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Résumé

Une image hyperspectrale (HSI) est constituée d’une série d’images de la même scène spatiale, mais
prises dans plusieurs dizaines de longueurs d’onde contiguës et très étroites, qui correspondent à
autant de “couleurs”. Lorsque la dimension spectrale est très grande, la détection de cibles devient
délicate et caractérise une des applications les plus importantes de l’imagerie hyperspectrale.
En imagerie hyperspectrale, il existe toujours des défis majeurs, e.g. la grande dimension, les
effets d’atmosphères, et le bruit du capteur hyperspectrale. Cette thèse de doctorat se concentre
principalement à exploiter la parcimonie (qui signifie généralement “petit en nombre ou quantité,
souvent répartie sur une grande zone”) afin d’atténuer le plus possible les défis mentionnés avant,
ce qui implique une amélioration de la performance de détection de cibles. Les travaux dans cette
thèse de doctorat sont divisés en deux directions différentes :

La première direction de la thèse :

La première direction de la thèse se concentre à exploiter la méthode d’analyse robuste en
composantes principales (RPCA) afin de décomposer une image hyperspectrale d’intérêt en la
somme d’une image de rang faible (associée au fond) et une image parcimonieuse de cibles contenant
seulement les cibles avec le fond supprimé. L’utilisation du RPCA pour la reconnaissance de
visages ou la détection de background/foreground dans une image a fait ses preuves. Cépendant,
cette partie de thèse prouve que l’utilisation directe du RPCA est insuffisante pour distinguer les
vraies cibles du fond en imagerie hyperspectrale. Plus particulièrement, le RPCA est evalué sur
des images hyperspectrales réelles afin de démontrer qu’il ne cherche dans l’image que les petites
régions hétérogènes et à contraste élevé, qui ne forment pas nécessairement la cible d’intérêt.
Dans ce contexte, une version modifiée du RPCA est développée en tenant compte du fait que
de l’information a priori est disponible sur la cible d’intérêt. Ceci consiste à modéliser la cible
comme une mélange linéaire de signatures spectrales contenues dans un dictionnaire formé à
partir des librairies spectrales en ligne. La méthode proposée pour estimer les différentes matrices
intervenant dans la décomposition matricielle proposée est une méthode d’optimisation alternée
très classique qui permet de découpler le problème en sous-problèmes plus simples via l’algorithme
Alternating Direction Method of Multipliers (ADMM). À partir de la version du RPCA modifiée,
deux stratégies de détection sont développées :

• La première stratégie de détection considère l’image parcimonieuse de cibles comme objet
d’intérêt qui est utilisée directement pour la détection. Plus précisément, les cibles sont tout



simplement détectées aux entrées non nulles de l’image parcimonieuse de cibles. Cette image
parcimoneuse de cibles constitue notre nouveau détecteur de cibles qui est caractérisé par
les avantages suivants :

1. indépendant de la matrice de covariance;

2. invariant aux effets d’atmosphère;

3. a la capacité de détecter de cibles ayant une petite fraction de remplissage même lorsque
la dimension spectrale est grande;

4. ne suppose aucune distribution au préalable.

• La deuxième stratégie de détection consiste à améliorer la construction adaptative du
dictionnaire du fond dans les méthodes basées sur la représentation parcimonieuse des pixels
de test hyperspectraux. Cette amélioration est effectuée à partir de l’image rang faible
générée afin de construire un dictionnaire du fond pure de cibles d’intérêts.

La deuxième direction de la thèse:

La deuxième direction de la thèse pose le problème de la détection d’anomalies sous la forme
d’un test d’hypothèse, qui, dans le cas d’un bruit Gaussian de moyenne nulle, se ramène à
comparer une forme quadratique des vecteurs observés à un seuil adapté (e.g. le détecteur de
Kelly). Puisque cette forme quadratique dépend de la matrice de covariance du bruit de mesure,
il est alors intéressant de développer des estimateurs de cette matrice de covariance adaptés au
problème de détection d’anomalies. Dans cette partie de la thèse, des nouveaux estimateurs de
matrice de covariance sont développés en rendant la matrice de covariance parcimonieuse à partir
de sa matrice unitaire triangulaire inférieure (aussi connue comme “facteur de Cholesky”).

Evaluations des méthodes proposées :

Les méthodes proposées dans cette thèse sont évaluées sur des données synthétiques et epérimen-
tales. Les résultats démontrent leur efficacité pour la détection de cibles en imagerie hyperspectrale.



Abstract

In hyperspectral imagery, pixels are represented by vectors whose entries correspond to spectral
bands, and images are represented by 3-D hypercubes. Due to the high spectral dimensionality,
one of the most important applications of hyperspectral imagery is target detection, which can be
viewed as a binary classification problem where pixels are labeled as target or background based
on their spectral characteristics. Hyperspectral imagery has many applications in areas such as
military, astronomy, agricultural, mineralogy, and medical fields. Its rich spectral information
allows for more accurate material identification.

In hyperspectral, the main challenges lie in large spectral dimensionality, and data variation
modelling due to material spectral variability, atmospheric effects, and sensor noise. This thesis
mainly concentrates on exploiting sparsity in order to alleviate the aforementioned challenges, and
thus, improving the target detection for hyperspectral imagery. The proposed works are split into
two different directions:

First thesis direction (Part II of this dissertation)
The first direction mainly concentrates on exploiting the recently developed Robust Principal
Component Analysis (RPCA) for hyperspectral target detection. For a given hyperspectral image
(HSI), and by considering similar assumptions to those used in RPCA, the background is assumed
to have a low-rank property and the targets are spatially sparse. In particular, a given HSI is
regarded as being made up of the sum of a low-rank background HSI (consisting only of background
without the targets) and a sparse target HSI that only contains the targets with the background
is suppressed. Some evaluations are made in this thesis to prove that the direct use of RPCA is
inadequate to distinguish the true targets from their surrounding background. More precisely,
the evaluations show that for a given HSI, only small heterogeneous and high contrast objects
are deemed as targets under the general RPCA. In this regard, a modified version of RPCA is
proposed by taking into consideration that a prior target information is provided to the user.
This is done by introducing a subspace target dictionary, taken from online spectral libraries,
into the sparse component, and thus, yielding a modified version of RPCA that is able to greatly
identifying the true targets and separate them from the background (to be deposited in the sparse
component). From the proposed target and background separation method (that is, the proposed
modified RPCA), two detection strategies are available to realize the target detection:

• The first detection strategy (in Chapter 2) considers the sparse component as the object
of interest, and which is used directly for the detection. That is, the targets are simply



detected at the non-zero entries of the sparse target HSI. In this detection strategy, a novel
target detector is developed and which is simply a sparse HSI generated automatically from
the original HSI, but containing only the targets with the background is suppressed.

• The second detection strategy (in Chapter 3) considers the low-rank component as the object
of interest. It is known that most natural signals are inherently sparse in a certain basis
or with respect to a given dictionary, and thus, they can be approximately represented
by a few coefficients carrying the most relevant information. Hence, instead of modelling
target and background signals using one single predefined model, sparsity has been exploited
in the literature for hyperspectral imagery signal representations. The given dictionary
which is used either for background or target, has a very important impact on the target
detection performance. The main challenge is that there is always a lack of a sufficiently
universal dictionary, especially for the background, and that should be constructed without
contamination by the target pixels. That is why, this detection strategy mainly focuses on
automatically constructing a locally adaptive background dictionary but on the low-rank
background HSI (since it is pure from the targets), and thus, avoiding contamination by the
target pixels. This leads to potentially improving the detection performances of the already
developed target detectors which are based on the sparse representation approach.

Second thesis direction (Part III of this dissertation)
This thesis direction (in Chapter 6) consists on exploiting sparsity for covariance matrix estimation
in order to improve the detection performance of the classical target detectors. These detectors
depend on the true unknown covariance matrix (of the background surrounding the test pixel) Σ
whose entries have to be carefully estimated especially in large dimensions. It is well known that
when the spectral dimension is considered large compared to the sample size, such traditional
covariance estimators lead to a very poor estimates performance unless some regularizations
are applied such as constraining the covariance estimate to be sparse, namely, many entries are
zero. In this thesis direction, the covariance matrix Σ is first regarded as being made up of
Σ = T−1 D T−T , where T is a unit lower triangular matrix (aka Cholesky factor) and D is a
diagonal matrix with positive entries. Then, new covariance estimators are developed by assuming
Σ is sparse and thus imposing sparsity via its Cholesky factor T. Next, the proposed covariance
estimators are plugged-in into classical target detectors (especially for anomaly detection). The
proposed covariance estimators are always guaranteed to be positive definite. An important
findings is that by taking advantage of the possible sparsity of Σ, the target detection performance
can be potentially improved; and even if Σ is not sparse (or not highly sparse), the proposed
estimators do not achieve worse detection results than to those of the traditional covariance
estimators.

Both thesis directions are evaluated on synthetic as well as real experiments, and the results of
which demonstrate their effectiveness for hyperspectral target detection.
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Research is what I’m doing when I don’t know what I’m doing.

— Wernher von Braun
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I Synopsis This chapter first provides a general introduction concerning hyperspectral imagery

and target detection. Then, it gives a brief overview of this thesis, specifically by answering the

question “How and why is sparsity exploited for hyperspectral target detection?”. Next, it details

the structure of this report and ends by providing some of the previously published materials.

In particular, this chapter is split into two parts:

• The first part 1.1 “Introduction to Hyperspectral Imagery and Target Detection” introduces

some basic information that should be known to well understand the concept of hyperspectral

imagery and target detection. More precisely, it starts by giving a definition of remote

sensing, and then briefly overviews the hyperspectral remote sensing where all necessary

information concerning a hyperspectral image and hyperspectral sensors are given in detail.

It ends by briefly discussing the main concept of target detection in hyperspectral imagery.

• The second part 1.2 “Thesis Overview: How and why is sparsity exploited for hyperspectral

target detection?” starts by giving a general definition of sparsity, and then overviews this

3
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thesis by answering both questions “Why is sparsity exploited?” and “How is sparsity

exploited?”. Next, it details the structure of this report and ends by listing the previously

published materials between 01 February 2015 and 31 January 2018.

1.1 Introduction to Hyperspectral Imagery and Target De-
tection

1.1.1 Remote Sensing

Remote sensing (RS) can be defined as the process of acquiring information of a scene without

physically contacting it (that is, at a distance from the imaging surface or targeted scene). The

RS images are usually collected by sensors which mainly rely on the energy emitted and reflected

from the imaging surface [126]. Hyperspectral RS imaging is the main topic of this dissertation.

Depending on the source of the energy involved in the image acquisition, two kinds of RS imaging

systems are distinguished: passive and active. In passive systems, the sensors mainly rely on

an external illumination source (i.e. the sun) to capture the targeted scene; whereas in active

systems, the sensor has its own source of light or illumination.

1.1.2 Hyperspectral Remote Sensing

The hyperspectral remote sensing system [103] has four basic parts: the illumination source (i.e.

the “sun” in passive remote sensing), the atmospheric path, the imaging surface (or targeted

scene), and the airborne hyperspectral imaging sensor (see Figure 1.1). Due to the presence

of the atmospheric path, the reflected energy (initially captured by the solar illumination and

then modified by the atmosphere) from the material surface will be different from the one who

reaches the sensor since it passes back through the atmosphere. In this regard, some effects that

produce variability to the material spectra (e.g. atmospheric conditions, sensor noise, material

composition, and scene geometry) have to be taken into consideration [77, 138].

Data cubes and spectral pixel representation

What is a hyperspectral image (HSI)?:

An airborne hyperspectral imaging sensor is capable of simultaneously acquiring the same spatial

scene in contiguous and multiple narrow (0.01µm - 0.02µm) spectral wavelength (color) bands

[103, 107, 123, 128]. When all the spectral bands are stacked together, the resulting hyperspectral

image (HSI) is a three dimensional data cube (with spatial-spatial-spectral components). Thanks

to the narrow acquisition, the HSI could have hundred to thousands of contiguous spectral bands.

Having this very high level of spectral detail gives better capability to see the unseen.

For example, the Hyperion imaging sensor produces images of the same spatial scene in 220

contiguous spectral bands and in wavelengths ranging from 0.385µm to 2.5µm. The NASA’s

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) produces images in 224 contiguous
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Figure 1.1: Passive hyperspectral remote sensing system

spectral bands with wavelengths ranging from 0.385µm to 2.5µm.

Spectral pixel representation:

In the spectral representation, each pixel in the HSI can be seen as a p-dimensional vector,

x = [x1, x2, · · · , xp]T ∈ Rp, where p designates the total number of spectral bands. The “spectral

signature” of x (also known as “reflectance spectrum”), shows the fraction of incident energy,

typically sunlight, that is reflected by a material from the surface of interest as a function of the

wavelength of the energy [123].

Pure Vs Mixed pixels:

The HSI usually contains both pure and mixed pixels. A pure pixel contains only one single

material, whereas a mixed pixel contains multiple materials, with its spectral signature representing

the aggregate of all the materials in the corresponding spatial location [101, 103]. The latter

situation often arises because hyperspectral images are collected hundred to thousands of meters

away from an object, so that the object becomes smaller than the size of a pixel.

Characteristics of the airborne hyperspectral imaging sensors

Hyperspectral sensors are advanced colored digital cameras [103] which are characterized by 4

essential resolutions: spatial, spectral, radiometric and temporal.

• The spatial resolution determines how well the sensor can record spatial details in the

targeted surface that are being imaged.
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• The spectral resolution measures the width of the spectral bands used to measure the radiance

at different wavelengths.

• The radiometric resolution corresponds to the number of bits used to describe the reflectance

value measured by the sensor at each spectral band.

• The temporal resolution corresponds to how often the sensor revisits a scene to obtain a new

set of data.

Most of hyperspectral sensors are ineffective at night, and measure radiation in the solar

illumination portion (0.385µm - 2.5µm) of the electromagnetic spectrum. This in fact limits the

use of these passive sensors to daylight hours [123].

When the range of the hyperspectral sensor is extended into thermal infrared portion (8µm to

14µm), materials emit more radiation than they reflect from the sun allowing spectrometers

to operate all daylong [103, 123].

The electromagnetic spectrum portion 0.385µm - 2.5µm

• The portion 0.385µm - 0.7µm: it corresponds to the visible spectrum and which is the only

portion perceptible to the human eye (with a maximum sensibility in around 0.55µm). In

the 17th century, Isaac Newton (at the age of 23) held a prism of glass in the path of a beam

of sunlight coming through a hole in the blind of his darkened room. He observed the white

sunlight was split into red, orange, yellow, green, cyan and blue light. Newton has named

the red, green and blue as “primary colors”, since they regenerate white light when they

are recombined all together. In addition, the mixture of any two of these primary colors

will give the secondary colors. For example, mixing blue and green light gives cyan light;

mixing green and red light gives yellow light. But when mixing red and blue light, Newton

has observed a magenta light. Thus, his findings showed that the “primary colors” are red,

green and blue, separated by the three “secondary colors” – yellow, cyan, and magenta.

In fact, this magenta color has posed a mystery since it is a non-spectral color of light. It is

impossible to find the magenta color on the visible spectrum due to the fact that there is no

wavelength of light that makes it. In this regard, an English physician called Thomas young,

was very curious to solve this magenta puzzle. He made an assumption that the human

eye perceives only Newton’s three primary colors (red, green, and blue), and that the eye

perceived all of the variations in color by combining these internally. Hence, when red and

blue are mixed together, the eye sees a magenta color, despite that the light is not actually

magenta.

• The portion 0.7µm - 2.5µm: This portion includes the near infrared (from 0.7µm to 1.6µm)

plus a part of the Medium infrared. The infrared light is not perceptible to the human eye.

On the other hand, animals like goldfish for example can see in infrared light.
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“The airborne hyperspectral imaging sensors which are effective in the portion 0.385µm -

2.5µm help us to see the world with the eyes of human and goldfish! ”

1.1.3 Hyperspectral target detection: concept and Applications

Hyperspectral imagery has an emerging but narrow audience. With the rich information afforded

by the high spectral dimensionality, hyperspectral imagery has found many applications in various

fields such as agriculture [43, 120], mineralogy [79], military [51, 104, 131], and in particular,

target detection [57, 59, 101, 103, 104, 106, 123, 128]. The latter is being not surprisingly one of

the most important applications of hyperspectral imagery.

Usually, the detection is built using a binary hypothesis test that chooses between the following

competing null and alternative hypothesis: target absent (H0), that is, the test pixel x con-

sists only of background; and target present (H1) where x may be either fully or partially

occupied by the target material.

Full vs subpixel targets

It is well known that the signal model for hyperspectral test pixels is fundamentally different from

the additive model used in radar and communications applications [101, 107]. We can regard each

test pixel x as being made up of x = α t + (1 − α) b, where 0 ≤ α ≤ 1 designates the target

fill-fraction, t is the spectrum of the target, and b is the spectrum of the background (at the

same spatial location). This model is known as replacement signal model, and hence, when a

target is present in a given HSI, it replaces (that is, removes) an equal part of the background.

For notational convenience, sensor noise has been incorporated into the target and background

spectra (the vectors t and b include noise).

In particular, when α = 0, the pixel x is fully occupied by the background material (the target

is not present). When α = 1, the pixel x is fully occupied by the target material and is usually

referred to as the full or resolved target pixel. Whereas when 0 < α < 1, the pixel x is partially

occupied by the target material, and is usually referred to as the subpixel or unresolved target.

The detection of a resolved target pixel depends on the spectral contrast between the target

and background. On the other hand, the detection of an unresolved target depends on the

target fill-fraction α, since it determines the amount of background interference on the observed

target spectrum [101]. Additional factors affecting spectral detectability include environmental

conditions and sensor noise.

Signal model used in target detection algorithms

The hyperspectral target detection algorithms are instead based on the additive model since

the constraint 0 ≤ α ≤ 1 in the replacement model complicates their theoretical derivation and



8 1.1. Introduction to Hyperspectral Imagery and Target Detection

practical implementation [101, 107]. The additive signal model can, however, be regarded as a

good approximation of the replacement signal model for 0 < α� 1 (that is, (1−α) ≈ 1). However,

the additive signal model assumption is not valid for real hyperspectral imaging data.

Applications to target detection

In hyperspectral imagery, the target detection algorithms can be grouped into two kinds of applica-

tions:

• Application to target detection when the target t is known:

A prior target information can often be provided to the user. In real world hyperspectral

imagery, this prior information may not be only related to its spatial properties (e.g. size,

shape, texture) and which is usually not at our disposal, but to its spectral signature. The

latter usually hinges on the nature of the given HSI where the spectra of the targets of interest

have been already measured by some laboratories or with some hand-held spectrometers.

Different target detectors (e.g. Matched Filter [105, 114], Normalized Matched Filter [93],

and Kelly detector [91]) have been developed and which require that the target spectra to

be known and provided to the user.

• Application to target detection when the target t is not known (anomaly detection):

This application is usually known as “hyperspectral anomaly detection”. In many situations

of practical interest, we do not have sufficient a priori information to specify the statistics of

the target class. More precisely, the target spectra is not provided to the user (that is, not

known). This unknown target is usually referred as « anomaly» [110] having a very different

spectra from the surrounding background (e.g. a ship at sea).

Different target detectors (e.g. Reed and Xiaoli detector [125], Kelly anomaly detector [92])

have been developed and which are independent on the target t.

For any target detection to be successful, the target spectra must be distinguishable from the

background spectra. In addition, detectors that depend on the target of interest t can have higher

chance to achieve better detection performance than to those that do not depend on the target

(the anomaly detectors). This is to be expected since anomaly detectors do not look for specific

spectrally defined targets [101]. However, the application to anomaly detection for hyperspectral

imaging is potentially interesting, but still not a promising area.

1.1.4 Serious challenges in hyperspectral target detection

The aforementioned classical target detectors, either when the target t is known or not, present

several limitations in real world hyperspectral imagery. The task of understanding and solving

these limitations presents significant challenges for hyperspectral target detection.
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[Challenge one] The dependency on the unknown covariance matrix Σ (of the
background surrounding the test pixel), and the estimation challenges of Σ in large
dimensions and under different environments.

One of the major drawbacks of the aforementioned classical target detectors is that they depend

on the unknown covariance matrix (of the background surrounding the test pixel) Σ whose entries

have to be carefully estimated especially in large dimensions and to ensure success under different

environments. In addition, there is always an explicit assumption on the statistical distribution

of the observed data. Hence, estimating the covariance matrix in these classical target detectors

has always been one of the stickiest points. This covariance matrix estimation can be interpreted

as a whitening process in order to suppress image background.

• Estimating the covariance matrix: The sample covariance, for example, is the well known

traditional covariance estimator derived by the maximum likelihood under Gaussianity. It is

important to note that the estimation of covariance matrices through optimization of an

objective function (e.g. a log-likelihood function) is usually a difficult numerical problem,

since the resulting estimates should be positive definite matrices.

