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arsity

" Small in number or amount,
often spread over a large area "







How and Why can Sparsity be exploited for Hyperspectral
Target Detection
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Introduction to Hyperspectral
Target Detection

L



Hyperspectral (passive) Remote Sensing System :

Imaging Surface
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Hyperspectral Target Detection: concept
and applications (1/3)

Target detection is one of the most important applications in hyperspectral imagery

{ Hy : x = background - Target absent

H1 : X = Target + background - Target present



Hyperspectral Target Detection: concept
and applications (2/3)

Replacement signal model :

O<a=s1
x=at+(1-a)b

t : target spectrum

b : background spectrum



Hyperspectral Target Detection: concept
and applications (3/3)

Applications to target detection :

- Application to target detection when the target t is known
for example: Matched Filter, Normalized Matched Filter,
Kelly detector.

- Application to target detection when the target t is not known (anomaly detection)

for example: Reed and Xiaoli Detector, Kelly anomaly detector. i
a ship at sea




Serious challenges in hyperspectral
target detection (1/2)

- [Challenge one] The dependency on the unknown covariance
matrix 3 (of the background surrounding the test pixel), and the
estimation challenges of > in large dimensions and to ensure
success under different environment.

. *The Sample covariance
Beh rly in

lar 'ONS " +Robust estimators (i.e. The Tyler estimator)



Serious challenges in hyperspectral
target detection (2/2)

- [Challenge two] The sensor noise, atmospheric conditions,
material composition, etc.

The classical target detectors that depend on the target to
detect t, use only a single reference spectrum for the target
€ of interest.




How and Why can Sparsity be exploited for Hyperspectral

Target Detection

P
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Reason one: The targets c ] very small
image scene

- The targets are randomly distributed in the image.

- The targets have low probability to appear in each pixel in the entire
image scene.



So how to exploit sparsity

1. The targets are spatially sparse (few pixels in a million pixel image).

2. The background has a low rank property.

our novelty against state of the art

Shih-Yu Chen] [Yubin Niu] [Yuxiang Zh
Lo Sparss [Shih-Yu Chen] [Yubin Niu] [Yuxiang Zhang]

original HSI background HSI target HSI - The objects to separate from

the background are proven to
- be the true targets!
- The sparse target HSI is directly

used for detection.




General Background (1/4)

Suppose a data matrix D can be decomposed as:

D=L+E,

/ \

low rank  sparse

How can both the low rank and sparse components be recovered accurately ??



General Background (2/4)

The Robust Principal Component Analysis (RPCA) :

min {rank(L) T ||E|\l} st. D=L+E,

L.E
NP-HARD solve _ .

A > () is aregularization parameter

|E||, indicates certain sparse regularization strategy: {II-llg> ll-llgzs Nl-llo0}

convex syrrogation

rank(.) — ||.],

Ul-llo s oz s [1-llz03 = Ulllys g s [1-llo0 b



General Background (3/4)

Success of RPCA in some applications: Face recognition and video surveillance

- RPCA for face recognition (the matrix L is the object of interest)

+ E

Removing shadows, specularities, and saturations from a face

This example is taken from [Candes et al.]



= - =7

= L + E

Removing shadows, specularities, and saturations from a face

This example is taken from [Candes et al.]



General Background (4/4)

Success of RPCA in some applications: Face recognition and
video surveillance

- RPCA for video surveillance (the matrix E is the object of interest)

Detecting the moving objects from a static background

This example is taken from [Candes et al.]



Detecting the moving objects from a static background

This example is taken from [Candes et al.]



Our study on testing the RPCA for Hyperspectral
Target Detection (1/5)

How is RPCA exploited for Hyperspectral imagery?
So how to define both Ly and Eg ?

- The total image area of all the target(s) should be small relative to the whole image

(spatially sparse).
\A E,

- The background is not too heavily cluttered with many different materials with
multiple spectra: The background has a low rank property .

\L

0



Our study on testing the RPCA for
Target Detection (2/5)

erspectral

How is RPCA exploited for Hyperspectral imagery?

We aim to minimize the following problem:

min {’r rank(L) + A [[Ef|g, + [[D — L — E||%} , NP-HARD

L.E

min {T IL|, + A [Ell, , + |D - L — E||§,} . CONVEX

L,E



Our study on testing the RPCA for Hyperspectral
Target Detection (3/5)

Is the direct use of RPCA adequate to distinguishing the targets?
N O In contrast to what have been
proved in state of the art

[Yuxiang Zh”ﬁh-Yu Chen]

The RPCA only searches for small heterogeneous and high contrast objects. RPCA is not

Our findings:

adequate to distinguishing the targets ...




