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Abstract— The purpose of this paper is to present a study 

of non-Gaussian detectors for the detection of small, slow 

moving targets in clutter. These detectors belong to the family 

of Adaptive Normalized Matched Filter. The noise-clutter 

covariance matrix will be computed by the classic fixed point 

estimator [1, 2, 3] or with an iterative estimator based on the 

multi-segment Burg algorithm [4]. We will also propose to add 

a data selection algorithm based on order statistics in order to 

improve the estimation of this covariance matrix when targets 

are in the clutter alone reference cells. 
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I. INTRODUCTION  

The hypothesis of Gaussian clutter leads to a detection 

statistic provided by the adaptive matched filter after 

whitening, and an estimator of the covariance matrix known 

as the Sample Covariance Matrix (SCM). Concerning non-

Gaussian signals, robust methods, such as ANMF with a 

Fixed Point estimator of the covariance matrix, have been 

recently proposed. They can tackle more complex clutter 

such as Complex Elliptically Symmetric (CES) [6] 

distribution. We will study in this article the performance in 

detection of these algorithms on slow moving targets. We 

begin by presenting the algorithms and their modifications 

to take into account the presence of potential targets in the 

reference data. The performance will be studied through 

Monte Carlo simulation.  

II. PROBLEM STATEMENT 

A. Adaptive Matched Filter and Doppler filtering 

A classic detection function analyses raw data to decide 

whether a target is actually present at a specific range cell or 

not. To make this decision, the analysis is performed on raw 

complex observations data composed of 𝑁𝑟𝑒𝑐 values, 𝑁𝑟𝑒𝑐is 

the number of transmitted pulses. The decision process is 

based on a statistical hypothesis test [7] which intends to 

evaluate the probability that an event would occur under the 

two following hypothesis: 

 

 Null hypothesis H0: 𝑧 = 𝑏bth + 𝑏clutter = 𝑐 

At the range cell under test, the signal 𝑧 is assumed to be the 

linear sum of thermal noise: 𝑏𝑡ℎ and clutter: 𝑏𝑐𝑙𝑢𝑡𝑡𝑒𝑟 

 

 Alternative hypothesis H1: 𝑧 = 𝛼𝑝 +  𝑐 

where the signal of interest reads: 𝛼𝑝, 𝑝 is the “steering 

vector”, 𝑝 =
1

√𝑁𝑝
(𝑒2𝑖𝜋𝑘𝑣𝑖/𝑣𝑎𝑚𝑏)

0≤𝑘≤𝑁𝑝−1
  , with 𝑣𝑖  the 

velocity of the target, 𝑣𝑎𝑚𝑏  the ambiguous speed that 

depends on the waveform parameters (Pulse Repetition 

Frequency, Radar frequency,…),  𝑁𝑝 the number of pulses 

of the waveform and 𝛼 the target complex amplitude. When 

the noise and clutter are Gaussian with correlation matrix 

𝑅𝑐 = 𝑅𝑛𝑜𝑖𝑠𝑒 + 𝑅𝑐𝑙𝑢𝑡𝑡𝑒𝑟 and the amplitude of the target is 

unknown but deterministic, the GLRT (Generalized 

Likelihood Ration Test) strategy leads to  the following 

detection test: 

Δ(𝑧) =
|𝑝𝐻𝑅𝑐

−1𝑧|
2

𝑝𝐻𝑅𝑐
−1𝑝

≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

This test computes the Signal to Noise Ratio (SNR) on 

whitened data. The adaptivity is carried by the correlation 

matrix. If we suppose that 𝑅𝑐 = 𝜎2𝐼 , then Δ(𝑧) =
|𝑝𝐻𝑧|

2

𝜎2 , 

and any knowledge on the Clutter Doppler spectrum can be 

taken into account by replacing the steering vector 𝑝 by a 

Finite Impulse Response filter, for instance one with a deep 

null at zero Doppler frequency. The estimation of 𝜎2 may 

be performed by cell averaging along the range axis at the 

output of the same Doppler hypothesis (cell averaging, order 

statistics, …)  

B. Adaptive Normalized Matched filter  

The Gaussian Clutter assumption is generally no longer 

respected when the clutter zone is not homogeneous, when 

the analysis cell tends to become smaller and smaller. This 

results in a degradation of clutter rejection performance and 

implicitely detection. Non Gaussian clutter can be expressed 

as 𝑐 =  √𝜏𝑔 [1] which is the product of the square root of a 

positive scalar random variable 𝜏 - which is the texture, 

characterized by its probability density function 𝑝𝜏(. )-  and 

a complex Gaussian vector 𝑔, the speckle, of dimension 𝑁𝑝, 

with zero mean  and covariance matrix  𝑀 = 𝐸[𝑔𝑔𝐻] .  
Under these hypotheses, the GLRT strategy does not lead to 

the AMF test anymore. A new test can be fortunately 

derived under various hypotheses, for instance assuming 

that the texture is unknown deterministic, in which case the 

detection test becomes: 

Δ(𝑧) = 
|𝑝𝐻𝑅𝑏

−1𝑧|
2

(𝑝𝐻R𝑏
−1𝑝)(𝑧𝐻R𝑏

−1𝑧)
≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  



This test is called ANMF which stands for Adaptive 

Normalized Matched Filter. 