In this regard, and in order to address the positivity definiteness constraint problem of

the sample covariance, a method was developed to estimate the covariance matrix via

linear regressions [124]. More precisely, for a positive-definite covariance matrix Σ, its

modified Cholesky decomposition can be written as T Σ TT = D, where T is a unit lower

triangular matrix (aka Cholesky factor) and D is a diagonal matrix with positive entries.

The elements of T and D are uniquely defined and have interpretations as the successive

regression coefficients and prediction error variances when measurements are regressed on

their predecessors. A usual estimation of T and D can be simply done using the ordinary

least squares method.

However, some researchers have been interested on the covariance estimation by taking

into consideration that in real world hyperspectral imagery, the background is usually

non-homogeneous, and thus, the distribution of the background pixels can differ significantly

from the theoretically predicted under Gaussian hypothesis. In this context, other traditional

but robust covariance estimation approaches (i.e. the Tyler covariance estimator [41, 66,

119]) were proposed to take into account that the empirical distribution has instead long

tails compared to the Gaussian assumptions [11, 12, 14, 15].

• Covariance estimation in large dimensions: Estimating large covariance matrices has been a

longstanding important problem in many applications and has attracted increased attention

over several decades. When the spectral dimension is considered large compared to the

sample size (which is the usual case), the aforementioned traditional covariance estimators
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are estimated with a lot of errors. It implies that the largest or smallest estimated coefficients

in the matrix tend to take on extreme values not because this is “the truth”, but because

they contain an extreme amount of error [94, 95]. This is one of the main reasons why the

classical target detectors usually behave poorly in detecting the targets of interest.

[Challenge two] Sensor noise, atmospheric conditions, and material composition

The classical target detectors that depend on the target to detect t, use only a single reference

spectrum for the target of interest. This might be inadequate since in real world hyperspectral

imagery, various effects that produce variability to the material spectra (e.g. atmospheric conditions,

sensor noise, and material composition) are inevitable [77, 138].

For instance, target signatures are typically measured in laboratories or in the field with hand-held

spectrometers that are at most a few inches from the target surface. Hyperspectral images, however,

are collected at huge distances away from the target and have significant atmospheric effects present.
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1.2 Thesis Overview: How and why is sparsity exploited
for hyperspectral target detection?

1.2.1 General definition of sparsity

I thought I will be late to my work! Fortunately, the traffic was sparse ,

The word “sparse” (from Latin “sparsus”) is an adjective from the early 18th century (used to

describe writing in the sense “widely spaced”). It generally means “small in number or amount,

often spread over a large area”. This word is widely used everywhere and in everyday life (i.e.

between people on the street, and between researchers in several domains).

As the general definition of sparsity is well defined, the researcher who is working on such

application (i.e. Video surveillance, face recognition, hyperspectral target detection, hyperspectral

image classification, and hyperspectral unmixing) might be interested to exploit this definition to

develop contributions for solving or alleviating some specific problems and challenges. However,

“How and why is sparsity exploited?” remains a very ambiguous question since its answer depends

on the application of interest (in this thesis, it is the hyperspectral target detection) and the

problems to solve in a specific application.

1.2.2 How and Why is sparsity exploited in this thesis?

There are several reasons that motivate our interest to exploit sparsity for hyperspectral target

detection. We put forth three reasons, and for each of them, we briefly outline how is sparsity

exploited to alleviate all or some of the aforementioned challenges of the classical target detectors,

and hence, potentially improving the target detection performance.
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[Reason one] In a given HSI, the targets usually occupy a small part of the entire im-
age scene

In a given HSI, the targets usually occupy a very small part of the entire image scene and

thus are assumed to be randomly distributed in the image scene and have low probability to

be present. Thus, the targets present can be characterized by the sparsity property in the

spatial domain (spatially sparse).

How is this sparsity exploited?

The main objective is to develop a new target detector that alleviates all the aforementioned

challenges of the classical target detectors. Hence, our new target detector is independent on the

true unknown covariance, behaves well in large dimensions, distributional free, and invariant to

atmospheric effects. Our detector is based on similar assumptions to those used in Robust Principal

Component Analysis (RPCA) [25]. That is, we exploit the aforementioned sparsity property on the

targets (the targets are spatially sparse) aside an additional property that assumes the background

is low-rank. More precisely, we take into consideration that in real world hyperspectral imagery:

1. The targets are spatially sparse (e.g. few pixels in a million pixel image),

2. The background is not too heavily cluttered with many different materials with multiple

spectra, so that the background signals should span a low-dimensional subspace, a property

that can be expressed as the low-rank condition of a suitably formulated matrix.

Figure 1.2: Flow Chart of our contribution for Reason one

From the aforementioned analysis, a method for separating targets of interest from the background

in hyperspectral imagery is developed based on a modification of the well-known classical RPCA.

More precisely, we first prove that a modification of RPCA is essential to substantially improving

the discrimination of the targets of interest from their surrounding background. Then, we build

the necessary assumptions for our modification of RPCA by taking into consideration that a

prior target information is fully provided to the user and that the atmospheric influence can be
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accounted via a pre-learned target dictionary At specified by the user.

From our proposed modification of RPCA, a given hyperspectral image (HSI) is thus regarded

as being made up of the sum of a low-rank background HSI (consisting only of background),

and a sparse target HSI that only contains the targets of interest based on the pre-learned

target dictionary At. From this target and background separation method, only the sparse

component (the sparse target HSI) will be the object of interest, and hence, we aim

to directly consider the sparse target HSI as our novel target detector (see Figure 1.2). More

precisely, the targets are deemed to be present at the non-zero entries of the sparse target HSI.

To sum up, our main contribution for reason one is to develop a new target detector which

is simply a sparse HSI generated automatically from the original HSI, but containing only the

targets of interest with the background is suppressed (see the Flow Chart in Figure 1.2).

[Reason two] A hyperspectral test pixel lies in a low-dimensional subspace

It has been proven by Healey et al. in [77] that for any hyperspectral test pixel x ∈ Rp, it lies

approximately in a low-dimensional subspace of the p-dimensional spectral-measurement space.

Thus, instead of modelling target and background signals using one single predefined model,

sparsity can be exploited for hyperspectral imagery signal representations.

How is this sparsity exploited?

Recently, some target detection algorithms based on sparse representation for HSI data have been

developed [33, 163]. More precisely, dictionaries of target and background have been used (denoted

as At and Ab in this thesis), and the test signal is then modeled as a sparse linear combination of

the prototype signals taken from the dictionaries, and the recovered sparse representation can be

used directly for the detection to constitute the target detector. The latter is being independent

on the unknown covariance matrix, behaves well in large dimensions, distributional free, and

invariant to atmospheric effects. More precisely, this sparse representation approach can alleviate

the spectral variability caused by atmospheric effects, and can also better deal with a greater

range of noise phenomena.

Our main contribution is to improve the detection performance of the already existing target

detectors that exploit this sparse representation approach. In fact, the main drawback of these

detectors is that they usually lack a sufficiently universal dictionary, especially for the background

Ab; some form of in-scene adaptation would be desirable. Hence, an important problem appears

and which is the background dictionary Ab construction. It is noteworthy to mention that the

construction of Ab is a very challenging problem since a contamination of it by the target pixels

can potentially affect the target detection performance.
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Our contribution in providing an accurate construction of Ab:

Recall that in the previous contribution for Reason one, we have mentioned that a target and

background separation method based on a modification of RPCA will be developed. More precisely,

a given HSI can be split into a low-rank background HSI and a sparse target HSI. The latter

is considered the object of interest and thus is used directly for the detection. The question

is “Why do we not also benefit from the low-rank component?”. Indeed, since this low-rank

component can be pure from the targets, we aim to exploit it for a more accurate construction of

Ab, following which various target detectors based on sparse representation can be used to carry

out a more elaborate binary hypothesis test. More precisely, we construct Ab using a specific

adaptive method, applied on the low-rank background HSI which is generated from the modified

version of RPCA, developed in the contribution of Reason one.

[Reason three] The covariance estimation is very challenging in large dimensions

Due to the fact that in hyperspectral imagery, the number of covariance matrix parameters to

estimate grows with the square of the spectral dimension, it becomes impractical to use traditional

covariance estimators, failing which the target detection performance can deteriorate significantly.

Many a time, the researchers assume that compounding the large dimensionality problem can

be alleviated by leveraging on the assumption that the true unknown covariance matrix (of the

background surrounding the test pixel) is sparse, namely, many entries are zero. This sparsity

assumption can potentially alleviate the large dimensionality challenge.

Figure 1.3: Flow Chart of our contribution for Reason three

How is this sparsity exploited?

As our contribution (see Figure 1.3), the covariance matrix Σ (of the background surrounding

the test pixel) is first regarded as being made up of Σ = T−1 D T−T , where T is a unit lower

triangular matrix (aka Cholesky factor) and D is a diagonal matrix with positive entries. Then,

new covariance estimators are developed by assuming Σ is sparse, namely, many entries are zero,

where this sparsity is imposed via the Cholesky factor T. The proposed covariance estimators are

then plugged-in into classical target detectors.

Clearly, in real world hyperspectral imagery, the true covariance model is not known, and
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hence, there is no prior information on its degree of sparsity. So “What is the motivation of

considering this sparsity constraint on the covariance matrix?”. Answering this question can

obviously be like “For the first intuition, considering this sparsity constraint on the covariance

matrix seems to be a very strong assumption, but can contribute in potentially improving the target

detection (especially in large dimensions) of the classical target detectors if the true unknown

covariance matrix Σ (of the background surrounding the test pixel) is indeed sparse”. This answer

will directly follow the question “But what if the true unknown covariance Σ is not sparse?”. In

this case, our answer is “Even if the true covariance is not sparse (or not highly sparse), our

proposed covariance estimators should at least not achieve worse target detection results (for the

classical target detectors) than to those of the traditional covariance estimators”.

1.2.3 The Structure of this Report

The rest of this report is structured along the following lines:

1. Part II: Automatic Target Detection Based on Low-Rank and Sparse Matrix

Decomposition:

This part represents the first thesis direction.

• Chapter 2 “A Novel Target Detector for Hyperspectral Imaging” outlines the main

contribution related to Reason one “In a given HSI, the targets usually occupy a small

part of the entire image scene”.

It starts by providing a general background section that informs the rest of the chapter

concerning the RPCA framework. Then, it highlights on our study of exploiting

the classical RPCA for separating the targets of interest from the background in

hyperspectral imagery. More precisely, we start by evaluating the classical RPCA on

four real hyperspectral images to conclude that the direct use of RPCA is inadequate

to distinguish the targets from the background. After that, we outline in detail

the necessary steps and assumptions for our modification of RPCA by taking into

consideration that a prior target information is fully provided to the user. We regard

the given HSI as being made up of the sum of a low-rank background HSI, a sparse

target HSI that only contains the targets of interest based on a pre-learned target

dictionary specified by the user, and a Noise HSI. The sparse target HSI will be directly

used for the detection, and hence, constitutes our novel target detector. The chapter

ends with a summary of the proposed work.

• Chapter 3 “Improving Background Dictionary Construction for Sparse Representation

Methods” outlines the main contribution related to Reason two “A hyperspectral test

pixel lies in a low-dimensional subspace”. More precisely, this chapter addresses the

background dictionary Ab contamination problem suffered by the dictionary-based
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target detection methods which are based on the sparse representation of hyperspectral

test pixels. In order to do this, a specific adaptive method is used to construct

Ab on the low-rank background HSI generated in Chapter 2, and hence, avoiding

contamination by the target pixels. This improvement for the Ab construction is

implemented into the already existing dictionary-based target detectors (that are based

on the sparse representation approach) in order to potentially improve the target

detection performance. The chapter ends with a summary of the proposed work.

• Chapter 4 “Application to Hyperspectral Target Detection for Chapter 2 and Chapter

3”: Both target detection strategies in Chapter 2
(
that is, our novel target detector)

and in Chapter 3 (that is, constructing an accurate background dictionary Ab pure

from the target pixels via the low-rank background HSI, and implementing it into the

existing dictionary-based target detectors) are evaluated extensively on both synthetic

and real experiments for hyperspectral target detection. The chapter ends with a

summary of the main contributions and results for both Chapter 2 and Chapter 3, and

some directions for future work.

2. Part III Target Detection Based on Sparse Covariance Matrices:

This part is completely independent from Part II

This part represents the second thesis direction.

• Chapter 5 “General Background” provides a brief background of all the necessary

information required for Chapter 6. The chapter starts by introducing the linear

regression analysis. It then overviews the traditional covariance estimators, including

a comparative study of them for hyperspectral target detection. Next, it outlines

some research works that have been developed in the literature to alleviate the high

covariance dimensionality challenge by assuming the covariance matrix is sparse. The

chapter ends with a summary.

• Chapter 6 “Imposing Sparsity on the Covariance Matrix via Its Cholesky Factor”

outlines the main contribution related to Reason three “the covariance estimation is

very challenging in large dimensions”. More precisely, this chapter aims to improve the

target detection performance of the classical target detectors by imposing sparsity on

the covariance matrix based on the assumption that the true unknown covariance matrix

(of the background surrounding the test pixel) in a given HSI is sparse, namely, many

entries are zero. A new covariance estimators that impose sparsity on the covariance

matrix Σ via its Cholesky factor are developed. The chapter also provides some

Monte-Carlo simulations as well as experimental data to demonstrate the effectiveness
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of our proposed covariance estimators for hyperspectral target detection. The chapter

ends with a summary of the whole Part III, and some directions for future work.

3. Part IV: Concluding remarks:

• Chapter 7 concludes with a summary of all the proposed works and the results

presented, and some perspectives, new issues, opportunities and paths, the continuity

of this work suggests.

1.2.4 Publications

This dissertation draws heavily on the earlier work and writing in the following papers, written

jointly with Prof. Jean-Philippe Ovarlez and Prof. Loong-Fah Cheong:

• Ahmad W. Bitar, Jean-Philippe Ovarlez, Loong-Fah Cheong. Sparsity-based Cholesky

Factorization and Its Application for Hyperspectral Anomaly Detection [18]. IEEE In-

ternational Conference on Computational Advances in Multi-Sensor Adaptive Processing

(CAMSAP), 2017.

• Ahmad W. Bitar, Jean-Philippe Ovarlez, Loong-Fah Cheong. Exploitation de la parci-

monie par la factorisation de Cholesky et son application pour la détection d’anomalies en

imagerie hyperspectrale. GRETSI 2017.

• Ahmad W. Bitar, Loong-Fah Cheong, Jean-Philippe Ovarlez. Simultaneous Sparsity-

Based Binary Hypothesis Model For Real Hyperspectral Target Detection [16]. IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.

• Ahmad W. Bitar, Loong-Fah Cheong, Jean-Philippe Ovarlez. Target and Background

Separation in Hyperspectral Imagery for Automatic Target Detection. Accepted to the IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.

• Ahmad W. Bitar, Loong-Fah Cheong, Jean-Philippe Ovarlez. Sparse and Low-Rank

Matrix Decomposition for Automatic Target Detection in Hyperspectral Imagery [17]. Sub-

mitted (it has been accepted, but modifications are required until 25 May 2018) to the IEEE

Transactions on Geoscience and Remote Sensing (TGRS). http://arxiv.org/abs/1711.08970,

Nov 2017.
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I Synopsis This chapter introduces a novel target detector for hyperspectral imagery. This

detector is independent on the unknown covariance matrix, behaves well in large dimensions,

distributional free, and uses a target dictionary to alleviate the atmospheric influence. More

precisely, based on a modification of the Robust Principal Component Analysis (RPCA), a given

hyperspectral image (HSI) is regarded as being made up of the sum of a low-rank background

HSI and a sparse target HSI that contains the targets based on a pre-learned target dictionary

specified by the user. The sparse component (the sparse target HSI), will only be the object of

interest, and hence, constitutes the novel target detector. This chapter is split into three parts:

21
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1. The first part 2.1 “Background and System Overview” begins by briefly overviewing all

necessary information about RPCA. Then, it discusses the great success of RPCA in some

applications such as face recognition and foreground detection. It ends by providing a brief

system overview of the proposed work.

2. The second part 2.2 “Our study on testing RPCA for hyperspectral target detection” first

aims to answer the question “How is RPCA exploited for hyperspectral imagery?”. Then,

it proves that the direct use of RPCA is inadequate to distinguish the targets from the

surrounding background, and hence, a modification of its version is highly recommended.

3. The third part 2.3 “Let us modify the RPCA” outlines the necessary steps for the

modification of RPCA by taking into consideration that a prior target information is fully

provided to the user. The novel target detector is briefly described and which is simply a

sparse HSI automatically generated from the original HSI, but only containing the targets

of interest with the background is suppressed.

2.1 Background and System Overview

Suppose a large data matrix D, and we have knowledge that it can be decomposed as the sum of

a low-rank matrix L0 and a sparse matrix E0, both of arbitrary magnitude. That is,

D = L0 + E0

Here, we do not know any information about the low-dimensional column and row space of L0,

not even their dimension. In addition, we do not know the locations of the nonzero entries of E0

and not even how many there are.

The question is how can both the low-rank and sparse components be recovered accurately

(perhaps even exactly) and efficiently?

A provably correct and scalable solution to the above problem would presumably have an

impact on today’s data-intensive scientific discovery. The recent explosion of massive amounts

of high dimensional data in science, engineering, and society presents a challenge as well as

an opportunity to many areas such as image, video, multimedia processing, web relevancy

data analysis, search, biomedical imaging and bioinformatics. In such application domains,

data now routinely lie in thousands or even billions of dimensions, with a number of samples

sometimes of the same order of magnitude.

In many engineering applications such as in pattern analysis and signal processing, an

underlying tenet is that the data often contains some type of structure that enables intelligent

representation and processing. In real applications, the well-known (linear) subspaces are possibly

the most common choice for such a parametric model in well characterizing a given data (e.g.

motion, face and texture).
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2.1.1 Principal Component Analysis (PCA)

The classical Principal Component Analysis (PCA) [49, 80, 87] has become a booming statistical

tool for data analysis and dimensionality reduction. Given a set of data vectors, PCA seeks to

find a small number of principal components (the orthogonal basis vectors) along which most of

the variability of the data lies.

In its simplest form [87], PCA considers that a data matrix D is formed as a superposition of

a low-rank matrix L0 and a perturbation matrix N0 (not necessarily sparse), that is:

D = L0 + N0,

and then seeks to recover the low-rank kL-estimate of L0 in the l2 sense:

min
L

{
‖D− L‖2

}
s.t. rank(L) ≤ kL ,

which can be efficiently solved via Singular Value Decomposition (SVD) and thresholding.

Figure 2.1: Corruptions (gross errors) on the face.
A total of 58 different illuminations were applied for
each face. These face images were used by Candès et
al. in [25]

Mathematically, one can think here that

the columns of the data matrix are data

points and so after plotting them, they

may be in a high dimensional space but

can be very well distributed around a low-

dimensional structure. Hence, PCA deals

with the simplest assumption in that the

data all lie near some low-dimensional sub-

space.

Unfortunately, the main disadvantage is that PCA is extremely sensitive to gross errors (Figure

2.1), and hence, the recovery of the low-rank matrix can be arbitrarily so far from the true L0.

Nowadays, one has to always consider the presence of such gross errors which are becoming

ubiquitous in modern applications such as image processing, web data analysis, where some

measurements may be arbitrarily corrupted (due to occlusions, sensor failures, etc.). For example,

in face recognition, one can imagine how it becomes hard to successfully recognizing a face if it is

occluded by scarf, or sunglasses. The same problem occurs when the face image is corrupted by

specularities (i.e. in the eyes), shadows (i.e. around the nose region), and brightness saturations

(i.e. on the face).

Hence, robustifying PCA has become an essential need. In real world, one has to deal with

large collection of images, videos, web data, and so having a lot of incorrect entries in huge

data matrices should always be taken into consideration.
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2.1.2 Robust Principal Component Analysis (RPCA)

A lot of methods aiming to robustify PCA have been proposed in the literature over several

decades. For example, the influence function techniques [45, 83], multivariate trimming [67],

alternating minimization [89], and random sampling techniques [55].

Unfortunately, none of these PCA variants possessed the strong performance guaranteed by the

recent works based on the idea that a given data matrix can be formed by adding an unknown

low-rank matrix to an unknown sparse matrix that contains the corruptions with possibly some

additional noise errors. This decomposition matrix model can be solved via Robust Principal

Component Analysis (RPCA) [21, 25, 141, 149], in which, the low-rank matrix L0 is being

recovered from highly corrupted measurements D = L0 + E0. Hence, unlike the small noise

term N0 in classical PCA, now the entries in E0 can have arbitrarily large magnitude, and

their support is assumed to be sparse but not known.

More precisely, the RPCA framework aims to estimate both L0 and E0 by solving the

following minimization problem:

min
L,E

{
rank(L) + λ ‖E‖l

}
s.t. D = L + E , (2.1)

where λ > 0 is a regularizing parameter (it plays a very important role since it trades off between

the low-rank and the sparse component) and ‖.‖l indicates certain sparse regularization strategy,

such as the l0 norm adopted in [25], the l2,0 norm adopted in [86, 152], and the l0,2 norm.