Our study on testing the RPCA fo
Target Detection (4/5)

Let us prove what

we have found




Our study on testing the RPCA for Hyperspectral
Target Detection (5/5)
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Let us modify the RPC

We suppose that a target prior information is provided

Our problem formulation:

1. Let us consider that the given HSI contains q pixels of the form:
xz-=az-tz-+(1—az-)bz-, 0<a'g$1 ZE[].,Q]

2. Assume that all {t;};c[ 4 consist of similar materials:

Nt

X; = Q@ z (ﬁi,j a;) + (1 - O.’z') b, 1€ [l,q] .

J=1



Let us modify the RPC



Let us modify the RPC

In order to recover the low rank and sparse

IIIJHCI:l {T rank(L) + X ||Cll,, + “D - L - (AQ)| 21 | NP-HAF




Our novel target dete-

We use (AtC)T directly as a detector !!

The sparse target image should be very sparse with very little false alarms

We do not need the the target fraction to be entirely removed and
deposited in the sparse image

The choice of \ should be high enough !!

v




Synthetic Application to target detection (1/10)

Jarosite target samples taken
from the USGS spectral library

101 x 101 x 186 zone

o
o

s ] arositel

Reflectance
o
(6,

— .lﬂl'().\fit(‘z ¥

oS
S

) arosites3

0:3 i i
) arosited ls
0.2 Jarosited | t
Jarosite6
10 20 40 50 60 70 80 90 100 0.1 i
= talget t
7 target blocks are incorporated in the =
) , ) 0 20 40 60 80 100 120 140 160 180
image for 7 target blocks are incorporated Spectral bands

© intheimage for a € [0.01, 1]



Synthetic Application to target detection (2/10)

(A.C)"

10 20 30 40 50 60 70 80 90 100



Synthetic Application to target detection (3/10)

(A.C)"




Synthetic Application to target detection (4/10)

(A.C)"




Synthetic Application to target detection (5/10)

(A.C)"




Synthetic Application to target detection (6/10)

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100



Synthetic Application to target detection (7/10)




Synthetic Application to target detection (8/10)
X=0.02

T,

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 a0 100



Synthetic Application to target detection (9/10)




Synthetic Application to target detection (10/10)

Some concluding remarks about the obtained results

. The target fill fraction affects the detection performance !!

O The results strongly depend on the relaxation norm used from the
sparse matrix (A,C)”

. There is a room for non target signals to appear in the sparse
image (A,C)”

High false alarms !!



Real experiments for target detection

original image Ground Truth (A,C)"

M =a,

Buddingtonite target samples
from the ASTER spectral library

3 /— Buddingtonite1

= Buddingtonite2
Buddingtonite3




Exploitation of Sparsity for Hyperspectral
Target Detection

CentraleSupélec

Ahmad W. BITAR

06 June 2018

Reason one : The targets occupy a very
small part of the entire image scene

The targets are spatially sparse
(few pixels in & million prsel
Image). The background has a
low rank property, 2ased on
these two assumptions, we
propose a novel target detector
for hyperspectral imagery.

[Ty

Reason three: The covariance estmation
is challenging in large dimensions

The traditional covariance
estimators [e.g. the Samale
Covariance, Tyler estimator)
aenhave very paorly In large
dimensions. We propose
new estmators oy assuming
the covariance matrix is
sparse, namely, many entries
are zera,

Reason two: A hyperspectral test pixel
lies in a low dimensional subspace

We aim to alevate the
senaus chalenge on
building the dictionary
of e background.

N Following whicn
various detectors can
be used ta carry out a
more elabarate
binary hypothesis test

A Typerspectral test pleel
Ikes In 2 low dimensional
subspace of the p
dimensional apecura
MEASUrENET SD3CE Tem
hareoround drtane
wanly roavinicied n
daw wuiEng  coacem
oz,

Some concluding remarks and
directions for future work

The direct use of RPCA
is inadequate to
distinguishing the
true targets from the
background. A
modification of it s
necessary.

Several proposed -
methods have been The end
proposed and tested

on both synthetic and Thank you ...
real datasets for an I

automatic target
detection,




Reason two: for any test pixel X
approximately in a low-dime
subspace of the p-dimensional
measurement space




So how to exploit sparsity,
=

If x is pure , x can be represented by few atoms taken from
background the background dictionary

The work of [Chen et al. 2011}

If x is pure ’ x can be represented by few atoms taken from
target the target dictionary

The work of [zZhang et al. 2015]

, x can be represented by few atoms taken from
Ifx € Ho the background dictionary

, x can be represented by few atoms taken from the
If x € H, union of the background and target dictionaries



General background (1/3

Ifxe Hy:
X = o8} + g2a3 + -+ + on, Ay, .
- [ali) aga T aIJ)Vb] [Qla 92, ** , ONy |