This detection test measures the squared cosine of the angle 

between the “steering vector” and the data, both whitened 

and normalized. In the first place, it requires the evaluation 

of the clutter correlation matrix. Estimating this matrix is a 

decisive step for the methods introduced in this paper. Next 

section presents the proposed algorithms to perform this 

estimation. 

III. ESTIMATION OF THE CORRELATION MATRIX 

Similarly to known estimators, evaluating the clutter 
distribution requires the definition of a set of reference cells 
around the cell under test. 

 

 

The clutter covariance matrix is estimated on these 
Reference cells. When the clutter is Gaussian, the Sample 
Covariance Matrix: 

 
1

𝑁𝑟𝑒𝑓_𝑐𝑒𝑙𝑙𝑠

∑ 𝑧𝑘𝑧𝑘
𝐻

𝑟𝑒𝑓_𝑐𝑒𝑙𝑙𝑠   

is well suited for the problem, otherwise one must resort to 
other algorithms [1].  

The Tyler Fixed-Point Algorithm and Burg-Tyler 

algorithm are defined by the following recursive 

approaches.  

 

A. Tyler Fixed-Point Algorithm 

 

 Initialize R0 = 𝐼 

 For each step 𝑛 

o Rn+1 =
𝑁𝑝

𝑁𝑟𝑒𝑓_𝑐𝑒𝑙𝑙𝑠
 ∑

𝑧𝑘𝑧𝑘
𝐻

𝑧𝑘
𝐻Rn

−1𝑧𝑘

𝑁𝑟𝑒𝑓_𝑐𝑒𝑙𝑙𝑠

𝑘=1  

 If 𝑑(𝑅𝑛, 𝑅𝑛+1) ≤ 𝜖  

o Return 𝑅𝑛+1 

B. Burg-Tyler Algorithm 

 Initialize 𝑅0
−1 = 𝐼 

 For each step 𝑛 : 

o for each sample 𝑧𝑘, compute de 𝑦𝑛
𝑘 =

𝑧𝑘

𝑧𝑘
 𝐻

𝑅𝑛
 −1

𝑧𝑘

 

o Compute 𝑅𝑛+1
 −1

 using Burg algorithm for 

multiple “snapshots”:  (𝑦𝑛
𝑘)

1≤𝑛≤𝑁𝑎𝑚𝑏
 

 If 𝑑(𝑅𝑘+1, 𝑅𝑘) ≤ 𝜖 

o Return 𝑅𝑛+1 

Burg algorithm for multiple segments is a method to 

estimate parameters of autoregressive processes in order to 

rebuild the correlation matrix which is theoretically 

Toeplitz. Additional information can be found in [4]. 

IV. PERFORMANCE ON SIMULATED DATA 

In order to compare the adaptive processing to a known 

reference, we display in this section the results of detection 

using a fixed Doppler bank of filters coupled with an OS-

CFAR normalisation (we called it BFOS in the following) in 

addition to the new algorithms. 

 

In the following, the clutter is modelled as:  

c =  √τg + bnoise. 

 

The texture τ follows a Weibull law:  

p(τ) =
k

λ
(

τ

λ
)

(k−1)

e−(τ λ⁄ )k
 

 

with parameters: λ = 0.74, k = 0.65  

𝑔 follows a complex Gaussian law: 𝑁𝐶 (0, 𝑀). 

The correlation matrix 𝑀 is computed from its Doppler 

spectrum [5]:  

p(v) =
β

2
e−β|v| 1

1+α
+

α

1+α
δ(v), 

 

the parameters of which are adapted to an S-band radar. The 

Clutter to Noise Ratio is about 60 dB. 

𝑏𝑛𝑜𝑖𝑠𝑒  follows a complex Gaussian law 𝑁𝐶(0, 𝐼). 

The samples along the range axis are i.i.d. 

A. False alarm management 

The following figure shows the detection threshold 

behaviour with respect to the speed (normalized by the 

ambiguous speed) for a perfectly known correlation matrix 

(the corresponding detector is denoted as “clear-sighted 

ANMF”), in a situation of clutter plus thermal noise.  

 
Figure 1.  Detection thresholds for clear-sighted ANMF 

 

We can notice that even when the correlation matrix is 

perfectly known, the ANMF is not at constant false alarm 

rate detector, since the threshold depends on the speed 



hypothesis. This is because of the addition of thermal noise 

in the clutter; this issue is recurrent on every  detection test 

derived from the ANMF. 