2.1.3 Some recent research in RPCA

Problem (2.1) is NP-HARD to solve due to the presence of the rank term and the ‖.‖l ∈

{‖.‖0 , ‖.‖2,0 , ‖.‖0,2} norm. In this regard, several recent research works have been done in

RPCA and which differ from the decomposition, the loss functions, the optimization problem,

and the solvers used. These works in RPCA include:

• RPCA via Principal Component Pursuit (RPCA-PCP): The l0 norm is used for the sparse

component in the RPCA problem in (2.1). However, [25, 30, 149, 160] showed that by

relaxing the rank term to the nuclear norm and the l0 norm to the l1 norm, i.e.,

min
L,E

{
‖L‖∗ + λ ‖E‖1

}
s.t. D = L + E , (2.2)

known as Principal Component Pursuit (PCP), one can recover both L0 and E0 exactly

with high probability under certain conditions by solving this convex minimization problem.

why is the nuclear norm used as a surrogation of the rank term?

Note that: ‖L‖∗ = Tr
(√

LT L
)
, and if L is replaced by its singular value decomposition

U S VT, we obtain ‖L‖∗ = Tr{|S|}. Hence, using the nuclear norm is like to apply the l1
norm on the vector of singular values of L. This demonstrates why is the nuclear norm used
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as a convex surrogation of the rank term.

One of the main limitations of RPCA-PCP is that it exactly decomposes D into L and E.

However, this exact decomposition does not always exist for a real data matrix D due to

the possible presence of a small magnitude dense inlier noise.

• RPCA via Stable Principal Component Pursuit (RPCA-SPCP): Due to the aforementioned

limitation of RPCA-PCP, Zhou et al. [168] have used the model D = L0 + E0 + N0, and

solved a relaxed version of (2.2) known as Stable Principal Component Pursuit (SPCP):

min
L,E

{
‖L‖∗ + λ ‖E‖1

}
s.t. ‖D− L−E‖F ≤ δ , (2.3)

for some δ > 0. It was shown that the estimation error can be bounded. The Lagrangian

form of (2.3) is written as [149, 168]:

min
L,E

{
‖L‖∗ + λ ‖E‖1 + 1

2µ ‖D− L−E‖2
F

}
, (2.4)

where µ > 0.

• RPCA via Outlier Pursuit (RPCA-OP): In contrast to [25] where the l0 norm is chosen for

the sparse component, Xu et al. in [152] have been interested to the use of l2,0 norm and its

surrogation to the l2,1 norm. Hence, enforcing sparsity in E but in columns. The following

convex minimization problem is considered:

min
L,E

{
‖L‖∗ + λ ‖E‖2,1

}
s.t. D = L + E . (2.5)

• RPCA via Stable Outlier Pursuit (RPCA-SOP): As in [168], Xu et al. in [152] further

proposed a Stable OP (SOP) that guarantees stable and accurate recovery in the presence

of entry-wise noise. The following convex minimization problem is considered:

min
L,E

{
‖L‖∗ + λ ‖E‖2,1 + 1

2µ ‖D− L−E‖2
F

}
. (2.6)

There have been a lot of other works in RPCA addressing the presence of noise, and modification in

the loss functions. These works include the RPCA via Sparsity Control [108, 109], RPCA via Sparse

Corruptions [81], RPCA via Log-sum heuristic Recovery [46], RPCA via Iteratively Reweighted

Least Squares [73, 75] and its improved version in [74], RPCA via Stochastic Optimization [54,

68, 85], RPCA with Dynamic Mode Decomposition [88], Bayesian RPCA [47] and its improved

versions in [1, 4, 165], Approximated RPCA [167], Sparse Additive Matrix Factorization [112,

113], and Variational Bayesian Sparse Estimator [36].

2.1.4 Success of RPCA in some applications: face recognition and
foreground detection

There are several applications in which the data under study can be modeled as a low-rank plus a

sparse decomposition.
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Depending on the application and the problems to solve, either the low-rank component or the

sparse component can be the object of interest.

We briefly outline two important applications in which the RPCA has obtained encouraging

performances, as proved by Candès et al. in [25]. These applications include: face recognition

and foreground detection.

RPCA for face recognition

In this application, the low-rank component L is the object of interest

It has been shown that images of human’s face can be well approximated by a low-dimensional

subspace. Candès et al. in [25] have proven (visually) that for a given face image corrupted by

some self-shadowing, specularities or saturations in brightness, the RPCA is capable of removing

these defects in order to provide better recognition performance. In recognizing a human’s face

Figure 2.2: Removing shadows, specularities, and saturations from a face image using RPCA-PCP [25].
This example is taken from [25]. The original face image D is split into a low-rank face component L and
a sparse component E that corresponds to specularities in the eyes, shadows around the nose region, and
brightness saturations on the face.

image under such defect (i.e. self-shadowing), the low-rank component L0 will correspond to

the face image without the defect, and the sparse component E0 captures the defects present.

Figure 2.2 (an example taken from [25]) exhibits a separation evaluation example for applying

the RPCA-PCP on a given face image to remove specularities in the eyes, shadows around the

nose region, and brightness saturations on the face.

RPCA for foreground detection

In this application, the sparse component E is the object of interest

Many target detection applications such as in computer vision, image processing, and biomedical

image processing, involve an automatic detection of such an object or activity. In a very simple

video analysis for example, the targets of interest correspond to the moving objects with respect

to a static background image. The term “very simple video” means that the moving objects in

the scene only correspond to the true targets
(
that is, the background is static (i.e. there is no

escalator), and there is no a static target (i.e. a person who does not move)
)
.
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These targets are also known as “foreground”, and hence, the target detection in video analysis is

called “foreground detection”. That is, to detect, distinguish or separate all the moving objects

(that correspond to the true targets) from the static information called “background”.

By applying RPCA for foreground detection, the background sequence is modeled by the low-rank

subspace that can gradually change over time, while the moving target objects constitute the

correlated sparse outliers. If we stack the video frames as columns of a matrix D, then the

Figure 2.3: Detecting the moving targets from a static background using RPCA-PCP

low-rank component L0 will correspond to the background, and the sparse component E0 captures

the moving objects. Figure 2.3 (an example taken from [25]) exhibits an example of the use of

RPCA-PCP on detecting the moving targets from a static background.

Note that in practice, the scene usually has a non static background (i.e. some background

objects are in move [19]), e.g., a background that contains a non-target moving object such as an

escalator. While these objects should not be considered a part of the foreground, it has been shown

that RPCA consider them as targets, and thus, RPCA captures any of the moving objects (that

is, the moving objects are being deposited in the sparse component E) which may not necessarily

be the targets of interest. Hence, RPCA has achieved encouraging performances for foreground

detection in very simple videos analysis, but still inadequate to distinguish the true targets from

the surrounding non-static background.

A lot of researchers are aiming today to alleviate the RPCA challenges in realistic environment

(i.e. illumination change causing complex intensity variation, background motions (trees, waves)

whose magnitude can be greater than the foreground, poor image quality under low light, and

camouflage). Interested readers can refer to [62, 63].

The RPCA for foreground detection is not interesting in this dissertation. Instead, we aim

to exploit the RPCA for hyperspectral imaging data, as can be seen in the following sections.

Note that foreground detection and hyperspectral imagery applications are not directly related.
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2.1.5 System Overview of the proposed work

Due to the encouraging performances of RPCA that have been proven by Candès et al. in [25] for

applications such as face recognition and foreground detection (specifically, for a very simple video

analysis), we first aim to study how can RPCA be exploited for hyperspectral imagery [153–155].

More precisely, we regard a given HSI as being made up of the sum of a low-rank background

HSI (that constitutes the background) and a sparse target HSI that only contains the targets of

interest whose background has been suppressed.

Then, using four real hyperspectral images that differ by the complexity of the targets and

their surrounding background, we prove that the direct use of RPCA is inadequate to distinguish

the targets of interest from the background.

In this regard, we aim to modify the RPCA by taking into consideration that a prior target

information is fully provided to the user. After incorporating this prior information into the

sparse component, the latter is being used directly for the detection.

2.2 Our study on testing RPCA for hyperspectral target
detection

2.2.1 How can RPCA be exploited for hyperspectral imagery?

How to define both the low-rank component L0 and sparse component E0?

While we do not need to make assumptions about the size, shape, or number of the targets present in

a given HSI, it is possible to consider the same constraints as to those used in RPCA. More precisely:

• The total image area of all the target(s) should be small relative to the whole image (i.e.

spatially sparse), e.g., several hundred of pixels in a million pixel image, though there is

no restriction on target shape or the proximity between targets. This will define the sparse

component E0.

• The background is not too heavily cluttered with many different materials with multiple

spectra, so that the background signals should span a low-dimensional subspace, a property

that can be expressed as the low-rank condition of a suitably formulated matrix [32, 155,

164]. This will define the low-rank component L0.

Hence, for any given HSI of size h × w × p, where h and w are the height and width of the

image scene, respectively, and after rearranging it into a two-dimensional matrix D of size e× p

(by lexicographically ordering the columns), where e = h × w, the HSI can be modeled as

D = L0 + E0 + N0.



2. A Novel Target Detector for Hyperspectral Imaging 29

Figure 2.4: A given HSI that contains three targets (the red circles). The HSI is split into a low-rank
background HSI L0, a sparse target HSI E0, and the noise HSI N0.

In this regard, we aim to solve the following minimization problem:

min
L,E

{
τ rank(L) + λ ‖E‖0,2 + ‖D− L−E‖2

F

}
, (2.7)

where τ controls the rank of L, and λ the sparsity level in E. Note that in our case, the matrix

E0 will be sparse in rows, and hence, the l0,2 norm is used for the sparse component.

Again, problem (2.7) is NP-HARD, and thus is solved by the following convex minimization

problem (after surrogating the rank term to the nuclear norm and the l0,2 norm to the l1,2 norm):

min
L,E

{
τ ‖L‖∗ + λ ‖E‖1,2 + ‖D− L−E‖2

F

}
, (2.8)

We can observe that unlike the “RPCA-SOP” in (2.6), we have now an l1,2 norm for the sparse

component (since in our case, the matrix E should be sparse in rows). In addition, since weights

are only relative to one another, we only need two parameters and can fix the remaining one as

1. In our case, we have just replaced the two parameters λ and µ (applied on the second and

third term as in problems (2.4) and (2.6)) by τ and λ (applied on the first and second term).

The main reason why we do that is just because in our modified RPCA version later, it will be

easier to explain the parameters settings with τ and λ instead of λ and µ.

2.2.2 Is the direct use of classical RPCA adequate to distinguish the
targets of interest from the background?

The answer is no

In the aforementioned section 2.1.4, we have briefly outlined the success of RPCA in applications

such as face recognition and foreground detection. In foreground detection for example, the

RPCA searches for the moving objects (but that may not necessarily be the true targets). But if

one is interested to test the effect of using RPCA for target detection in hyperspectral imagery,

thus, “what can be the RPCA search?” and “is RPCA adequate to identify the targets of

interest from the background?”.

Our findings

RPCA searches for small heterogeneous and high contrast objects. RPCA is not adequate to

distinguish the targets · · ·
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It is very important to note that in our hyperspectral imagery application, there are often other

small, heterogeneous, high contrast regions that are non-targets. In our extensive evaluations later,

we prove that these small (heterogeneous) regions will be deemed as targets under the general RPCA

framework. Compounding the decomposition is also the often uniform material present in most

targets, which means that they would contribute only a small increase in the rank of the background

HSI L if they were to be grouped in the background HSI. Indeed, some other heterogeneous

non-target objects or specular highlights may contribute a larger increase in rank and thus they are

more liable to be treated as targets in the decomposition under the general RPCA. In other words,

there is a substantial overlap between L and E for the general RPCA to be well-posed or work well.

Let us prove our findings

Let us now prove our aforementioned findings by evaluating the RPCA model solved via problem

(2.8) on four real hyperspectral images with different background and target complexity. As can be

seen from the results (see Figure 2.5 to 2.8), despite the effort to individually tune the parameters

for best separation for each of the four images, it was not possible to obtain a clean target and

background separation. From all the evaluations below, we prove that RPCA searches for small

heterogeneous and high contrast regions that may not necessarily be the true targets of interest.

It is important to mention that from our proven findings in the evaluations below, the failure

of the general RPCA is not related to which surrogation penalty has been used for the sparse

term, but to the fact that using the general RPCA model without the incorporation of any prior

information (either on the low-rank component or on the sparse component) is not capable to

disambiguate the true targets from other small heterogeneous and/or high contrast objects.

Hence, a modification of RPCA to distinguish the targets of interest from the

background is highly recommended !!!
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Evaluation on the Nuance Cri HSI 3 The Nuance Cri HSI [164, 166] is acquired by the

Nuance Cri hyperspectral sensor. It covers an area of 400× 400 pixels with 46 spectral bands in

wavelengths ranging from 650 to 1100nm. It contains ten rocks targets in a simple background

and thus we can obviously observe from Figure 2.5 that this HSI poses no problem for the general

RPCA. However the other images below represent more complex background.

(a) (b)

(c) (d)

Figure 2.5: Evaluation of the classical RPCA on the Nuance Cri HSI. (a): the original Nuance Cri
HSI (we exhibit the mean power in db over the 46 spectral bands). (b): the GroundTruth image for the
targets of interest. (c): the low-rank background HSI L (mean power in db). (d): the sparse target HSI
E after some thresholding (mean power in db)



32 2.2. Our study on testing RPCA for hyperspectral target detection

Evaluation on PaviaC HSI 7 The PaviaC HSI [164] is a selected small zone from Pavia

Center City. It is a 100 × 126 image and consists of 102 bands in wavelengths ranging from

430 to 860nm. The main background materials are bridge and water. There are some vehicles

on the bridge and bare soil near the bridge pier, and hence, are considered as the targets to

detect. We observe from Figure 2.6 that both the vehicles, bare soil and the bridge pier are

being deposited in the sparse image.

(a) (b)

(c) (d)

Figure 2.6: Evaluation of the classical RPCA on PaviaC HSI. (a): the original PaviaC HSI (we exhibit
the mean power in db over the 102 spectral bands). (b): the GroundTruth image for the targets of
interest. (c): the low-rank background HSI L (mean power in db). (d): the sparse target HSI E after
some thresholding (mean power in db)
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Evaluation on DATA HSI 7 The DATA HSI [135] is a 201× 200 image and consisting of 167

spectral bands. It depicts a scrubby terrain with small heterogeneous regions comprised of trees and

one vehicle, the latter is being the target of interest in this case. We observe from Figure 2.7 that

both the vehicle and trees are being deposited in the sparse target image. Even with a lot of false

alarms in the sparse target image, the background is still not completely cleansed of the target.

(a) (b)

(c) (d)

Figure 2.7: Evaluation of the classical RPCA on DATA HSI. (a): the original HSI (we exhibit the mean
power in db over the 167 spectral bands). (b): the GroundTruth image for the targets of interest. (c):
the low-rank background HSI L (mean power in db). (d): the sparse target HSI E after some thresholding
(mean power in db)
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Evaluation on Cuprite HSI 7 This HSI [133, 134] is a region of the Cuprite mining district

area, of size 250× 291 pixels and consisting of 186 spectral bands in wavelengths ranging from

0.4046 to 2.4573µm. In this small zone area, three buddingtonite outcrops (spectrally dominated

by buddingtonite) are considered as targets, and their locations are shown in the GroundTruth1.

It has been noted by Gregg et. al. in [134] that the ammonia in buddingtonite has a distinct N-H

(a) (b)

(c) (d)

Figure 2.8: Evaluation of classical RPCA on Cuprite HSI. (a): the original HSI (we exhibit the mean
power in db over the 186 spectral bands). (b): the GroundTruth image for the targets of interest. (c):
the low-rank background HSI L (mean power in db). (d): the sparse target HSI E after some thresholding
(mean power in db)

combination absorption at 2.12µm, a position similar to that of the cellulose absorption in dried

vegetation, from which it can be distinguished based on its narrower band width and asymmetry.

Hence, the buddingtonite 2.12µm combination absorption is unique in wavelength location relative

to those of most other minerals in the image (that is, it is easily recognized based on its unique

2.12µm absorption band). This might be a reason (but we do not think so) of why the general

RPCA is able to find those Buddingtonite outcrops in addition to the small heterogeneous and

high contrast regions which are also deposited in the sparse target image.

1Note that there may also be smaller buddingtonite outcrops in the NE quadrant of the eastern alteration center,
but they are spectrally dominated by alunite’s absorption.



2. A Novel Target Detector for Hyperspectral Imaging 35

In addition, one can imagine that the lignin N-H absorption in vegetation would look somewhat

like the N-H combination absorption in buddingtonite, but that using more spectral bands

better differentiates buddingtonite from lignin in plants. Both are relatively broad absorptions

isolated in wavelength space from other absorptions. However, there is actually vegetation at

Cuprite – probably between 10 to 15% ground cover, though the buddingtonite areas in this

image zone are relatively vegetation free. Thus, the three buddingtonite outcrops in this image

zone can be considered to be homogeneous surrounded by areas with more vegetation on the

western side of the eastern alteration center.
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2.3 Let us modify the RPCA!

2.3.1 Some related works and issues

Whatever the real application may be, somehow the general RPCA model needs to be subject to

further assumptions for successfully distinguishing the true target from the background. There

have been some recent works that are developed to introduce a subspace basis dictionary in the

general RPCA framework, either in the low-rank or sparse component.

Introducing a subspace basis dictionary into the low-rank component

The generalized model of RPCA, named as the Low-Rank Representation (LRR) [97], allows the

use of a subspace basis as a dictionary or just uses self-representation to obtain the LRR. More

precisely, given a set of data samples each of which can be represented as a linear combination of

the bases in a dictionary, LRR aims at finding the lowest-rank representation of all data jointly.

The main advantage of LRR over RPCA is that it can handle well the data drawn from a union

of multiple subspaces.

The LRR model is defined as follows:

min
Y,E

{
rank(Y) + λ ‖E‖l

}
s.t. D = G Y + E , (2.9)

where again as in (2.1), the ‖.‖l indicates certain sparse regularization strategy such as l0 norm,

l2,0 norm, or l0,2 norm. G is a “dictionary” that linearly spans the data space. By setting G = I,

the problem (2.9) falls back to (2.1). Hence, LRR is regarded as a generalization of RPCA that

essentially uses the standard bases as the dictionary.

The fact is that LRR is more challenging than RPCA due to the presence of the dictionary

matrix G where its construction needs a very careful attention. More precisely, G has to be

constructed from the background and should not contain the target samples. This is one of the

main reasons that limits the use of LRR unless one develops an efficient method to construct an

accurate dictionary G. Note that from [97], the traditional method was to set G to D, which is not

an accurate method due to the huge targets contamination in G and the very high computational

complexity to estimate Y and E.

In this chapter, we will discard the use of LRR due to the big challenge on constructing the

dictionary G, and we will only be interested on the use of RPCA and its proposed modified version.

Introducing a subspace basis dictionary in the sparse component

In the earliest models using low-rank matrix to represent the background [25, 149, 168], no prior

knowledge on the target was considered. In some applications such as Speech enhancement and

hyperspectral imagery, we may expect some prior information about the target of interest, which
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can be provided to the user. Thus, incorporating this prior information into the separation scheme

in the general RPCA model should allow the user to potentially improve the target extraction

performance.

In [37, 132], the authors proposed a speech enhancement system by exploiting the knowledge

about the likely form of the targeted speech. This was accomplished by factorizing the sparse

component from RPCA into the product of a dictionary of target speech templates and a sparse

activation matrix. The proposed methods in [37] and [132] typically differ on how the fixed

target dictionary of speech spectral templates is constructed.

2.3.2 Our modification of RPCA

In hyperspectral imagery, as in speech enhancement system, a subsequent prior information about

the targets to detect can be provided to the user.

But this raises the question “what the target prior information can be and how its usage should be

dealt with ?”. In real world hyperspectral imagery, this prior target information may not be only

related to its spatial properties (e.g. size, shape, texture), which is usually not at our disposal,

but to its spectral signature. The latter usually hinges on the nature of the given HSI where the

spectra of the targets of interest present have been already measured by some laboratories or with

some hand-held spectrometers. For our work, we consider that information is available and we

have obtained it from some online spectral libraries.

Our proposed modification method of RPCA is very related to [37, 132], that is, we introduce

a subspace basis dictionary in the sparse component by taking into consideration that a target

prior information is available to the user. More precisely, our method assumes that the target

spectra is known and that the atmospheric influence can be accounted for by the target dictionary

At. This pre-learned target dictionary At is used to cast the general RPCA into a more specific

form, specifically, we further factorize the sparse component E from RPCA into the product of

At and a sparse activation matrix C. This modification is essential to disambiguate the true

targets from other small heterogeneous and high contrast regions, and hence, the overlap problem

illustrated in the evaluations examples in section 2.2.2 can be much relieved.