— Ab Q
= sparse vector

x = f1al + B2a)+ - + By, ay, + 0
— [AbAt] [,BTOT]T’

=A
7\5 sparse vector



A

o = argmin ||x — A0, s.t. |lo]
o

4 = argmin |[x — Avy||, s.t.
v

Orthogonal Matching Pursuit algorithm (OM



General background (1/3

The SRBBH target detector :

Dsropn(x) =[x — Ay oll, — [x — A

If Dsrppu(x) >n . target presen

If Dsrppu(x) <1 - target abse



General background (1/3)

The usual estimation of A ,

OWR

IWR , The dual concentric

test pixel




The problem to solve

Is the dual concentric window go

NO*

@ Information about the target size is not av

@ The target could be of irregular shape !

STOP USING IWR &
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The problem to solve

Is the dual concentric window go

NO*

@ Information about the target size is not av

@ The target could be of irregular shape !

STOP USING IWR &



L (AC)"

Low rank Sparse
Original HSI Background HSI Target HSI

ﬁnproving the target detection performance by
constructing the background dictionary 4,
from the low rank background HSI L

Concentric window
Aj, construction
Without target contamination




Synthetic Application to target detection (1/

Same application as before

101 x 101 x 186 zone

10 20 30 40 50 60 70 80 90 100

7 target blocks are incorporated in the
image for 7 target blocks are incorporated
in the image for & € [0.01, 1]

Reflectance

Jarosite target samples
from the USGS spectre

o
3




Synthetic Application to target detection (2/°

Separation evaluation our target and background separati




Synthetic Application to target detect

Concentric window of size: 5 x5

We shall use [);, == Pure background HSI (wit

We shall use ) === HSI after incorporating 1



Synthetic Application to target det
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Synthetic Application to target detect
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Synthetic Application to target det
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Synthetic Application to target det







Synthetic Application to target detect

= From D_(AUC=0.6548)

=== From D (AUC=0.54 !ff,%..f-);ﬁJ’
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Real experiments for target detection (1/2)

Separation evaluation our target and background separation model

A,C)”

after some thresholding



Real experiments for target detection (2/2)

original image GroundTriuth without our proposed separation method

=

. 160 )

250 x 291 x 186 With our proposed separation method

=== Buddingtonite1
= Buddingtonite2
Buddingtonite3
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Reason three: the covariance estimation is
very challenging in large dimensions

- In large dimensions, it is impractical to use traditional covariance estimators

- Sparsity assumption to alleviate the large covariance dimensionality

many entries are zero!



So how to exploit sparsity,

Our main contributions and results can be found in the thesis report!

Assuming the unknown covariance
matrix (of the background surrounding
the test pixel) I is sparse
Many entries are zero in £

—

/

Developing new covariance

s=T1pTT

T: Cholesky factor
D: diagonal matrix

N

estimators by imposing sparsity
\on I via its Cholesky factor TJ

The proposed estimators

are plugged-in into

classical target
detectors

[

If I is really sparse

Potentially improving
the target detection

-

-

If Z is not sparse

Not obtain worse detection
results than to those of the

traditional covariance
estimators
/




Some of the obtained results

Models ) Yseum || Zows | E )(}.j.i ;)(1‘ } db L, | Bscap | Bsur || Be(Escm) :?]\t I :(F\‘ 1D
Model 1 | 0.954] 0.7976 || 0.8331 | 0.9480 | 0.9480 | 0.9509 | 0.9509 | 0.9503 || 0.9509 0.9509 | 0.9509
Model 2 | 0.9540 0.7977 | 0.8361 [ 09124 1 09124 | 09264 | 09264 | 09184 | 0.9478 0.9274 | 0.9270
Model 3 | 0.954] 0.7978 || 0.8259 | 0.8169 | 0.8257 | 0.8236 | 0.8261 | (.7798 0.5321 0.5969 | 0.5781
MUSE | Not known | 0.6277 || 0.6575 | 0.9620 | 0.9643 || 0.8844 | 0.8844 | 0.7879 || 0.9277 0.7180 | 0.7180

Traditional estimators

Our proposed estimators

State of the art
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Conclusion

Three reasons of sparsity have been presented :

The first reason

- The RPCA is inadequate to distinguishing the true targets from the background.

- The RPCA is modified for automatic target detection : D=L + (A,C)" +N
- The object of interest is : (A,C)" itis directly used for the detection

The second reason

- The background dictionary construction has been improved by exploiting the
sparse and target separation model proposed in the reason one




Directions for future work

¢ Evaluate the proposed methods on more real datasets.

© The use of other proxies than the [ (closer to the l2.0 ) which can

help to alleviate the /21 artifact and probably facilitate manual
selection problem of the tuning parameters 7 and ).



The end

Thank you ...