In the simulations, the thresholds were set by Monte-Carlo 

simulations in order to get a false alarm probability of  

5.37 10−5 on all filters. 

The following figures illustrate the probability of detection 

regarding the target speed for various SNR (from 15 dB to 

28 dB, SW1 fluctuation). 

 
Figure 2. BFOS Algorithm 

 

 
Figure 3.  ANMF-FP Algorithm 

 
Figure 4. Burg-Tyler Algorithm 

 

All the algorithms behave the same way (flat Pd) when the 

target speed is far enough from the central speed of the 

clutter (beyond ± 40 𝑚/𝑠). 
For speed ranges above 40 m/s, the BFOS always 
outperforms the adaptive algorithms. Normalization and 
estimation of correlation matrix lead to bigger losses than the 
Doppler filter bank weightings in those areas. However, the 
adaptive detection techniques do allow a better detection 
capability for low-speed targets. 

V. ROBUSTNESS TO TARGETS IN REFERENCE CELLS 

Detection is likely to be degraded by the presence of 

targets in the estimation window. For the adaptive detection 

algorithms, the presence of same speed targets as the target 

in the cell under test leads to interpret this very target as an 

interference and make the detection function underperform.  

Preselecting data before the estimation of the clutter 

correlation matrix lowers the desensitization due to 

unwanted targets. 

For both of the introduced algorithms, a selection procedure 

is included in the computation loop. It consists in the 

selection of the data 𝑧𝑘 with the smallest quantity: 

𝑧𝑘
𝐻𝑅𝑛−1

−1 𝑧𝑘. This is justified as follows. If the texture 𝜏 is 

unknown (and deterministic) it can be estimated with the 

help of a maximum likelihood approach:  

𝜏 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜏(− log(|𝜏𝑀|) − 𝑧𝐻(𝜏𝑀)−1𝑧) 
The likelihood is then equal to: 

𝑙(𝑥; 𝑀) = −𝑑 log(𝑧𝐻𝑅−1𝑧) + 𝑓(𝑀) 

One only uses the p % samples of higher likelihood 𝑙(𝑥; 𝑀), 

i.e. the smallest value of: 𝑧𝑘
𝐻𝑅𝑛−1

−1 𝑧𝑘 

The following figures show the efficiency of the propose 

approach when one to 4 unwanted targets are present in the 

reference cells. Algorithm with data selection are named : 

PBT and ANMF-PFP 

 

 

Figure 5. Robustness  BT Algorithm 

 

 
Figure 6. Robustness  BTP Algorithm 



 
Figure 7. Robustness ANMF-FP Algorithm 

 

 
Figure 8. Robustness ANMF-PFP Algorithm 

 

VI. STUDIES ON REAL DATA 

Earlier we displayed the non-CFAR behavior of ANMF. It 

implies setting up a specific method for detection threshold 

definition in order to use the adaptive treatment on clutter 

recorded data. The approach we used is based on statistical 

learning. It is called Adaptation To Environment (ATE). It 

relies on actual environment data to split the area 

surrounding the radar. This division is made by land type 

(forests, lakes, etc.) The idea is to have a satisfyingly 

homogenous clutter for each subpart of the division; the 

purpose is to define one threshold per clutter type present in 

the radar surroundings. Thus, for each area, and with 

segmentation along the speed axis, we set a factor 𝑐 which is 

updated through the learning. Whichever the covariance 

matrix estimator chosen, noting 𝑠(𝜈𝑖) the Doppler spectrum 

evaluated for reduced speed 𝜈𝑖 , the detection test becomes: 

ANMF(𝑥|𝑅̂, 𝑣𝑖) ≥ 𝜆𝑃𝐹𝐴 ∗ (
𝑠(𝜈𝑖)

𝜎𝑏𝑡ℎ

)

𝑐

 

where 𝜎𝑏𝑡ℎ is the thermal noise level, which is known or 

evaluated and  𝜆𝑃𝐹𝐴 is the thermal noise threshold. This 

method allows to set a threshold taking the clutter into 

account on two scales: by clutter type since the factor 𝑐 is 

the same for a homogeneous area, but also locally with  

𝑠(𝜈𝑖) which is the local estimated spectrum at the range cell. 

VII. CONCLUSION 

The adaptive processing proposed in this article are « 
invariant » to the target power. Indeed these detection 
methods measure an angle between observation and speed 
hypothesis; therefore, beyond some level of SNR the 
probability of detection only depends on the angle between 
signal of use and clutter. Hence they are not optimal to treat 
speeds distant from the clutter speed in comparison to a more 
usual technique. The purpose is not to use them to manage 
any situation. They should rather be paired with other 
detectors which would handle cases where the evaluated 
correlation matrix is not close to the clutter (like with 
BFOS).  
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