Formulating the problem

Suppose an HSI of size h × w × p, where h and w are the height and width of the image

scene, respectively, and p is the number of spectral bands. Our proposed modification of RPCA

is mainly based on the following steps:

1. Let us consider that the given HSI contains q pixels {xi}i∈[1, q] of the form:

xi = αi ti + (1− αi) bi, 0 < αi ≤ 1 ,
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where ti represents the known target that replaces a fraction αi of the background bi (i.e.

at the same spatial location). The remaining (e− q) pixels in the given HSI, with e = h×w,

are thus only background (α = 0).

2. We assume that all {ti}i∈[1, q] consist of similar materials, thus they should be represented

by a linear combination of Nt common target samples {atj}j∈[1, Nt], where atj ∈ Rp (the

superscript t is for target), but weighted with different set of coefficients {βi,j}j∈[1,Nt]. Thus,

each of the q targets is represented as:

xi = αi

Nt∑
j=1

(
βi,j atj

)
+ (1− αi) bi i ∈ [1, q] .

3. We rearrange the given HSI into a two-dimensional matrix D ∈ Re×p, with e = h× w (by

lexicographically ordering the columns). This matrix D, can be decomposed into a low-rank

matrix L0 representing the pure background, a sparse matrix capturing any spatially small

signal residing in the known target subspace, and a noise matrix N0. More precisely, the

model is:

D = L0 + (At C0)T + N0 ,

where (AtC0)T is the sparse target matrix, ideally with q non-zero rows representing

αi{tTi }i∈[1,q] , with target dictionary At ∈ Rp×Nt having columns representing target

samples {atj}j∈[1,Nt], and a coefficient matrix C0 ∈ RNt×e that should be a sparse column

matrix, again ideally containing q non-zero columns each representing αi[βi,1, · · · , βi,Nt ]T ,

i ∈ [1, q]. N0 is assumed to be independent and identically distributed Gaussian noise with

zero mean and unknown standard deviation.

4. After reshaping L0, (At C0)T and N0 back to a cube of size h×w× p, we call these entities

the “low-rank background HSI”, “sparse target HSI”, and “noise HSI”, respectively.

In order to recover the low-rank matrix L0 and sparse target matrix (AtC0)T , we consider

the following minimization problem:

min
L,C

{
τ rank(L) + λ ‖C‖2,0 +

∥∥∥D− L− (AtC)T
∥∥∥2

F

}
, (2.10)

where τ controls the rank of L, and λ the sparsity level in C.

Recovering a low-rank background matrix and a sparse target matrix by convex opti-
mization

As in RPCA-PCP [25], RPCA-SPCP [168], RPCA-OP [152], and RPCA-SOP [152], we relax the

rank and the ||.||2,0 term to their convex proxies. More precisely, we use the nuclear norm ||L||∗
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as a surrogate for the rank(L) term, and the l2,1 norm for the l2,0 norm.

We now need to solve the following convex minimization problem:

min
L,C

{
τ ‖L‖∗ + λ ‖C‖2,1 +

∥∥∥D− L− (AtC)T
∥∥∥2

F

}
. (2.11)

Problem (2.11) is solved via an alternating minimization of two sub-problems. Specifically, at each
iteration k:

L(k) = argmin
L

{∥∥∥L−
(

D−
(
At C(k−1)

)T
)∥∥∥2

F
+ τ ‖L‖∗

}
, (2.12a)

C(k) = argmin
C

{∥∥∥(D− L(k)
)T
−At C

∥∥∥2

F
+ λ ‖C‖2,1

}
. (2.12b)

The minimization sub-problems (2.12a) (2.12b) are convex and each can be solved optimally.

Solving sub-problem (2.12a): We solve sub-problem (2.12a) via the Singular Value Thresholding

operator [23]. We assume that
(
D−

(
At C(k−1))T) has a rank equal to r. According to theorem

2.1 in [23], sub-problem (2.12a) admits the following closed-form solution:

L(k) = Dτ/2

(
D−

(
At C(k−1))T) = U(k) Dτ/2

(
S(k)) V(k)T = U(k) diag

({(
s

(k)
t − τ

2

)
+

})
V(k)T

where S(k) = diag
({

s
(k)
t

}
1≤t≤r

)
, and Dτ/2(.) is the singular value shrinkage operator.

The matrices U(k) ∈ Re×r, S(k) ∈ Rr×r and V(k) ∈ Rp×r are generated by the singular value

decomposition of
(
D−

(
At C(k−1))T).

Proof. Since the function
{∥∥∥L− (D− (At C(k−1))T)∥∥∥2

F
+ τ ‖L‖∗

}
is strictly convex, it is easy

to see that there exists a unique minimizer, and we thus need to prove that it is equal to

Dτ/2

(
D−

(
At C(k−1))T). Note that to understand how the aforementioned closed-form solution

has been obtained, we provide in detail the proof steps that have been given in [23].

To do this, let us first find the derivative of sub-problem (2.12a) w.r.t. L and set it to zero. We

obtain: (
D−

(
At C(k−1)

)T)
− L̂ = τ

2 ∂
∥∥∥L̂∥∥∥

∗
, (2.13)

where ∂
∥∥∥L̂∥∥∥

∗
is the set of subgradients of the nuclear norm. Let UL SL VT

L be the Singular Value

Decomposition (SVD) of L, it is known [26, 96, 147] that

∂ ‖L‖∗ =
{
UL VT

L + W : W ∈ Re×p, UT
L W = 0, W VL = 0, ‖W‖2 ≤ 1

}
.

Set L̂ = Dτ/2

(
D−

(
At C(k−1))T) for short. In order to show that L̂ obeys eq. (2.13), suppose

the SVD of
(
D−

(
At C(k−1))T) is given by:(

D−
(
At C(k−1)

)T)
= U0 S0 VT

0 + U1 S1 VT
1 ,
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where U0, V0 (resp. U1, V1) are the singular vectors associated with singular values larger than

τ/2 (resp. inferior than or equal to τ/2). With these notations, we have:

L̂ = Dτ/2
(
U0 S0 VT

0
)

=
(
U0

(
S0 −

τ

2 I
)

VT
0

)
.

Thus, if we return back to eq. (2.13), we obtain:

U0 S0 VT
0 + U1 S1 VT

1 −U0

(
S0 −

τ

2 I
)

VT
0 = τ

2 ∂
∥∥∥L̂∥∥∥

∗
,

⇒ U1 S1 VT
1 + U0

τ

2 VT
0 = τ

2 ∂
∥∥∥L̂∥∥∥

∗
,

⇒
(
U0 VT

0 + W
)

= ∂
∥∥∥L̂∥∥∥

∗
,

where W = 2
τ

U1 S1 VT
1 .

By definition, UT
0 W = 0, W V0 = 0, and we also have ‖W‖2 ≤ 1.

Hence,
(
D−

(
At C(k−1))T)− L̂ = τ

2 ∂
∥∥∥L̂∥∥∥

∗
, which concludes the proof. �

Solving sub-problem (2.12b): (2.12b) can be solved by various methods, among which we

adopt the Alternating Direction Method of Multipliers (ADMM) [20]. More precisely, we introduce

an auxiliary variable F into sub-problem (2.12b) and recast it into the following form:

(
C(k),F(k)

)
= argmin
s.t. C=F

{∥∥∥∥(D− L(k)
)T
−At C

∥∥∥∥2

F

+ λ ‖F‖2,1

}
. (2.14)

Problem (2.14) is then solved as follows (scaled form of ADMM):

C(k) = argmin
C

{∥∥∥(D− L(k))T
−At C

∥∥∥2

F
+ ρ(k−1)

2

∥∥∥∥C− F(k−1) + 1
ρ(k−1) Z(k−1)

∥∥∥∥2

F

}
, (2.15a)

F(k) = argmin
F

{
λ ‖F‖2,1 + ρ(k−1)

2

∥∥∥∥C(k) − F + 1
ρ(k−1) Z(k−1)

∥∥∥∥2

F

}
, (2.15b)

Z(k) = Z(k−1) + ρ(k−1) (C(k) − F(k)) , (2.15c)

where Z ∈ RNt×e is the Lagrangian multiplier matrix, and ρ is a positive scalar.

Solving sub-problem (2.15a):

−2 AT
t

((
D− L(k)

)T
−At C

)
+ ρ(k−1)

(
C− F(k−1) + 1

ρ(k−1) Z(k−1)
)

= 0 ,

⇒
(

2 AT
t At + ρ(k−1) I

)
C = ρ(k−1) F(k−1) − Z(k−1) + 2 AT

t

(
D− L(k)

)T
.

This implies:

C(k) =
(

2 AT
t At + ρ(k−1) I

)−1
(
ρ(k−1) F(k−1) − Z(k−1) + 2 AT

t

(
D− L(k)

)T)
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Solving sub-problem (2.15b):

According to Lemma 3.3 in [156] and Lemma 4.1 in [97], sub-problem (2.15b) admits the

following closed form solution:

[F](k)
:,j = max

(∥∥∥∥[C](k)
:,j + 1

ρ(k−1) [Z](k−1)
:,j

∥∥∥∥
2
− λ

ρ(k−1) , 0
)  [C](k)

:,j + 1
ρ(k−1) [Z](k−1)

:,j∥∥∥[C](k)
:,j + 1

ρ(k−1) [Z](k−1)
:,j

∥∥∥
2



Proof. At the jth column, sub-problem (2.15b) refers to:

[F](k)
:,j = argmin

[F]:,j

{
λ
∥∥∥[F]:,j

∥∥∥
2

+ ρ(k−1)

2

∥∥∥∥[C](k)
:,j − [F]:,j + 1

ρ(k−1) [Z](k−1)
:,j

∥∥∥∥2

2

}
.

By finding the derivative w.r.t [F]:,j and setting it to zero, we obtain:

−ρ(k−1)
(

[C](k)
:,j − [F]:,j + 1

ρ(k−1) [Z](k−1)
:,j

)
+

λ [F]:,j∥∥∥[F]:,j
∥∥∥

2

= 0

⇒ [C](k)
:,j + 1

ρ(k−1) [Z](k−1)
:,j = [F]:,j +

λ [F]:,j
ρ(k−1)

∥∥∥[F]:,j
∥∥∥

2

. (2.16)

By computing the l2 norm of (2.16), we obtain:∥∥∥∥[C](k)
:,j + 1

ρ(k−1) [Z](k−1)
:,j

∥∥∥∥
2

=
∥∥∥[F]:,j

∥∥∥
2

+ λ

ρ(k−1) . (2.17)

From equation (2.16) and equation (2.17), we have:

[C](k)
:,j + 1

ρ(k−1) [Z](k−1)
:,j∥∥∥∥[C](k)

:,j + 1
ρ(k−1) [Z](k−1)

:,j

∥∥∥∥
2

=
[F]:,j∥∥∥[F]:,j

∥∥∥
2

. (2.18)

Consider that:

[F]:,j = ‖[F]:,j‖2 ×
[F]:,j
‖[F]:,j‖2

. (2.19)

By replacing ‖[F]:,j‖2 from (2.17) into (2.19), and [F]:,j
‖[F]:,j‖2

from (2.18) into (2.19), we conclude

the proof. �

Some initializations and convergence criterion

We initialize L(0) = C(0) = F(0) = Z(0) = 0, ρ(0) = 10−4 and update ρ(k) = 1.1 ρ(k−1). The

criteria for convergence of sub-problem (2.12b) is
∥∥C(k) − F(k)

∥∥2
F
≤ 10−6.

For Problem (2.11), we stop the iteration when the following convergence criterion is satisfied:∥∥L(k) − L(k−1)
∥∥
F

‖D‖F
≤ ε and

∥∥∥(At C(k))T − (At C(k−1))T∥∥∥
F

‖D‖F
≤ ε

where ε > 0 is a precision tolerance parameter. We set ε = 10−4.
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2.3.3 Our target detection strategy in this chapter: let us introduce
our novel target detector (AtC)T

We use (AtC)T directly as a detector. Note that for this detection strategy, we require as few

false alarms as possible to be deposited in the target image, but we do not need the target

fraction to be entirely removed from the background (that is, a very weak target separation

can suffice). As long as enough of the target fractions are moved to the target image such that

non-zero support is detected at the corresponding pixel location, it will be adequate for our

detection scheme. From this standpoint, we should choose a λ that is relatively large, so that

the target image is really sparse with zero or little false alarms, and only signals that reside in

the target subspace specified by At will be deposited there.

2.3.4 Construction of the target dictionary At

An important problem that requires a very careful attention is the construction of an appropriate

dictionary At in order to well capture the target to separate from the background. In reality,

the target present in the HSI can be highly affected by the atmospheric conditions, sensor noise,

and material composition that may produce huge variations on the target spectra. In view of

these real effects, it is very difficult to model the target dictionary (At) well. But this raises the

question on “how these effects should be dealt with?”.

Some scenarios for modelling the target dictionary have been followed over several decades. For

example, by using physical models and the MODTRAN atmospheric modeling program [9], target

spectral signatures can be generated under various atmospheric conditions. For simplicity, we

handle this problem by exploiting target samples that are available in some online spectral libraries.

More precisely, At can be constructed via the United States Geological Survey (USGS - Reston)

Spectral Library [38]. However, the user can also deal with the Advanced Spaceborne Thermal

Emission and Reflection (ASTER) spectral library [5] that includes data from the USGS Spectral

Library, the Johns Hopkins University (JHU) Spectral Library, and the Jet Propulsion Laboratory

(JPL) Spectral Library.

For instance, it is usually difficult to find, for a specific given target, a sufficient number of available

samples in the online spectral libraries. Hence, the dictionary At can still not be sufficiently selective

and accurate. This is the most reason why problem (2.11) can fail to well capture the target.

Summary

The classical Robust Principal Component Analysis (RPCA) has shown encouraging performances

is some applications such as face recognition and foreground detection. In this chapter, we

aimed to exploit the RPCA for hyperspectral target detection. More precisely, the given HSI

is regarded as being made up of the sum of a low-rank background HSI L and a sparse target

HSI E. By evaluating the RPCA on four real hyperspectral images, we proved that its direct
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use is inadequate to distinguish the targets of interest from their surrounding background. In

order to address this issue, we have assumed that the spectra of the target is provided to the

user. Hence, we highly expect that by incorporating this target prior information into the RPCA

model can potentially help to identify the true targets. To do this, we have factorized the sparse

component E from RPCA into the product of a target dictionary At and a sparse activation

matrix C. As we will observe from the experiments in Chapter 4, this modification is very

essential to disambiguate the true targets from the background.
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All intelligent thoughts have already been thought;
what is necessary is only to try to think them again.

— Johann Wolfgang von Goethe

3
Improving Background Dictionary Construction

for Sparse Representation Methods
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I Synopsis Recall that in Chapter 2, a modified version of the Robust Principal Component

Analysis (RPCA) has been developed, and by which the sparse component (AtC)T was the

object of interest and was directly used for the detection. But “can the low-rank component also

be exploited to provide another way of an automatic target detection in hyperspectral imagery?”.

Indeed, this chapter reuses the same modified version of RPCA that has been developed in Chapter

2, but now the low-rank component L is being the object of interest. More precisely, the low-

rank component L is exploited to improve the background dictionary Ab construction for sparse

representation methods, and hence, potentially improving the target detection performance.

This chapter is split into two parts:

1. The first part 3.1 “Background and System Overview” first overviews the sparse repre-

sentation methods for hyperspectral test pixels. Then, it outlines one of the famous greedy

algorithms called “Orthogonal Matching Pursuit”, as well as the usual method for the

Ab construction. Next, it describes the dictionary-based target detection called “SRBBH
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detector” that will be used in our dissertation. It ends with a system overview of the

proposed work.

2. The second part 3.2 “Let us improve the usual Ab construction method” outlines how

the Ab construction is improved using the low-rank component from the modified version of

RPCA that has been developed in Chapter 2.

3.1 Background and System Overview

Recent years have witnessed a growing interest on the notion of sparsity as a way to model

signals. The basic assumption of this model is that natural signals can be represented as

a “sparse” linear combination of atom signals taken from a dictionary. In this regard, two

main issues need to be addressed:

• How to represent a signal in the sparsest way, for a given dictionary,

• How to construct an accurate dictionary in order to successfully representing the signal.

3.1.1 Sparse Representation for hyperspectral test pixels

Recently, a signal classification technique via sparse representation was developed for face

recognition application [148]. It is observed that aligned faces of the same object with varying

lighting conditions approximately lie in a low-dimensional subspace [7]. Hence, a test face image

can be sparsely represented by atom signals from all classes. This representation approach has

also been exploited in several other signal classification problems such as iris recognition [122],

tumor classification [76], and hyperspectral imagery unmixing [72].

In this context, Chen et al. [33] have been inspired by the work done for face recognition

application in [148], and developed an approach for sparse representation of hyperspectral test

pixels. In particular, each test pixel x ∈ Rp (target or background) in a given HSI, is assumed

to lie in a low-dimensional subspace of the p-dimensional spectral-measurement space, and thus

can be represented by a very few atom signals taken from the dictionaries. For example, if a

test pixel x contains the target (that is, x = α t + (1− α) b, with 0 < α ≤ 1), it can be sparsely

represented by atom signals taken from the target dictionary (denoted as At); whereas, if x is

only a background pixel (it does not contain the target, e.g., α = 0), it can be sparsely represented

by atom signals taken from the background dictionary (denoted as Ab).

Very recently, Zhang et al. [163] have extended the work done by Chen et al. [33] by combining

the idea of binary hypothesis and sparse representation together, obtaining a more complete and

realistic sparsity model than in [33]. More precisely, Zhang et al. [163] have assumed that if

the test pixel x belongs to hypothesis H0 (target absent), it will be modeled by the Ab only;

otherwise, it will be modeled by the union of Ab and At. This in fact yields a competition between
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the two hypotheses corresponding to the different pixel class label. The sparse representation

model of [163] will be considered throughout this chapter.

The sparsity model of [163]

Using an overcomplete dictionary, either for the background (denoted as Ab) or target (denoted

as At), the test signal x ∈ Rp can be approximately represented by a very few atom signals taken

either from Ab (if x belongs to H0) or from the uinon of Ab and At (if x belongs to H1).

More precisely, if x ∈ H0:

x = %1 ab1 + %2 ab2 + · · ·+ %Nb
abNb

,

=
[
ab1, ab2, · · · , abNb

]
[%1, %2, · · · , %Nb

]T ,

= Ab % ,

where Nb is the number of background samples (number of columns in Ab), Ab is a p × Nb
background dictionary whose columns are the background atom signals ab1, ab2, · · · , abNb

, and

% ∈ RNb is an unknown vector (and that should be sparse) whose entries are the abundances of

the corresponding samples in Ab.

If x ∈ H1:

x = β1 ab1 + β2 ab2 + · · ·+ βNb
abNb

+ θ1 at1 + θ2 at2 + · · ·+ θNt
atNt

,

= [Ab At]
[
βT θT

]T
,

= Aγ,

where Nt is the number of target samples (number of columns in At), At is a p × Nt target

dictionary whose columns are the target samples at1, at2, · · · , atNt
, A ∈ Rp×(Nb+Nt) is the union

of Ab and At, γ ∈ RNb+Nt is an unknown vector (and that should be sparse) whose entries are

the abundances of the corresponding samples in A.

Note that both % and γ turn out to be sparse vectors (i.e., a vector with only few nonzero entries).

Sparsity reconstruction

This section considers the reconstruction problem of finding the sparse vectors % and γ for a

test pixel x given the dictionaries Ab and At. Both the representation % satisfying Ab % = x,

and γ satisfying Aγ = x, can be obtained by solving the following (non-convex and NP-HARD)

optimization problems for the sparsest vector:
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%̂ = argmin
%
‖x−Ab%‖2 s.t. ‖%‖0 ≤ k0 , (3.1a)

γ̂ = argmin
γ
‖x−Aγ‖2 s.t. ‖γ‖0 ≤ k

′
0 . (3.1b)

In fact, k0 and k′0 are a given upper bound on the sparsity level [144]. In fact, if k0 and k′0 are set

differently, this can lead to significantly weakened competition between hypotheses H0 and H1.

That is why, and to greatly reduce the complexity of the parameter adjustment, k0 and k′0 are set

equally to each other [163].

Considering the optimization tasks for the synthesis and analysis models, it is unclear how

to solve efficiently these problems, given that they are neither smooth nor convex. Indeed, the

two sub-problems posed in equation (3.1a) and (3.1b) are known to be NP-HARD [115]. This

limitation leads the researchers to seek approximation algorithms. There are two main approaches

to approximate the solution to the sub-problems posed in (3.1a) and (3.1b):

• The first approach is the greedy family of methods (see [22, 44, 52, 99, 100, 121] for more

details). In this approach, we find algorithms such as Thresholding, Matching Pursuit (MP)

[100], and Orthogonal Matching Pursuit (OMP) [121].

