogram; STFT,
short‐time Fourier transform.
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