• The second approach is the relaxation methods, which attempt to solve the problem by

smoothing the l0-norm and using continuous optimization techniques. All these techniques

are commonly referred to as pursuit algorithms. For example, the popular relaxation

techniques is to substitute the problem with a simpler, one by replacing the l0 norm by an

lg norm with g = 1 or g ≤ 1 as has been done in [31] and [71].

3.1.2 The Orthogonal Matching Pursuit (OMP) greedy algorithm

In this section, we give a detailed description of the Orthogonal Matching Pursuit (OMP) algorithm

as given in [3, 24, 142]. Note that we only detail the OMP to solve sub-problem (3.1a). Obviously,

the same concept can be applied to solve sub-problem (3.1b).

The OMP algorithm

The OMP is a stepwise forward selection algorithm and is easy to implement. For any subset

S ⊆ {1, · · · , Nb}, denote by Ab(S) a submatrix of Ab containing the columns abh with h ∈ S.

To identify % in sub-problem (3.1a), we need to determine which columns of Ab participate

in the measurement vector x. The idea behind the OMP algorithm is to pick columns from

Ab in a greedy fashion. In each iteration, we choose a column from Ab that is most strongly

correlated with the remaining part of x. Then, we substract off its contribution to x and

iterate on the residual. The outputs are %̂ which is the estimate for the ideal signal %. The

basic OMP algorithm is described as follows:
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1. Step 1: Initialize the residual r0 = x, the index set Λ0 = φ. Let the iteration counter s = 1.

2. Step 2: Find the index Ωs that solves the maximization problem

Ωs = argmax
h=1, ··· , Nb

∣∣< rs−1, abh >
∣∣ (3.2)

and add the index to the set of selected indices. That is, augment the index set Λs =

Λs−1 ∪ {Ωs}.

3. Step 3: Note that if the maximum occurs for multiple indices, the tie is broken deterministi-

cally.

4. Step 4: Let Ps = Ab (Λs)
(

(Ab (Λs))T Ab (Λs)
)−1

(Ab (Λs))T denote the projection onto

the linear space spanned by the elements of Ab (Λs).

5. Step 5: Update rs = (I−Ps) x.

6. Step 6: Increment s, and return to Step 2 if s < k0.

7. Step 7: The estimate %̂ for the ideal signal % has nonzero indices at the components listed

in Λk0 = {Ωs}k0
s=1. The value of the estimate %̂ in component Ωs equals the sth component

of Ps.

3.1.3 The usual adaptive method for the Ab construction

Figure 3.1: The sliding dual concentric window across
the HSI

The construction of a locally adaptive Ab is a very challenging problem since a contamination of it

by the target pixels can potentially affect the target detection performance. Usually, the adaptive

scheme (and which is used by Chen et al. in [33] and Zhang et al. in [163]) is based on a dual

concentric window centered on the test pixel (Figure 3.1), with an Inner Window Region (IWR)

centered within an Outer Window Region (OWR), and only the pixels in the OWR will constitute
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the samples for Ab. In other words, if the size of OWR is m1×m1 and the size of IWR is m2×m2,

with m2 < m1, then the total number of pixels in the OWR that will form Ab is m2
1 −m2

2.

3.1.4 The SRBBH detector

From the aforementioned sparsity model in 3.1.1, Zhang et al. in [163] have considered the

following target detector, called “SRBBH detector”:

DSRBBH(x) = ‖x−Ab %̂‖2 − ‖x−A γ̂‖2 , (3.3)

If DSRBBH(x) > η with η being a prescribed threshold value, then x is declared as target;

otherwise, x will be labeled as background.

3.1.5 System Overview of the proposed work

In the usual adaptive method for the Ab construction in section 3.1.3, the dimension of IWR

is very important and has a strong impact on the target detection performance since it aims to

enclose the targets of interest to be detected. It should be set larger than or equal to the size

of all the desired targets of interest in the corresponding HSI, so as to exclude the target pixels

from erroneously appearing in the background dictionary Ab. However, information about the

target size in the image is usually not at our disposal. It is also very unwieldy to set this size

parameter when the target could be of irregular shape (e.g. searching for lost plane parts of a

missing aircraft (see the first column of Figure 3.2)). Another tricky situation is when there are

multiple targets in close proximity in the image (e.g. military vehicles in long convoy formation

(see the second column of Figure 3.2)).

Figure 3.2: From left to right: lost plane parts of a missing aircraft, military vehicles in long
convoy.

In this regard, we handle the aforementioned challenges in constructing Ab by providing a method

which is capable of removing the targets from the background, and hence, avoiding the use of an

IWR to construct Ab as well as dealing with a larger range of target size, shape, number, and

placement in the image. To do this, we reuse the same target and background separation model

that has been developed in Chapter 2 (which is based on the same modification of RPCA), but

now, the low-rank component is being the object of interest.
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More precisely, from the proposed modified RPCA model that has been discussed in the previous

Chapter 2, we aim to use the background HSI L (since it is pure from the target pixels) for

a more accurate construction of Ab, following which various dictionary-based methods can be

used to carry out a more elaborate binary hypothesis test (in this dissertation, we make use

of the SRBBH detector which was described in section 3.1.4). Via the background HSI L, the

locally adaptive Ab is constructed as in section 3.1.3 but now without the need of using an

IWR, and also avoiding contamination by the target pixels.

3.2 Let us improve the usual construction method of Ab

From our proposed modification of RPCA in the previous Chapter 2, the low-rank component

L is now being the object of interest. Hence, we use the background HSI L for a more accurate

construction of Ab, following which various dictionary-based-methods can be used to carry

out a more elaborate binary hypothesis test. More precisely, via the background HSI L, a

locally adaptive Ab can be constructed without the need of using an IWR, and also avoiding

contamination by the target pixels.

3.2.1 Alleviating the target contamination in Ab

For each test pixel in the original HSI, we create a concentric window of size m × m on the

background HSI L, and all the pixels within the window (except the center pixel) will each

contribute to one column in Ab (see Figure 3.3). Note that this concentric window amounts

to an OWR of size m × m with IWR of size 1 × 1.

Figure 3.3: Addressing the background dictionary Ab con-
struction challenge
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3.2.2 Our target detection strategy in this chapter

We make use of the SRBBH detector [163] (see equation (3.3) in section 3.1.4 1), but with the

background dictionary Ab constructed in the preceding manner (in section 3.2.1).

It is noteworthy to mention that for this scheme to work, and in contrast to the target detection

strategy in Chapter 2 (see section 2.3.3 of Chapter 2), we do not need now a clean separation (by

clean separation, we mean that all targets are present in (AtC)T with no false alarms); specifically,

we require the entire target fraction to be separated from the background and deposited in the

target image, but some of the background objects can also be deposited in the target image. As

long as enough signatures of these background objects remain in the background HSI L, the Ab

constructed will be adequately representative of the background.

It is important to mention that the edges of the HSI are not processed and so the images

are trimmed depending on the window size. As a result, we shall call each of the trimmed image as

“the region tested”. In fact, by taking a large concentric window, a lot of pixels in the image (near

the edges) will not be tested. One can imagine how this can become problematic if these excluded

pixels from testing contain some or all the targets of interest. In this regard, after removing the

targets from the background by our problem (2.11) in Chapter 2, a small concentric window will

be sufficient to construct an accurate background dictionary Ab, and hence, almost the entire

image will be tested.

Note also that we could have constructed Ab directly from all the pixels in the low-rank background

HSI L (except the pixel that corresponds to the test pixel in the original HSI) without the use

of any sliding concentric window. This has the advantage of testing the entire image for the

detection (that is, the region tested = the original image). However, we choose not to do this

as this would result in a substantially larger Ab and therefore a much increased computational

cost in solving sub-problems (3.1a)(3.1b) for the SRBBH detector.

Summary

To handle the Ab contamination by target pixels and which potentially affect the target detection

performance for the SRBBH detector, we aimed to reuse the same proposed modification of RPCA

in Chapter 2, and the low-rank component (the low-rank background HSI L) is being the object

of interest. More precisely, we aim to contruct Ab from the low-rank background HSI L. That is,

for each test pixel in the given HSI, Ab is constructed from the low-rank background HSI using

a concentric window (an OWR with IWR of size 1 × 1), and all the pixels within the window

1We recall that the reason why we choose the SRBBH detector instead of [33] is because it combines the idea of
binary hypothesis and sparse representation, obtaining a more complete and realistic model than [33].
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(except the center pixel) will each contribute to one column in Ab.



54



Do research. Feed your talent. Research not only wins the
war on cliche, it’s the key to victory over fear and it’s cousin,
depression.

— Robert McKee

4
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I Synopsis This chapter provides both synthetic as well as real experiments to gauge the

effectiveness of our proposed target detection strategies in Chapter 2 (see section 2.3.3 in Chapter 2)

and Chapter 3 (see section 3.2.2 in Chapter 3). It is noteworthy to mention that the hyperspectral

image datasets in Figure 2.5 (that contains 10 rocks targets), Figure 2.6 (containing targets such

as vehicles and bare soil) and Figure 2.7 (that contains one vehicle target) are excluded from our

experiments due to the fact that there is no available samples for the targets of interest in the

online spectral libraries, and hence, it was impossible to construct the target dictionary At.

Recall that the detection strategy in Chapter 2 is outlined in section 2.3.3 of Chapter 2; and the

detection strategy in Chapter 3 is outlined in section 3.2.2 in Chapter 3.

This chapter is split into five parts.

1. The first part 4.1 “The hyperspectral dataset” describes the hyperspectral dataset used for

our synthetic and real experiments. Note that only two small zones of the acquired dataset
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are used. More precisely, one small HSI zone of size 101× 101× 186 is considered for the

synthetic experiments; whereas another small HSI zone of size 250× 291× 186 is used for

the real experiments.

2. The second part 4.2 “General discussion about τ and λ” provides a brief discussion on

the selection of parameters τ and λ for both detection strategies in Chapter 2 and Chapter

3. More precisely, the parameters will be set manually depending on the HSI used and the

target to detect. An automatic selection of the parameters is not yet developed, but should

be in the future.

3. The third part 4.3 “Synthetic Experiments” presents the synthetic experiments for both

detection strategies in Chapter 2 and Chapter 3. The experiments corroborate our claim

that targets with low fill-fraction and targets in convoy formation can be handled.

4. The forth part 4.4 “Real Experiments” presents the real experiments for both detection

strategies in Chapter 2 and Chapter 3. The experiments demonstrate the effectiveness of

our modified version of RPCA where the target of interest is detected with very little false

alarms for both detection strategies.

5. The fifth part 4.5 “Summary of the whole Part II and some future directions” outlines a

brief summary of the proposed detection strategies in both Chapter 2 and Chapter 3. It

also provides some directions for future work.

4.1 The hyperspectral dataset

The HSI that is used in our experiments is the Cuprite mining district area which is well understood

mineralogically [133, 134]. It contains well exposed zones of advanced argillic alteration, consisting

principally of kiolinite, alunite, and hydrothermal silica. The Cuprite HSI was acquired by the

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) in 23 June 1995 at local noon, and

under high visibility conditions by an NASAER-2 aircraft flying at an altitude of 20 km. The

scene we consider is a concatenation of two sectors labeled as ”f970619t01p02_r02_sc03.a.rfl”

and ”f970619t01p02_r02_sc04.a.rfl” in the online data [146] (see Figure 4.1). The resulting

image is a 1024 × 614 - pixel and consisting of 224 spectral (color) bands in contiguous (of

about 0.01µm) wavelengths ranging exactly from 0.4046 to 2.4573µm. Prior to some analysis

of the Cuprite HSI, the spectral bands 1-4, 104-113, 148-167, and 221-224 are removed due

to the water absorption and low SNR in those bands. As a result, a total of 186 bands are

used in our experiments. For details about the type of minerals (and their locations) present

in this image area, please refer to Figure 5a in [134].



4. Application to Hyperspectral Target Detection for Chapter 2 and Chapter 3 57

Figure 4.1: The hyperspectral dataset: a concatenation of ”f970619t01p02_r02_sc03.a.rfl”
and ”f970619t01p02_r02_sc04.a.rfl”.

4.2 General discussion about τ and λ

In this section, we discuss the main difficulties that face our problem (2.11) in accurately choosing

the values for τ and λ bor both detection strategies in Chapter 2 and Chapter 3.

It is important to note that the main limitation of our work is the lack of a method that can

automatically selects the parameters τ and λ. Developing such a method is undoubtedly a very

interesting step to achieve. Unfortunately, this still seems a very challenging task to us, but will

be of our main interest in the future.

For instance, τ and λ are set manually (to achieve the best target detection performance)

for both detection strategies in Chapter 2 and Chapter 3. However, this manual selection depends

on the HSI used, the spatial and spectral dimensions of the given HSI, on the targets present,

and even on how accurate is the target dictionary At. All these challenges strongly encourage

us to alleviate the manual selection problem of τ and λ in the future.

How can we play with τ and λ ?

We have found that the smarter way to set τ and λ would be to decide on the ratio of τ and λ,

respectively for both detection strategies in Chapter 2 and Chapter 3.

In fact, the different requirements imposed by the two detection strategies in both Chapter 2 and
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Chapter 3 that can lead to our particular choice setting of the τ to λ ratio also dictate how we

should set the relative values of the weights between the first two terms and the third term in (2.11):

1. A lower penalty associated with the third term (that is, by raising the absolute levels of

τ and λ) would tolerate more deviation and thus encourage more noise or image clutters

(by image clutters we mean the small heterogeneous objects and specular highlights) to be

absorbed by this term. This is particularly important for the detection strategy in Chapter 2

when there are a lot of image clutters that do not exactly conform to a low-rank background

model: since these clutters do not satisfy the low-rank property, they have a propensity to

show up in the second term if we do not sufficiently lower the penalty for the third term,

and thus, contribute to a lot of false alarms for the detection strategy in Chapter 2.

2. On the other hand, such a low-penalty setting for the third term may not be a good idea for

the detection strategy in Chapter 3 as the third term absorbs too much of the image clutters

that actually form the background, causing the background dictionary Ab so constructed to

lose representative power.

Parameters settings

For the detection strategy in Chapter 2, we found that the ratio of τ to λ must be equal to 5
2

in both synthetic and real experiments. For the detection strategy in Chapter 3, we found that

the ratios of τ to λ should be high to make sure that all of the targets are removed to the target

image. We set this ratio to approximately 6 for the synthetic experiments and 10 for the real

experiments. The ratio for the latter case must be higher because for the real experiments, we do

not really have a comprehensive enough target dictionary to represent the target well and thus we

need extra incentive for the target fractions to go to the target image.

In sum, for the detection strategy in Chapter 2, we set τ and λ at 0.05 and 0.02 in the synthetic

experiments, whereas at 0.5 and 0.2 in the real experiments. For the detection strategy in

Chapter 3, we set τ and λ at 0.8 and 0.133 in the synthetic experiments, whereas at 3 and

0.3 in the real experiments.

4.3 Synthetic Experiments

The experiments are done on a 101× 101 zone (pixels in rows 389 to 489 and columns 379 to 479)

from the acquired Cuprite scene (see Figure 4.2). We incorporate in this zone, 7 target blocks (each

of size 6×3) with α ∈ [0.01, 1] (all have the same α), placed in long convoy formation all formed by

the same synthetic (perfect) target t consisting of a sulfate mineral type known as “Jarosite”. We

make sure by referring to Figure 5a in [134] that the small zone we consider does not already contain

any Jarosite patch. The target t that we created actually consists of the mean of the first six

Jarosite mineral samples taken from the online United States Geological Survey (USGS - Reston)
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Spectral Library [38] (see Figure 4.3). The target t replaces a fraction α ∈ [0.01, 1] from the

background; specifically, the following values of α are considered: 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.8,

and 1. As for the target dictionary At, it is constructed from the six acquired Jarosite samples 1.

Figure 4.2: The HSI zone used for the synthetic experiments
.
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Figure 4.3: Plot of the six Jarosite samples taken from the
online USGS Spectral library (which will constitue the target
dicitonary At), and the target of interest t consisting of the
mean of the six Jarosite samples.

1Note that both the HSI and the Jarosite target samples are normalized to values between 0 and 1.
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4.3.1 Synthetic experiments for the detection strategy in Chapter 2

Figure 4.4 to 4.11 depict the detection results of (At C)T for different values of α. The plots

correspond to the mean power in dB over the 186 spectral bands. As can be seen, the detection

strategy in Chapter 2 (that is, our novel target detector) detects all the targets with little false

alarms until α ≤ 0.1 when a lot of false alarms appear.

Figure 4.4: Visual detection of (At C)T for the 7 target blocks for α = 1
.

Figure 4.5: Visual detection of (At C)T for the 7 target blocks for α = 0.8
.
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Figure 4.6: Visual detection of (At C)T for the 7 target blocks for α = 0.5
.

Figure 4.7: Visual detection of (At C)T for the 7 target blocks for α = 0.3
.
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Figure 4.8: Visual detection of (At C)T for the 7 target blocks for α = 0.1
.

Figure 4.9: Visual detection of (At C)T for the 7 target blocks for α = 0.05
.
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Figure 4.10: Visual detection of (At C)T for the 7 target blocks for α = 0.02
.

Figure 4.11: Visual detection of (At C)T for the 7 target blocks for α = 0.01
.

4.3.2 Synthetic experiments for the detection strategy in Chapter 3

We first provide in Figure 4.12 a visual evaluation of the separation of the 7 target blocks for low

α = 0.1. We can observe that our problem (2.11) successfully discriminates these perceptually

invisible targets from the background in D and separate them. The 7 darker blocks that appear

in L correspond to the dimmer fraction of the background that remains after the targets have

been removed at the corresponding spatial locations. Having qualitatively inspect the separation,

we now aim to quantitatively evaluate the target detection performances of the SRBBH detector

[163] when Ab is constructed using a small concentric window of size 5× 5. That is, Ab ∈ Rp×24

(after excluding the center pixel) and the region tested consists of an image of size 97× 97.
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D = L + (At C)T + N

Figure 4.12: Visual separation of the 7 target blocks for α = 0.1: We exhibit the mean power in dB
over the 186 bands. Columns from left to right: the original HSI containing the 7 target blocks (α = 0.1),
low-rank background HSI L, target HSI (At C)T , noise HSI.

In what follows, we shall use Db to represent the HSI that does not contain the 7 target blocks

(that is, the pure background image), and D to represent the HSI after incorporating the 7 target

blocks (that is, it contains the targets) for α ∈ [0.01, 1].

We now consider three scenarios to form the columns in Ab:

1. For each test pixel in D, we create the concentric window on Db. This represents the ideal

case since Ab is free from the targets.

2. For each test pixel in D, we create the concentric window on D.

3. For each test pixel in D, we create the concentric window on the low-rank background HSI

L.

The target detection performances are evaluated quantitatively specifically by the Receiver

Operating Characteristics (ROC) curves which describe the probability of detection (Pd) against

the probability of false alarm (Pfa) as we vary the threshold η between the minimal and maximal

values of each detector output. A good detector presents high Pd values at low Pfa, i.e., the curve

is closer to the upper left corner. More particularly, the Pd can be determined as the ratio of the

number of the target pixels determined as target (the detector output at each pixel on the target

region exceeds the threshold value) and the total number of true target pixels. Whereas the Pfa
can be calculated by the ratio of the number of false alarms (the detector output at each pixel on

the background region that is outside the target region exceeds the threshold value) and the total

number of pixels in the region tested.

Figure 4.13 to 4.20 depict the quantitative detection results. Clearly, increasing α should render the

target detection less challenging, and thus, better detection results are being expected. However,

this fact can not always be the case for the SRBBH detector when Ab is constructed from

D (blue curves): It is true that the increase in α helps to improve the detection, but at the

same time leads to more target contamination in Ab which in turn suppresses the detection

improvement that ought be had. That is why the SRBBH detector (blue curves) does not reap
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full benefits from the increase in α, and thus, presents poor detection results even for large α values.

By constructing Ab from L (which only contains the background with the targets are removed

after applying problem (2.11)), the SRBBH detector (dashed green curves) can better detect

the targets especially for α ≥ 0.1, and has competitive detection results when compared to the

ideal case when Ab is constructed from Db. The detection performances start to deteriorate

progressively for very small α values and degenerate to the SRBBH level (blue curves) for α ≤ 0.02.

To sum up, the obtained target detection results corroborate our claim that we can handle

targets with low fill-fraction and in convoy formation.
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Figure 4.13: ROC curves (with their Area Under Curves (AUC) values) for α = 1 of the SRBBH
detector when Ab is constructed from Db, D and L.
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Figure 4.14: ROC curves (with their Area Under Curves (AUC) values) for α = 0.8 of the SRBBH
detector when Ab is constructed from Db, D and L.
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Figure 4.15: ROC curves (with their Area Under Curves (AUC) values) for α = 0.5 of the SRBBH
detector when Ab is constructed from Db, D and L.



4. Application to Hyperspectral Target Detection for Chapter 2 and Chapter 3 67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
fa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

α = 0.3
From D

b
 (AUC=0.9867)

From D   (AUC=0.6642)
From L   (AUC=0.9867)

Figure 4.16: ROC curves (with their Area Under Curves (AUC) values) for α = 0.3 of the SRBBH
detector when Ab is constructed from Db, D and L.
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Figure 4.17: ROC curves (with their Area Under Curves (AUC) values) for α = 0.1 of the SRBBH
detector when Ab is constructed from Db, D and L.
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Figure 4.18: ROC curves (with their Area Under Curves (AUC) values) for α = 0.05 of the SRBBH
detector when Ab is constructed from Db, D and L.
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Figure 4.19: ROC curves (with their Area Under Curves (AUC) values) for α = 0.02 of the SRBBH
detector when Ab is constructed from Db, D and L.
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Figure 4.20: ROC curves (with their Area Under Curves (AUC) values) for α = 0.01 of the SRBBH
detector when Ab is constructed from Db, D and L.

4.4 Real Experiments

This part evaluates qualitatively the target detection performances of the SRBBH detector, using

a concentric window of size 5× 5 on a region of size 250 × 291 pixels taken from the acquired

Cuprite HSI. We consider this zone specifically to detect the Tectosilicate mineral type target

pixels known as Buddingtonite. The mean power in dB over the 186 spectral bands of this zone

and the Buddingtonite GroundTruth are shown in Figure 4.21.

There are three Buddingtonite samples available in the online Advanced Spaceborne Thermal

Emission and Reflection (ASTER) spectral library - Version 2.0 [5] and they will form our target

dictionary At. The ASTER Spectral library was released on December 2008 to include data from

the USGS Spectral Library, the Johns Hopkins University Spectral Library, and the Jet Propulsion

Laboratory Spectral Library.

Both the HSI and the Buddingtonite target samples are normalized to values between 0 and 1.

Figure 4.22 depicts the Buddingtonite target samples taken from the online ASTER Spectral library.
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Figure 4.21: Columns from left to right: The HSI dataset used for the real experiments, the GroundTruth
of the Buddingtonite target pixels.
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Figure 4.22: Plot of the Buddingtonite target samples taken from the online ASTER Spectral library.

4.4.1 Real experiments for the detection strategy in Chapter 2

Figure 4.23 depicts the detection of the Buddingtonite targets in (At C)T . The Buddingtonite

targets are detected with very little false alarms.

Figure 4.23: The detection in (At C)T (we exhibit the mean power in dB over the 186 bands) for the
detection strategy in Chapter 2.



4. Application to Hyperspectral Target Detection for Chapter 2 and Chapter 3 71

4.4.2 Experiments for the detection strategy in chapter 3

As a consequence of the decomposition depicted in Figure 4.24, the subspace overlap problem

illustrated in Figure 2.8 is now much relieved, as can be seen from Figure 4.24. Figure 4.25

(a) (b)

(c) (d)

Figure 4.24: Visual separation (we exhibit the mean power in dB over the 186 bands) of the Buddingtonite
targets using the target dictionary At constructed from the ASTER Spectral library. (a): original HSI D,
(b): low-rank background HSI L, (c): sparse target HSI (At C)T , (d): sparse target HSI (At C)T after
some thresholding.

and 4.26 evaluate qualitatively the SRBBH detection results when Ab is constructed from D

and L, respectively, using a concentric window of size 5× 5. The effectiveness of problem (2.11)

in improving the target detection is evident.
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Figure 4.25: The SRBBH detector (2D Visualization of the Buddingtonite target pixels detection) when
Ab is constructed from D.

Figure 4.26: The SRBBH detector (2D Visualization of the Buddingtonite target pixels detection) when
Ab is constructed from L.

4.5 Summary of the whole Part II and some future direc-
tions

4.5.1 Summary

A method based on a modification of RPCA is proposed to separate known targets of interest from

the background in hyperspectral imagery. More precisely, we regard the given HSI as being made

up of the sum of a low-rank background HSI L and a sparse target HSI E that should contain the



4. Application to Hyperspectral Target Detection for Chapter 2 and Chapter 3 73

targets of interest. Based on a pre-learned target dicitonary At that is constructed from some online

spectral libraries, we customize the general RPCA by factorizing the sparse component E into the

product of At and a sparse activation matrix C. This modification was essential to disambiguate the

true targets from other small heterogeneous and high contrast regions. Following the decomposition:

1. The first outlined target detection strategy in chapter 2 was to directly use the component

(AtC)T as a detector. Only the signals that reside in the target subspace specified by At

are deposited at the non-zero entries of (AtC)T .

2. The second outlined target detection strategy in Chapter 3 addresses the background

dictionary contamination problem suffered by dictionary-based methods such as SRBBH.

To do this, the low-rank background HSI L was exploited to construct Ab. More precisely,

for each test pixel in the original HSI, the Ab is constructed from L using a small concentric

window, and all the pixels within the window (except the center pixel) will each contribute

to one column in Ab.

Both detection strategies in Chapter 2 and Chapter 3 are evaluated independently to each other on

both synthetic and real experiments, and the results of which demonstrate their effectiveness for

hyperspectral target detection. In particular, they can deal with targets of any shapes or targets that

occur in close proximity, and are resilient to most values of fill-fractions unless they are too small.

4.5.2 Some directions for future work

As for future enhancements, a likely first step would be to evaluate the proposed modified RPCA

model on more real datasets. Other promising avenues for further research include:

1. We have mentioned in part 4.2 of this chapter that the selection of parameters τ and λ

strongly depends on the HSI used, on the spatial and spectral dimension of the given HSI,

on the target of interest to detect, on the location of the target in the image scene, and on

the target dictionary At. This encourages us to work hard in the future to develop such

an automatic selection method for the parameters (i.e. develop a method that takes the

aforementioned causes as input).

2. Obviouly, we can observe that the τ to λ ratios as well as the settings of τ and λ (see part

4.2 of this chapter) for the detection strategy of Chapter 2 are not similar to those for the

detection strategy of Chapter 3. We highly expect that if one could use directly the l2,0 norm

(that is, without surrogating it towards the convex l2,1 norm), both detection strategies

might have the same parameters settings.

3. Interestingly, what we have not mentioned in part 4.2 of this chapter is that the selection of

parameters τ and λ depends on the target fill-fraction α. During this work (omitted here),

we did a lot of experiments on the HSI zone used in the synthetic experiments by replacing
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a fraction α from the background pixel at location (34, 50) by the target t corresponding to

the mean of the six jarosite target samples. We have observed that if one needs to separate

the αt from (1− α)b using our problem in (2.11) (that is, we need that αt to be deposited

in the sparse component, and the (1− α)b in the low-rank component), the selection of λ

will not be unique for all α values. More precisely, the higher α is, the more need to decrease

λ. This is due to the fact that a higher value of α implies a more important target fraction

to separate from the background. But we highly expect that if one could use directly the

l2,0 norm, a unique value of λ might be chosen for all α values.

In this regard, our future works will mainly focus on the use of other proxies than the l2,1
norm (closer to the l2,0 norm) which can help to alleviate the l2,1 artifact and probably the

manual selection problem of τ and λ.

**Some remarks

In 20 February 2018, we have received an important feedback (by mail) from Prof. Dimitris

Manolakis
(
working in the Massachusetts Institute of Technology (MIT)

)
concerning our work:

Prof. Manolakis’s feedback (by mail) Your approach seems interesting, but I am not

sure how the low-rank versus sparse model approach can handle targets versus background

discrimination. All material spectra have some kind of structure. Your approach is interesting

and it is within the scope of academic research or a PhD thesis.

Our answer was Our approach strongly depends on how is the target dictionary constructed.

If the latter does not well represent the target of interest, our approach can fail on discriminating

the targets from the background. This was the big challenge in the real application due to the

variations on the target spectra (due to the atmospheric conditions, sensor noise, and material

composition). There is also a lack of signatures present in the online spectral libraries that

represent the target that we want to detect. This renders the construction of the target dictionary

very challenging and not well accurate.

In addition, the Buddingtonite in the real application can be considered as an easy “target” to

detect or to separate from the background. This is because it does not look like any other mineral

with its distinct 2.1µm absorption2. However, we have observed that the paradigm in military

applications of HSI usually center on finding the target but ignoring all the rest. Sometimes

that rest is important especially if the target is well matched to the surroundings. Perhaps our

approach should be tested specifically on that challenge in the future.

2We got this remark (after a discussion by mail) from Dr. Gregg A. Swayze who is working in the USGS
Spectroscopy Lab. We really greatly thank this person for his time in providing us helpful remarks and suggestions
specially about the Cuprite data.
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Imagination is more important than knowledge. Knowledge is
limited. Imagination encircles the world.

— Albert Einstein
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the poor behavior of the traditional covariance estimators when the spectral dimension p is large
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been developed in the literature and in which sparsity has been imposed on the covariance matrix

in order to alleviate the challenges brought by the high covariance dimensionality.
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5.1 Introduction to linear regression analysis

Given a sample {xi}i∈[1, n], consider the following regression model:

yi = fβ(xTi ) + ei , (5.1)

where yi is the dependent or response variable, xi = [xi,0, xi,1, · · · , xi,p]T ∈ Rp+1 designates the

vector of independent or explanatory variables, β = [β0, β1, · · · , βp]T ∈ Rp+1 is a vector of the

unknown regression coefficients, and ei is the residual error variable. Hereafter, we will consider

that β0 = 0, so that β ∈ Rp and xi ∈ Rp. The case of one explanatory variable is called “simple

linear regression”. Whereas for more than one explanatory variable, the process is called “multiple

linear regression”.

By assuming a simple linear regression function f , equation (5.1) can be re-written as follows:

yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei . (5.2)

By writing equation (5.2) in vector-matrix form for any i ∈ [1, n], one obtains: y = Aβ + e,

where y ∈ Rn, A = [xi,t]n×p, β ∈ Rp, and e ∈ Rn.

5.1.1 The Ordinary Least Squares (OLS) method

In case when n > p, more equations than unknowns are thus present and this leads to an

overdetermined linear system of equations. Hence, there is enough data in order to estimate the

unknown regression coefficients β1, · · · , βp, and usual methods such as the Ordinary Least

Squares (OLS) can be implemented:

β̂
OLS

= argmin
β

1
2

n∑
i=1

(
yi −

p∑
t=1

xi,t βt

)2

= argmin
β

1
2 ‖y−Aβ‖2

2 =
(
AT A

)−1 AT y . (5.3)

Hence, the least squares method aims to estimate the regression coefficients by minimizing the

squared discrepancies between observed data, on the one hand, and their expected values on the

other.

5.1.2 Penalized Least Squares

The whole machinery of least-squares fails or does not work well for the high dimensional data

where the ATA matrix may be difficult to be inverted. In this regard, a regularized version of the

least squares solution may be preferable.

We consider the penalized least squares method:

argmin
β

1
2 ‖y−Aβ‖2

2 +
p∑
t=1

pϕ (|βt|) , (5.4)

where pϕ(.) is a penalty function indexed by the regularized parameter ϕ.
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Figure 5.1: Plots of the l0, l1 and
SCAD penalty functions: we set
β = [10 : 10], ϕ = 1 and a = 3.7

Some commonly used penalty functions (see Figure 5.1):

• l0 penalty;

• l2 penalty (Ridge regression);

• l1 penalty (LASSO regression) [140];

• SCAD penalty [53];

• etc.

5.1.3 Penalized regression using l2 norm: The ridge regression

As has been mentioned in section 5.1.2, a regularized version of the least squares solution may

be preferable. The traditional remedy is the ridge regression (aka Tikhonov regularization) [78],

which replaces the residual sum of squares of errors by its penalized version:

argmin
β

1
2 ‖y−Aβ‖2

2 + ϕ

p∑
t=1
|βt|2 , (5.5)

where ϕ > 0 is a penalty controlling the length of the vector of regression parameters. The ridge

regression has a very nice closed form solution that is easily interpreted, and this can be helpful in

practice. That is, β̂
Ridge

=
(
AT A + ϕ I

)−1 AT y.

The ridge solution works rather well when p is not too large; however, in general it does not

induce sparsity in the model (this is fine when sparsity is not important).

5.1.4 Penalized regression using l1 norm: The LASSO regression

The Least Absolute Shrinkage and Selection Operator (LASSO) is one of the most popular

approaches for selecting significant variables and estimating regression coefficients simultaneously.

The main difference between LASSO and ridge is the penalty term they use. The LASSO uses

the l1 penalty which imposes sparsity (this sounds good when sparsity is important) among the

regression coefficients, that is, it minimizes the sum of squares of residuals subject to a constraint

on the sum of absolute values of the regression coefficients:

argmin
β

1
2 ‖y−Aβ‖2

2 + ϕ

p∑
t=1
|βt| , (5.6)

where ϕ > 0 is a tuning parameter controlling the sparsity of the model.

One of the prime differences between LASSO and ridge regression is that in ridge regression, as the

penalty is increased, all regression coefficients are reduced while still remaining non-zero; whereas

in LASSO, increasing the penalty will cause more and more of the regression coefficients to be

driven to zero. Thus, LASSO automatically selects more relevant features and discards the others,

whereas ridge regression never fully discards any feature.
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Unlike the closed-form ridge solution, and due to the nature of the constraint in (5.6), the

LASSO solution is non-linear in the responses yi’s. Fundamental to understand and compute

the LASSO solution is the Soft thresholding operator [48].

5.1.5 Orthogonal Design in Penalized Least Squares

Insight about the nature of the penalization methods can be gleaned from the orthogonal design

case. Usually, one assumes that the predictors are orthogonal, i.e., AT A = I, and which is of

course a restrictive assumption.

Hence, by expanding out the first term in (5.4), we get:

1
2 ‖y‖

2
2 − yT Aβ + 1

2 ‖Aβ‖
2
2

= 1
2 yT y− yT Aβ + 1

2 (Aβ)T (Aβ)

= 1
2 yT y− yT Aβ + 1

2 β
T
(
ATA

)
β

= 1
2 yT y− yT Aβ + 1

2 β
T β .

By discarding yT y since it does not contain any of the variables of interest (that is, β), problem

(5.4) can be reformulated as:

argmin
β

(
−yT Aβ + 1

2 β
T β

)
+

p∑
t=1

pϕ (|βt|) . (5.7)

As we have previously considered, the columns of A are orthonormal, so that, β̂
OLS

= AT y

(since AT A = I). Problem (5.7) can thus be re-written as:

argmin
β

1
2

∥∥∥β − β̂OLS∥∥∥2

2
+

p∑
t=1

pϕ (|βt|) . (5.8)

Now the optimization problem is separable in βt’s. It suffices to consider the univariate

Penalized Least Squares problem:

β̂t = argmin
βt

1
2

(
βt − β̂OLSt

)2
+ pϕ(|βt|) . (5.9)

According to Antoniadis and Fan in [2], the solution to the minimization problem (5.9) exists and is

unique.

5.1.6 LASSO: Orthogonal Design and the Soft thresholding rule

Under the orthogonal design, i.e., AT A = I , the LASSO estimation can be greatly simpli-

fied. The problem becomes:

β̂t = argmin
βt

1
2

(
βt − β̂OLSt

)2
+ ϕ |βt| . (5.10)

The Lasso estimator is given by (the Soft thresholding rule):

β̂Softt = S
(
β̂OLSt ; ϕ

)
,
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where S (.; ϕ) is the Soft-thresholding operator:

S
(
β̂OLSt ; ϕ

)
= sgn

(
β̂OLSt

) (
|β̂OLSt | − ϕ

)
+
.

5.1.7 The Smoothly Clipped Absolute Deviation (SCAD) thresholding

In the search for an ideal penalty function, Fan and Li [53] advocate the use of regularization

methods leading to estimators having the following desirable properties:

• Sparsity: the resulting estimator should be a thresholding rule, that is, the estimated

regression coefficients that are lower than a specified threshold ϕ are set to zero, which

establishes thresholding.

• Unbiasedness: The resulting estimator should have a low bias, particularly for large parameter

values.

• Continuity: The resulting estimator should be continuous in the data to reduce instability

in the model prediction.

In a sense, the sparsity, unbiasedness, and continuity properties of the penalized least squares

force the penalty function to be non-differentiable at the origin and non-convex over (0,∞). Thus,

to enhance the desirable properties of the l1 penalty function, one may consider the Smoothly

Clipped Absolute Deviation (SCAD) penalty, defined as:

pSCADϕ, a (|βt|) =


ϕ|βt| if |βt| ≤ ϕ,

−|β
2
t | − 2 aϕ |βt|+ ϕ2

2 (a− 1) if ϕ < |βt| ≤ aϕ

(a+ 1)ϕ2

2 if |βt| > aϕ

, with a > 2 ,

The SCAD penalty corresponds to a quadratic spline function with knots at ϕ and aϕ (see

Figure 5.1). The value a = 3.7 was recommended by Fan and Li [53]. The objective function

with the SCAD penalty is:

β̂t = argmin
βt

1
2

(
βt − β̂OLSt

)2
+ pSCADϕ, a (|βt|) . (5.11)

The resulting minimization of (5.11) has the following closed-form SCAD thresholding rule:

β̂SCADt =


(
|β̂OLSt | − ϕ

)
+ sgn(β̂OLSt ) if |β̂OLSt | ≤ 2ϕ,

(a− 1) β̂OLSt − sgn(β̂OLSt )aϕ
a− 2 if 2ϕ < |β̂OLSt | ≤ aϕ

β̂OLSt if |β̂OLSt | > aϕ,

.

5.1.8 Geometric interpretation of the Soft and SCAD thresholding
rules

For a geometric interpretation of both the Soft and SCAD thresholding rules, we have considered

β̂
OLS

= [0, · · · , 5] by steps of 0.001, to be the least squares estimate of β. Then we have applied
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Figure 5.2: Soft and SCAD thresholding rules for ϕ = 1 and a = 3.7

the Soft and SCAD thresholding on β̂
OLS

with ϕ = 1, and a = 3.7 for SCAD. Figure 5.2 depicts

the results of the two thresholding rules. Both the Soft and SCAD thresholding rules establish

sparsity, that is, automatically set estimated coefficients that are below ϕ to zero. Recall from [53]

that besides the sparsity property, choosing a good penalty function should result in an estimator

with two further important properties: unbiasedness and continuity. The Soft thresholding rule is

continuous but shifts the thresholded values by ±ϕ. So that, if |β̂OLSt | > ϕ and β̂OLSt > 0, the

result will be β̂Softt = β̂OLSt − ϕ, while β̂OLSt + ϕ if β̂OLSt < 0. The SCAD thresholding rule is

continuous and results in less bias than Soft as can be seen in Figure 5.2.

5.2 Traditional covariance estimation approaches

5.2.1 The Sample Covariance Matrix: Σ̂SCM

In practice it is rare to perfectly know the distribution of the data. The Gaussian model assumption

is considered the common widely hypothesis used in several applications. Suppose that we observe

n independent and identically distributed (i.i.d) p-random vectors x1, · · · ,xn, distributed according

to a multivariate Gaussian distribution with zero mean and unknown covariance matrix Σ. That

is, xi ∼ N (0p,Σ), i = 1, 2 , · · · , n.

In this regard, the likelihood function of the matrix X = [x1, x2, · · · , xn] ∈ Rp×n is:

L (Σ,X) = (2π)−np/2 det(Σ)−n/2 exp
(
−1

2

n∑
i=1

xTi Σ−1 xi

)
. (5.12)
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The log-likelihood function of X is:

Λ = log (L(Σ,X)) = −np
2 log(2π)− n

2 log (det(Σ))− 1
2

n∑
i=1

xTi Σ−1 xi ,

= −np
2 log(2π)− n

2 log (det(Σ))− 1
2

n∑
i=1

Tr
(
Σ−1 xi xTi

)
,

= −np
2 log(2π)− n

2 log (det(Σ))− 1
2 Tr

(
Σ−1

n∑
i=1

xixTi

)
,

= −np
2 log(2π) + n

2 log (det(Σ))−1 − 1
2 Tr

(
Σ−1

n∑
i=1

xixTi

)
,

= −np
2 log(2π) + n

2 log
(
det(Σ−1)

)
− 1

2Tr
(

Σ−1
n∑
i=1

xixTi

)
. (5.13)

Note that the trace trick xTi Σ−1 xi = Tr
(
Σ−1 xi xTi

)
came from two neat properties of the trace:

• Tr(c) = c when c is a constant (i.e. xTi Σ−1 xi ∈ R) ,

• Tr (U V W) = Tr (W U V) = Tr (V W U), with U, V and W are matrices.

Taking now the derivative w.r.t. Σ−1 and setting it to zero, we have:

n

2 det
(
Σ−1) det

(
Σ−1)ΣT − 1

2

n∑
i=1

xTi xi = n

2 ΣT − 1
2

n∑
i=1

xTi xi = 0 .

Hence,

Σ̂SCM = [σ̂g,l]p×p = 1
n

n∑
i=1

xi xTi

**Some remarks

Note that ∂

∂Σ−1 log
(
det(Σ−1)

)
= 1

det
(
Σ−1) ∂ det

(
Σ−1)

∂Σ−1 = 1
det
(
Σ−1) adj

(
Σ−T

)
,

where adj
(
Σ−T

)
is the adjugate of matrix Σ−T , defined as: adj

(
Σ−T

)
= det

(
Σ−T

)(
Σ−T

)−1
=

det
(
Σ−1)ΣT .

5.2.2 Covariance estimation based on the OLS technique: Σ̂OLS

The estimation of covariance matrices through optimization of an objective function (e.g. a

log-likelihood function) is usually a difficult numerical problem, since the resulting estimates

should be positive definite matrices.

Covariance estimation via linear regression

In order to address the positivity definiteness constraint problem of Σ̂SCM , Pourahmadi [124] has

modeled the covariance matrices via linear regressions. This is done by letting x̂ = [x̂1, . . . , x̂p]T ∈

Rp, and consider each element x̂t, t ∈ [1, p], as the linear least squares predictor of xt based on
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its t − 1 predecessors {xj}j∈[1, t−1]. In particular, for t ∈ [1, p], let

x̂t =
t−1∑
j=1

Ct,j xj .

For each value of t ≥ 1, we get:

x1 = ε1 ,

x2 = C2,1 x1 + ε2 ,

x3 = C3,1 x1 + C3,2 x2 + ε3 ,

...

xp = Cp,1 x1 + Cp,2 x2 + · · ·+ Cp,p−1 xp−1 + εp ,

where εt = xt− x̂t for t ∈ [1, p] denotes the prediction error with variance var (εt) = E
[
(εt)2

]
= θ2

t .

Note that for t = 1, let x̂1 = E (x1) = 0, and hence, var(ε1) = θ2
1 = E

[
(x1)2

]
.

This is equivalent to:

ε =


ε1
ε2
...
εp

 =


1

−C2,1 1
−C3,1 −C3,2 1

...
... · · ·

. . .
−Cp,1 −Cp,2 · · · −Cp,p−1 1



x1
x2
...
xp

 = T x ,

where T is a unit lower triangular matrix with −Ct,j in the (t, j)th position for t ∈ [2, p] and

j ∈ [1, t− 1], and x = [x1, x2, · · · , xp]T ∈ Rp.

One has cov (ε) = T Σ TT = D. Thus, D−1 = T−T Σ−1 T−1 ⇒ Σ−1 = TT D−1 T, where D

is a diagonal matrix with entries θ2
1, θ2

2, · · · , θ2
p. A very interesting consequence is that for any(

T̂, D̂
)
, Σ̂ = T̂−1 D̂ T̂−T is always guaranteed to be positive definite.

The estimator Σ̂OLS

Given a sample {xi}i∈[1, n], we have:

xi,t =
t−1∑
j=1

Ct,j xi,j + εi,t , t ∈ [2, p], i ∈ [1, n]. (5.14)

Hence, for any t ∈ [2, p], we have:
x1,t
x2,t
...

xn,t

 =


x1,1 x1,2 · · · x1,t−1
x2,1 x2,2 · · · x2,t−1
...

xn,1 xn,2 · · · xn,t−1



Ct,1
Ct,2
...

Ct,t−1

+


ε1,t
ε2,t
...
εn,t

 (5.15)

(5.15) is similar to a simple linear regression model:

yt = An,t βt + et , (5.16)
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where yt = [x1,t, · · · , xn,t]T ∈ Rn, An,t = [xi,j ]n×(t−1), βt = [Ct,1, · · · , Ct,t−1]T ∈ R(t−1), and

et = [ε1,t, · · · , εn,t]T ∈ Rn.

When n > p, the OLS estimate of βt and the corresponding residual variance are plugged in T

and D for each t ∈ [2, p], respectively. At the end, one obtains the estimator:

Σ̂OLS = T̂−1
OLS D̂OLS T̂−TOLS

Note that T̂OLS has -ĈOLSt,j in the (t, j)th position for t ∈ [2, p] and j ∈ [1, t − 1].

5.2.3 The Tyler estimator
(
also known as Fixed-Point (FP)

)
: Σ̂FP

In real world hyperspectral imagery, the environment is heterogeneous and thus the true model

assumption might be so far from Gaussianity. However, it has been shown that the Gaussian dis-

tribution is not always a good model assumption for background characterization in hyperspectral

imaging. In that case, both Σ̂SCM and Σ̂OLS are not robust and so they will face difficulties in

estimating the true covariance without an extreme amount of errors. One of the most general

and acknowledged models for background statistics characterization is the family of Elliptically

Contoured Distributions, originally introduced by Kelker in [90].

The Compound Gaussian (CG) distributions represent an important subclass of the elliptical

contoured distributions that are widely used in signal processing applications, e.g. for wireless radio

propagation problems [157], radar clutter echoes modeling [65], and hyperspectral background

characterization [102, 116].

The main idea behind this model is to suppose that the background, locally Gaussian, presents

spatially variable power. More precisely, a random vector c has a Compound Gaussian dis-

tribution if it can be written as:

c = τ1/2 z , (5.17)

where τ > 0 is called “texture” whose distribution is not known, whereas z is a random vector

with a multivariate Gaussian distribution with zero mean and unknown covariance matrix Σ.

The probability density function (PDF) of c can be expressed as:

fc(c) = 1
πp det (Σ)

∫ +∞

0

1
τp

exp
(
−cTΣ−1c

τ

)
fτ (τ) dτ , (5.18)

where fτ (.) is the texture PDF. In the case when τ ∼ Gam (ν, 1/ν) with ν > 0, each vector xi
is said to have a p-variate K-distribution with shape parameter ν. In the limit ν → ∞, the

K-distribution reduces to the multivariate normal distribution.

Given that τ is unknown, most of the time, the MLE associated with this modeling can not be

obtained. However, many authors such as [66], [119] and [41] have obtained an approached MLE

known as the Tyler estimator
(
aka Fixed-Point (FP) estimator

)
.
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Let (c1, · · · , cn) be a n-sample with the same distribution as c in equation (5.17). The Fixed-Point

estimator is defined as the unique solution, up to a scale factor, of the equation:

Σ̂FP = p

n

n∑
i=1

xi xTi
xTi Σ̂

−1
FP xi

5.2.4 Comparative study of the traditional covariance estimators using
the ANMF target detector

A brief overview of the Adaptive Normalized Matched Filter (ANMF)

In performing sub-pixel detection, one can assume that the background is homogeneous and

follows a multivariate normal distribution. However, the target spectrum can be simply considered

to be superimposed with the background spectrum, so that they interact in an additive manner.

The detection scheme related to an observed spectrum x is given by:{
H0 : x = b ∼ N (0p,Σ)
H1 : x = δ t + β b ∼ N (δ t, β2 Σ), δ, β > 0 , (5.19)

which is known as the additive signal model for sub-pixel targets. Since for unresolved targets,

the area covered by the background is different under the two hypothesis, it is more reasonable

to consider that the covariance under hypothesis H1 is not equal to Σ, but to β2 Σ. In this

case, the background has the same structure but different variances. The Likelihood Ratio Test

(LRT) approach for the detection problem (5.19) leads to the following invariant Normalized

Matched Filter (NMF) detector:

DNMF =
∣∣tT Σ−1 x

∣∣2(
tT Σ−1 t

) (
xT Σ−1 x

) H1
≷
H0

η , (5.20)

where η is the decision threshold to yield the desired probability of false alarm Pfa. The two-step

Adaptive Normalized Matched Filter (ANMF) is obtained when Σ is replaced by its estimate. In

this context, if DANMF exceeds η, the hypothesis H1 is chosen; whereas H0 otherwise.

Evaluation performance of ANMF using the traditional covariance estimators

To measure the performance of the ANMF target detector, it is classical to draw the Receiver

Operating Characteristics (ROC) curves. More particularly, the curve depicts the probability of

detection (Pd) as a function of the Signal to Noise Ratio (SNR). the SNR for the problem (5.19) is:

SNR = δ2

β2 tT Σ−1 t . (5.21)

For the evaluations, we specifically choose β=1 in (5.21).

The performance of each of the estimators Σ̂SCM , Σ̂OLS and Σ̂FP , when they are plugged-

in into the Normalized Matched Filter (NMF) target detector, is evaluated in terms of probability

of detection Pd versus SNR for a probability of false alarm Pfa = 10−2. The experiments are
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conducted for the Autoregressive model of order 1, AR(1), Σ = [σgl]p×p, where σgl = c|g−l|, for

c = 0.3.

We selected p = {10, 30, 60, 80}, ν ∈ {∞, 0.5, 0.1}, and n = 80. All computations were performed

using 105 Monte-Carlo trials. The artificial target we consider is a vector containing normally

distributed pseudorandom values. Figure 5.3, 5.4 and 5.5 depict the evaluation outputs for

ν = ∞, ν = 0.5 and ν = 0.1, respectively.

• From all the figures (5.3, 5.4, 5.5), we can observe that Σ̂OLS always achieve (slightly) higher

detection results than to those of Σ̂SCM .

• When ν =∞ The Fixed-Point estimator Σ̂FP always achieve slightly lower target detection

results than to those of Σ̂SCM and Σ̂OLS (see Figure 5.3). This is to be very expected since

for ν =∞, the assumption on the data is completely Gaussian.

• For ν = 0.5 and ν = 0.1 The Fixed-Point Σ̂FP achieves higher detection results than to

those of Σ̂SCM and Σ̂OLS (see Figure 5.4, 5.5). This is because Σ̂FP is a robust estimator.

• The traditional covariance estimators are ideal only when n tends to ∞ Obviously, when

the spectral dimension p is considered large (i.e. p = 60 and p = 80) compared to the

number of observed data n, Σ̂SCM , Σ̂OLS and Σ̂FP face difficulties in estimating Σ without

an extreme amount of errors. Thus, they behave poorly in large dimensions, unless some

regularization techniques (i.e. Shrinkage [34, 35, 84, 94, 95, 117, 118, 130], Random Matrix

Theory (RMT) [39, 40, 135–137], Sparsity [13, 29, 82, 127, 151]) are applied.

5.3 Some Research works for alleviating the high dimen-
sional covariance estimation challenge via sparsity

The covariance matrix estimation problem plays an essential role in time series analysis [61], spatial

data analysis [42], longitudinal data analysis [60], STAP and MIMO STAP radar applications

[39], and hyperspectral imagery. Obviously, when the spectral dimension p is considered large

compared to the number of observed data n, traditional covariance estimators such as Σ̂SCM ,

Σ̂OLS and Σ̂FP , face difficulties in estimating Σ without an extreme amount of errors. However,

the problem of estimating high-dimensional covariance matrices has been extensively studied.

Realizing the challenges brought by the high covariance dimensionality, researchers have proposed

various regularization techniques to consistently estimate Σ based on the assumption that the

covariance matrix is sparse, namely, many entries are zero.

Bickel et al. [13] proposed a banded version of Σ̂SCM . Unfortunately, this kind of regularization

does not always guarantee positive definiteness of the estimator.

In [127], a class of generalized thresholding operators applied to the off-diagonal entries of Σ̂SCM

have been discussed. These operators combine shrinkage with thresholding and have the advantage
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Figure 5.3: Target detection results of the traditional covariance estimators {Σ̂SCM , Σ̂OLS , Σ̂F P },
using the ANMF detector for p = {10, 30, 60, 80}, n = 80, ν =∞

to estimate the true zeros as zeros with high probability. These operators (e.g., Soft and SCAD),

though simple, do not always guarantee positive definiteness of the thresholded version of Σ̂SCM .

In this context, Liu et al. [98] have generalized the work in [127] by adding an explicit eigenvalue

constraint. and hence, the thresholded estimated covariance matrix simultaneously achieves

sparsity and positive definiteness.

In [29], the covariance matrix is constrained to have an eigen decomposition which can be

represented as a sparse matrix transform (SMT) that decomposes the eigen-decomposition into

a product of very sparse transformations. The resulting estimator, denoted as Σ̂SMT in this

dissertation, is always guaranteed to be positive definite.

In addition to the above review, some other works have attempted to enforce sparsity of the

covariance matrix via its Cholesky factor T. Hence, yielding sparse covariance estimators that are

always guaranteed to be positive definite. For example, in [151], Pourahmadi et al. proposed to

smooth the first few subdiagonals of T̂OLS and set to zero the remaining ones. In [82], Huang et al.

proposed to directly estimate a sparse version of T by penalizing the negative normal log-likelihood

of the matrix X = [x1, x2, · · · , xn] with an l1-norm penalty function. Hence, allowing the zeros to
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Figure 5.4: Target detection results of the traditional covariance estimators {Σ̂SCM , Σ̂OLS , Σ̂F P } using
the ANMF detector for p = {10, 30, 60, 80}, n = 80, ν = 0.5

be irregularly placed in the Cholesky factor. This seems to be an advantage over the work in [151].

5.3.1 Banding the Sample Covariance Matrix

Given the p × p sample covariance matrix Σ̂SCM = [σ̂g,l]p×p in section 5.2.1, Bickel et al. [13]

have proposed a banded version of Σ̂SCM , denoted as Bm
(
Σ̂SCM

)
in this dissertation:

Bm

(
Σ̂SCM

)
= [σ̂g,l 1(|g − l| ≤ m)] ,

where 0 ≤ m < p is the banding parameter.

The performance of the estimator Bm(Σ̂SCM ) depends critically on the optimal choice of the

banding parameter m which is usually selected using a cross-validation method. However, this

kind of regularization does not always guarantee positive definiteness.

5.3.2 Thresholding the Sample Covariance matrix

There are several componentwise regularization methods for estimating a sparse (or approximately

sparse) covariance matrix. Thresholding is by far the most popular.
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Figure 5.5: Target detection results of the traditional covariance estimators {Σ̂SCM , Σ̂OLS , Σ̂F P } using
the ANMF detector for p = {10, 30, 60, 80}, n = 80, ν = 0.1

In [127], a class of generalized thresholding operators such as Soft and SCAD applied on the

off-diagonal entries of Σ̂SCM have been discussed. These operators combine shrinkage with

thresholding and have the advantage to estimate the true zeros as zeros with high probability.

For any ϕ ≥ 0, define a matrix thresholding operator Th (.) and denote by Th
(
Σ̂SCM

)
=

[Th (σ̂g,l)], with g 6= l, the matrix resulting from applying a specific thresholding operator Th(.)

to the off-diagonal elements of the matrix Σ̂SCM . The thresholding operator Th (.) is defined by:

Th
(
Σ̂SCM

)
= argmin

Σ

p∑
g=1

p∑
l=1

{
1
2 (σ̂g,l − σg,l)2 + pϕ{|σg,l|}

}
, g 6= l , (5.22)

where pϕ is a penalty that can include several penalties (i.e. l1 penalty, and SCAD-penalty).

• For an l1 penalty: problem (5.22) is re-written as:

Σ̂
Soft

SCM = argmin
Σ

p∑
g=1

p∑
l=1

{
1
2 (σ̂g,l − σg,l)2 + ϕ |σg,l|

}
, g 6= l , (5.23)
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• For an SCAD penalty: problem (5.22) is re-written as:

Σ̂
SCAD

SCM = argmin
Σ

p∑
g=1

p∑
l=1

{
1
2 (σ̂g,l − σg,l)2 + pSCADϕ, a {|σg,l|}

}
, g 6= l , (5.24)

Both problems (5.23) and (5.24) admit a closed-form Soft and SCAD thresholding rules

[127].

Th (.) is said to have generalized thresholding rule if it satisfies three interesting conditions for all

σ̂g,l:

1. |Th (σ̂g,l)| ≤ |σ̂g,l|, which establishes shrinkage,

2. Th (σ̂g,l) = 0 if |σ̂g,l| ≤ ϕ, which establishes thresholding,

3. |Th (σ̂g,l) − σ̂g,l| ≤ ϕ, which means that the amount of shrinkage must not exceed the

selected thresholding parameter ϕ.

Obviously, both Soft and SCAD thresholding rules satisfy all the three conditions, and hence,

they are a class of generalized thresholding that combine shrinkage with thresholding.

In general, threshold estimators carries almost no computational burden other than the selection

of the tuning parameter ϕ (usually selected using a cross-validation method), but does not

necessarily preserve positive-definiteness.

5.3.3 An overview of the work in [82]

Note that det(T) = 1 and Σ = T−1 D T−T . It follows that det(Σ) = det(D) =
p∏
t=1

θ2
t . Hence, the

negative normal log-likelihood of X = [x1, · · · , xn] ∈ Rp×n, ignoring an irrelevant constant, satis-

fies:

Λ = −2 log (L (Σ,x1, · · · ,xn)) = n log(det(D)) + XT
(
TT D−1 T

)
X ,

= n log (det(D)) + (T X)T D−1 (T X) ,

= n

p∑
t=1

log θ2
t +

p∑
t=1

n∑
i=1

ε2i,t/θ
2
t .

By adding a penalty function
p∑
t=2

t−1∑
j=1

pϕ{|Ct,j |} to Λ, where pϕ ∈ {pL1
ϕ , pSCADϕ,a>2 } with ϕ ∈ [0,∞), we

have:

n log θ2
1 +

n∑
i=1

ε2i,1
θ2

1
+

p∑
t=2

(
n log θ2

t +
n∑
i=1

ε2i,t
θ2
t

+
t−1∑
j=1

pϕ{|Ct,j |}
)

(5.25)

Obviously, minimizing (5.25) with respect to θ2
1 and θ2

t gives the solutions:

θ̂2
1 = 1

n

n∑
i=1

ε2i,1 = 1
n

n∑
i=1

x2
i,1 ,
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and

θ̂2
t = 1

n

n∑
i=1

ε2i,t = 1
n

n∑
i=1

xi,t − t−1∑
j=1

Ct,j xi,j

2

,

respectively.

It remains to estimate the entries of T by minimizing (5.25) with respect to Ct,j . From equation

(5.14) and (5.16), the minimization problem to solve for each t ∈ [2, p] is:

β̂t = argmin
βt

n∑
i=1

ε2i,t
θ2
t

+
t−1∑
j=1

pϕ{|Ct,j |} ,

= argmin
βt

1
θ2
t

n∑
i=1

xi,t − t−1∑
j=1

Ct,j xi,j

2

+
t−1∑
j=1

pϕ{|Ct,j |} ,

= argmin
βt

1
θ2
t

‖yt −An,t βt‖
2
F +

t−1∑
j=1

pϕ{|Ct,j |} . (5.26)

In [82], the authors have been interested on the l1 norm, that is, pϕ{|Ct,j |} = ϕ |Ct,j |. However,

the authors have used the local quadratic approximation (LQA) [53] of the l1-norm in order

to get a closed-form solution for βt in equation (5.26).

Summary

An introduction to the linear regression analysis was given in this chapter. More precisely, all

the necessary information concerning the least squares method and some of the penalized least

squares techniques such as the penalization via an l2, l1, and SCAD penalties were briefly outlined.

The chapter also provided in detail some of the traditional covariance estimators Σ̂SCM , Σ̂OLS

and Σ̂FP , and a comparative study of them on some Monte-Carlo simulations for hyperspectral

target detection. The evaluations show that Σ̂OLS always achieve slightly better target detection

performances than to those of Σ̂SCM . Recall that Σ̂OLS has been developed mainly to address

the positivity definiteness constraint of Σ̂SCM . The evaluations also demonstrate the robustness

of Σ̂FP . Under a Gaussian assumption, Σ̂FP always achieve a slightly lower detection results than

to those of Σ̂SCM and Σ̂OLS ; whereas in non-Gaussian cases, Σ̂FP is robust and achieves higher

detection results than to those of Σ̂SCM and Σ̂OLS . However, the three traditional estimators

behave poorly when the spectral dimension p is considered large compared to the sample size n. In

this regard, a lot of research works have been done to alleviate the high covariance dimensionality

challenge by assuming that the covariance matrix is sparse, namely, many entries are zero. This

chapter has also provided in detail some of these research works.
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I Synopsis This chapter outlines two methods that are based on pre-existing works to impose

sparsity on the covariance matrix Σ via its unit lower triangular matrix (aka Cholesky factor) T.

More precisely, four sparse covariance estimators are developed and which are always guaranteed

to be positive definite. This chapter is split into four parts.

1. The first part “System Overview of the proposed work” gives a brief overview of the main

contributions as well as the obtained results.

2. The second part “Our main contributions” outlines in detail the four covariance estimators

that are developed under the assumption that the true unknown covariance matrix (of the

background surrounding the test pixel) is sparse, namely, many entries are zero.

3. The third part “Experiments and Analysis” evaluate the proposed sparse covariance

estimators on some Monte-Carlo simulations as well as experimental data for hyperspectral

93
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target detection.

4. The forth part “Summary of the whole Part III and some future directions” outlines a

brief summary of the main ideas of Chapter 5 as well as the main contributions of this

chapter. This part also provides some directions for future work.

6.1 System Overview of the proposed work

We put forth two simple methods for imposing sparsity on the covariance matrix via its Cholesky

factor T. Our first method is very related to the work in [127] (that is, in section 5.3.2 of Chapter

5), but attempts to render Σ̂OLS sparse (instead of Σ̂SCM ) by thresholding its Cholesky factor

T̂OLS using operators such as Soft and SCAD. The second method aims to generalize the work in

[82] in order to be used for various penalty functions (not only the l1 penalty as in [82]). The two

methods allow the zeros to be irregularly placed in the Cholesky factor, and which seems to be an

advantage over the work in [151].

Clearly, in real world hyperspectral imagery, the true covariance model is not known, and

hence, there is no prior information on its degree of sparsity. Enforcing sparsity on the covariance

matrix seems to be a strong assumption, but can be critically important if the true covariance

model (of the background surrounding the test pixel) for a given HSI is indeed sparse. That is,

taking advantage of the possible sparsity in the estimation can potentially improve the target

detection performance, as can be seen from the experimental results later. On the other hand,

while the true covariance model may not be sparse (or not highly sparse), there should be no

worse detection results than to those of the traditional covariance estimators.

We evaluate our estimators for hyperspectral anomaly detection using the Kelly anomaly detector

[91]. More precisely, we first perform a thorough evaluation of our estimators using some Monte-

Carlo simulations for three true covariance models of different sparsity levels. From our experiments

in section 6.3.2, the detection results show that in trully sparse models, our estimators improve

the detection significantly with respect to the traditional ones, and have competitive results with

state-of-the-art [13, 29, 127]. When the true model is not sparse, we find that empirically our

estimators still have no worse detection results than to those of Σ̂SCM , Σ̂OLS and Σ̂FP .

Next, in section 6.3.3, our estimators are evaluated on experimental data where a good target

detection performances are obtained compared to the traditional estimators and state-of-the-art.
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6.2 Our main contributions

6.2.1 Generalized thresholding based Cholesky Factor

For any 0 ≤ ω ≤ 1, we define a matrix thresholding operator Th(.) and denote by Th(T̂OLS) =

[Th(−ĈOLSt,j )]p×p the matrix resulting from applying a specific thresholding operator Th(.) ∈ {Soft,

SCAD} to each element of the matrix T̂OLS for t ∈ [2, p] and j ∈ [1, t− 1].

Similarly to (5.22), we consider the following minimization problem:

Th(T̂OLS) = argmin
T

1
2

∥∥∥T− T̂OLS

∥∥∥2

F
+

p∑
t=2

t−1∑
j=1

pω{|Ct,j |} ,

= argmin
T

p∑
t=2

t−1∑
j=1

{
1
2

(
ĈOLSt,j − Ct,j

)2
+ pω{|Ct,j |}

}
(6.1)

where pω ∈ {pl1ω , pSCADω,a>2 }.

Solving (6.1) with pl1ω and pSCADω,a>2 , yields a closed-form Soft and SCAD thresholding rules,

respectively [127], [53]. The value a = 3.7 was recommended by Fan and Li [53]. Despite

the application here is different than in [53], for simplicity, we use the same value a = 3.7.

We shall designate the two thresholded matrices by T̂Soft and T̂SCAD, that apply Soft and

SCAD on T̂OLS , respectively. We denote our first two estimators as:

Σ̂
Soft

OLS = T̂−1
Soft D̂OLS T̂−TSoft

Σ̂
SCAD

OLS = T̂−1
SCAD D̂OLST̂−TSCAD

Advantages of our estimators Σ̂
Soft

OLS and Σ̂
SCAD

OLS over the work in [127] (that is, the

work in section 5.3.2 of Chapter 5):

Note that in [127], the authors have demonstrated that for a non sparse true covariance model, the

covariance matrix does not suffer any degradation when thresholding is applied to the off-diagonal

entries of Σ̂SCM . However, this is not the case for the target detection problem where the inverse

covariance is used; we found that, and in contrast to our estimators, the scheme in [127] has a

deleterious effect on the detection performance when compared to those of Σ̂SCM , Σ̂OLS and Σ̂FP .

6.2.2 A generalization of the estimator in [82]

We continue the work in section 5.3.3 (the work in [82]), but by modifying the procedure by which

the entries of T have been estimated.

By denoting l(βt) = 1
θ2

t
‖yt −An,tβt‖

2
F and r(βt) =

t−1∑
j=1

pϕ{|Ct,j |} =
t−1∑
j=1

rj(Ct,j), we solve βt
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iteratively using the General Iterative Shrinkage and Thresholding (GIST) algorithm [70]:

β̂
(k)
t = argmin

βt

l
(
β

(k−1)
t

)
+ r(βt) +

(
∇l
(
β

(k−1)
t

))T (
βt − β

(k−1)
t

)
+ w(k−1)

2

∥∥∥βt − β(k−1)
t

∥∥∥2
,

= argmin
βt

1
2

∥∥∥βt − u(k−1)
t

∥∥∥2
+ 1
w(k−1) r(βt) . (6.2)

where u(k−1)
t = β

(k−1)
t − ∇l

(
β

(k−1)
t

)
/w(k−1), and w(k−1) is the step size initialized using the

Barzilai-Browein rule [6]. Recall that ϕ ∈ [0,∞) (see section 5.3.3 in Chapter 5).

By decomposing (6.2) into independent (t-1) univariate optimization problems, we have for j =

1, · · · , t − 1:

C
(k)
t,j = argmin

Ct,j

1
2

∥∥∥Ct,j − u(k−1)
t,j

∥∥∥2
+ 1
w(k−1) rj(Ct,j) , (6.3)

where u(k−1)
t =

[
u

(k−1)
t,1 , · · · , u(k−1)

t,t−1

]T
∈ R(t−1).

By solving (6.3) with the l1-norm penalty, pl1ϕ , we have the following closed form solution:

C
(k)
t,j,(l1) = sgn

(
u

(k−1)
t,j

)
max

(
0,
∣∣∣u(k−1)
t,j

∣∣∣− ϕ/w(k−1)
)
. (6.4)

For the SCAD penalty function, pSCADϕ,a>2 , we can observe that it contains three parts for three

different conditions (see Subsection 5.1.7 in Chapter 5). In this case, by recasting problem (6.3)

into three minimization sub-problems for each condition, and after solving them, one can obtain

the following three sub-solutions h1
t,j , h2

t,j , and h3
t,j , where:

h1
t,j = sgn

(
u

(k−1)
t,j

)
min

(
ϕ,max

(
0,
∣∣∣u(k−1)
t,j

∣∣∣− ϕ/w(k−1)
))

,

h2
t,j = sgn

(
u

(k−1)
t,j

)
min

aϕ,max

ϕ, w(k−1)
∣∣∣u(k−1)
t,j

∣∣∣ (a− 1)− aϕ

w(k−1)(a− 2)

 ,

h3
t,j = sgn

(
u

(k−1)
t,j

)
max

(
aϕ,

∣∣∣u(k−1)
t,j

∣∣∣) .
Hence, we have the following closed form solution:

C
(k)
t,j,(SCAD) = argmin

qt,j

1
2

(
qt,j − u(k−1)

t,j

)2
+ 1
w(k−1) rj(qt,j)

s.t. qt,j ∈ {h1
t,j , h

2
t,j , h

3
t,j}

(6.5)

At the end, we denote our last two estimators as:

Σ̂l1 = T̂−1
l1

D̂ T̂−Tl1

Σ̂SCAD = T̂−1
SCAD D̂ T̂−TSCAD

where T̂l1 and T̂SCAD have respectively −Ĉt,j,(l1) and −Ĉt,j,(SCAD) in the (t, j)th position for

t ∈ [2, p] and j ∈ [1, t− 1], whereas D̂ has the entries (θ̂2
1, θ̂

2
t ) on its diagonal. Note that in [82],
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the authors have used the local quadratic approximation (LQA) [53] of the l1-norm in order to

get a closed form solution for βt in equation (5.26) in Chapter 5. Our algorithm is now more

general since after exploiting the GIST algorithm to solve (5.26), it can be easily extended to some

other penalties such as SCAD [53] , Capped-l1 penalty [69, 161, 162], Log Sum Penalty[27], and

Minimax Concave Penalty [159], and they all have closed-form solutions [70]. In this dissertation,

we are only interested to the l1 and SCAD penalty functions.

6.2.3 Tuning selection of ω (in section 6.2.1) and ϕ (in section 6.2.2)

In this section, we briefly discuss how the parameters ω and ϕ can be automatically selected.

The standard way to select them is to minimize the following risk:

R(ω or ϕ) = E
∥∥∥Σ̂−Σ

∥∥∥
2
,

where Σ̂ ∈
{

Σ̂
Soft

OLS , Σ̂
SCAD

OLS , Σ̂l1 , Σ̂SCAD

}
. The oracle values of ω and ϕ are chosen to minimize

the above risk. Note that the choice of the parameter norm in the above risk is somewhat arbitrary,

and we have considered the l2 norm.

In real hyperspectral applications, the covariance matrix model is completely not known, and

thus, has to be estimated. In this case, one needs to find an approximation for the above risk, and

hence, to estimate the oracle values of the parameters ω and ϕ (since these parameters control

the amount of sparsity and selecting good values is crucial). By following section 4.1 in [82], the

oracle values of ω and ϕ can be approximated by the following cross-validation procedure:

1. Randomly split the matrix X = [x1,x2, · · · ,xn] ∈ Rp×n into K parts or folds of roughly

equal size, A1, · · · ,AK ,

2. For each v ∈ {1, · · · ,K}:

Let Av ∈ Rp×( n
K ) be its corresponding fold used for validation and A−v ∈ Rp×

(
n−( n

K )
)
for

training. By A−v, we mean the data matrix X excluding the fold Av.

The parameters ω and ϕ are continous, but considering all possible values will increase the

computational complexity dramatically. That is why, it is more practically to choose to

discretize the range of both ω and ϕ and consider them over some discrete set.

For each value of ω and ϕ in the discrete set, compute the error RMS:

RMS(v, ω or ϕ) = sv log det
(
Σ̂−v

)
+
∑
i∈Iv

xTi Σ̂
−1
−v xi , (6.6)

where Iv is the index set of the data in Av, sv denotes the size of Av, and Σ̂−v is computed

only on the training set A−v.

**Importantly, Rothman et al. in [127] (that is, in section 5.3.2 in Chapter 5) have selected

the thresholding parameter ϕ for the thresholded Σ̂SCM (in equation (5.22)) by the same
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cross validation method, but equation (6.6) was replaced by:
∥∥∥Σ̂Soft or SCAD

SCM,−v − Σ̂SCM, v

∥∥∥2

F
,

where Σ̂SCM, v represents Σ̂SCM that is computed on the dataset Av (the validation set) only.

For our proposed estimators, we can also think to replace equation (6.6) by
∥∥∥Σ̂−v − Σ̂OLS, v

∥∥∥2

F
,

where Σ̂OLS, v represents Σ̂OLS but computed on the dataset Ak. It is interesting to note

that the size of the dataset Av is usually lower than p, and hence, Σ̂OLS, v will be undefined.

3. For each ω or ϕ value, compute the average error over all folds v, that is:

CV (ω or ϕ) = 1
K

K∑
v=1

RMS(v, ω or ϕ)

We choose ω = ω̂ and ϕ = ϕ̂ to minimize CV (ω) and CV (ϕ), respectively.

In order to achieve a good bias-variance trade-off of the average error estimates, the values

K=5 and K=10 are preferred in practice. However, it is important to avoid choosing very high

values of K (i.e., K=n) and very small values (i.e., K=2). The first (K=n) corresponds to the

Leave-one-out cross validation and in which the average error estimates are going to have high

variance, whereas the second (K=2) corresponds to the Split-Sample cross validation and in

which the average error estimates are going to be biased upwards.

6.3 Experiments and Analysis

Some Monte-Carlo simulations as well as experimental data evaluate our proposed covariance

estimators
{

Σ̂
Soft

OLS , Σ̂
SCAD

OLS , Σ̂l1 , Σ̂SCAD

}
for hyperspectral target detection using the Kelly

anomaly detector [91].

Our estimators are compared to the traditional ones Σ̂SCM , Σ̂OLS , Σ̂FP and state-of-the-art:

Σ̂SMT [29], Bk
(
Σ̂SCM

)
[13], and the two estimators that apply Soft and SCAD thresholding on

the off-diagonal entries of Σ̂SCM in [127], and which are denoted in the following experiments

as Σ̂
Soft

SCM and Σ̂
SCAD

SCM , respectively (see section 5.3.2 in Chapter 5).

6.3.1 A brief overview of the Kelly anomaly detector

Suppose the following signal model:{
H0 : x = n, xi = ni, i = 1, · · · , n
H1 : x = δ t + n, xi = ni, i = 1, · · · , n (6.7)

where n1, · · · ,nn are n i.i.d p-vectors having a multivariate normal distribution N (0,Σ). t is

an unknown steering vector which denotes the presence of an anomalous signal with unknown

amplitude δ > 0. After some calculation (refer to [91] and both Subsection II. B and Remark

II. 1 in [58] for details), the Kelly anomaly detector is described as follows:

DKellyADΣ̂ (x) = xT Σ̂
−1
SCM x

H1
≷
H0

η , (6.8)
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where η is a prescribed threshold value.

In the following two subsections, both parameters ω and ϕ has been selected using the cross-

validation method described in section 6.2.3.

The detection performances of the estimators, when are plugged in DKellyAD,Σ̂ are evaluated

by the Receiver Operating Characteristics (ROC) curves (which describe the probability of

detection Pd against the probability of false alarms Pfa) and their corresponding Area Un-

der Curves (AUC) values.

6.3.2 Monte-Carlo simulations

The experiments are conducted on three covariance models:

• Model 1: Σ = I, the identity matrix,

• Model 2: the autoregressive model order 1, AR(1), Σ = [σgl]p×p, where σgl = c|g−l|, for

c = 0.3,

• Model 3: Σ = [σgl]p×p, where σgl = (1− ((|g − l|)/r))+, for r = p/2: the triangular matrix.

Model 1 is very sparse and Model 2 is approximately sparse. Model 3 with r = p/2 is considered

the least sparse [127] among the three models.

The computations have been made through 105 Monte-Carlo trials and the ROC curves (Pd
- Pfa) are drawn for a signal to noise ratio equal to 15dB. We choose n = 80 for covariance

estimation under a GAUSSIAN assumption (that is, ν = ∞), and set p = 60. The artificial

anomaly we consider is a vector containing normally distributed pseudorandom numbers (to have

fair results, the same vector is used for the three covariance models). The ROC curves for Model

1, 2 and 3 are shown in Figure. 6.1(a), 6.1(b) and 6.1(c), respectively, and their corresponding

Area Under Curves (AUC) values are presented in Table 1. Note that in Figure 6.1(a), 6.1(b)

and 6.1(c), we only exhibit the ROC curves for Σ, Σ̂SCM , Σ̂OLS , and Σ̂SCAD. For the other

estimators, their AUC values are presented in Table 1.

Our findings: For both Model 1 and 2, our estimators significantly improve the detection

performances comparing to those of the traditional estimators (Σ̂SCM , Σ̂OLS , Σ̂FP ), and have

competitive detection results with state-of-the-art. An important finding is that even for a

non sparse covariance model (that is, Model 3) , our estimators do not show a harm on the

detection when compared to those of Σ̂SCM , Σ̂OLS and Σ̂FP . Although that Σ̂
Soft

OLS , Σ̂
SCAD

OLS

and Σ̂l1 have slightly lower AUC values than Σ̂OLS , this is still a negligible degradation on the

detection. Thus, considering that Σ̂
Soft

OLS , Σ̂
SCAD

OLS and Σ̂l1 have no worse detection results

than Σ̂OLS is still acceptable.
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Figure 6.1: ROC curves for the three Models. (a): Model 1. (b): Model 2. (c): Model 3.

6.3.3 Real experiments

Our estimators are now evaluated for galaxy detection on the Multi Unit Spectroscopic Explorer

(MUSE) data cube (see [111]). It is a 100 × 100 image and consists of 3600 bands in wavelengths

ranging from 465-930 nm. We used one band of each 60, so that 60 bands in total. Figure 6.4(a)

exhibits the mean power in dB over the 60 bands. The covariance matrix is estimated using a

sliding window of size 9× 9, having n = 80 secondary data (after excluding only the test pixel).

The mean has been removed from the given HSI. Figure 6.2(b) exhibits the ROC curves [163] of

our estimators when compared to some others, and their AUC values are shown in Table 1.

The estimators Σ̂
Soft

OLS , Σ̂
SCAD

OLS achieve higher detection results than to those of all the others

(especially to that of the Fixed-Point Σ̂FP ), whereas both Σ̂l1 and Σ̂SCAD achieve only a lower

AUC values than to that of Bk
(
Σ̂SCM

)
and Σ̂FP .
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Covariances Model 1 Model 2 Model 3 MUSE
Σ 0.9541 0.9540 0.9541 Not known

Σ̂SCM 0.7976 0.7977 0.7978 0.6277
Σ̂OLS 0.8331 0.8361 0.8259 0.6575
Σ̂FP 0.7941 0.7942 0.7876 0.9269
Σ̂
Soft

OLS 0.9480 0.9124 0.8169 0.9620
Σ̂
SCAD

OLS 0.9480 0.9124 0.8257 0.9643
Σ̂l1 0.9509 0.9264 0.8236 0.8844
Σ̂SCAD 0.9509 0.9264 0.8261 0.8844

Σ̂SMT 0.9503 0.9184 0.7798 0.7879
Bk(Σ̂SCM ) 0.9509 0.9478 0.5321 0.9277
Σ̂
Soft

SCM 0.9509 0.9274 0.5969 0.7180
Σ̂
SCAD

SCM 0.9509 0.9270 0.5781 0.7180

Table 1. A List of Area Under Curve (AUC) values of our estimators Σ̂Soft
OLS , Σ̂SCAD

OLS , Σ̂l1 , Σ̂SCAD when
compared to some others.
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Figure 6.2: (a) MUSE HSI (average). (b) ROC curves for MUSE

6.4 Summary of the whole Part III and some future direc-
tions

6.4.1 Summary

In hyperspectral, the covariance matrix Σ (of the background surrounding the test pixel) is

completely not known, and thus, has to be carefully estimated especially in large dimensions.

In Chapter 5, an interesting comparative study has been done on three traditional covariance

estimators: Σ̂SCM , Σ̂OLS and Σ̂FP . It has been shown that Σ̂OLS always achieve slightly

higher target detection results than Σ̂SCM . For a Gaussian model assumption, Σ̂FP always

achieve slightly lower target detection results than Σ̂SCM ; whereas for a non-Gaussian model

assumption, Σ̂FP is robust, in contrast to both Σ̂SCM and Σ̂OLS . When the spectral dimension
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p is considered large compared to the sample size n, Σ̂SCM , Σ̂OLS and Σ̂FP behave very poorly.

This is due to the fact that these traditional covariance estimators are ideal only when n tends to∞.

Usually, compounding the large dimensionality problem can be alleviated by leveraging on

the assumption that the true unknown covariance matrix is sparse, namely, many entries are

zero. In this regard, Chapter 6 has outlined two methods to impose sparsity on the covariance

matrix via its unit lower triangular matrix (aka Cholesky factor) T. The first method serves

to estimate the entries of T using the Ordinary Least Squares (OLS), then imposes sparsity by

exploiting some generalized thresholding techniques such as Soft and Smoothly Clipped Absolute

Deviation (SCAD). The second method directly estimates a sparse version of T by penalizing

the negative normal log-likelihood of the matrix X = [x1, x2, · · · , xn] with l1 and SCAD penalty

functions. More precisely, we aimed to generalize the work in [82] in order to be used for various

penalty functions. Our proposed sparse covariance estimators are always guaranteed to be positive

definite.

Our findings show that in trully sparse covariance models, our proposed estimators potentially

improve the target detection performances compared to those of the traditional estimators, and

have competitive detection results with state-of-the-art. Note that when the true covariance is not

sparse (or not highly sparse), our proposed covariance estimators do not achieve worse detection

results than to those obtained with the traditional covariance estimators.

6.4.2 Some directions for future work

As for future enhancements:;

• We will evaluate our proposed covariance estimators on more experimental datasets,

• Extend the proposed methods to the case of “curse of dimensionality”, that is, when p� n,

• Our Monte-Carlo simulations have been done only on the Gaussian case (for ν =∞). The

question now is “Are our findings the same in a non-Gaussian case (that is, for small values

of ν)?”. In the future, the evaluation of the robustness of our proposed estimators will be of

our interest.
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“I may not have gone where I intended to go, but I think I
have ended up where I needed to be.

— Douglas Adams
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I Synopsis Finally, the dissertation concludes with this chapter, which summarizes the main

contributions and raises several additional research questions. It also provides some of our

additional works that still need to be tested in the future.

7.1 Looking Back

In hyperspectral, the main challenges lie in large spectral dimensionality, and data variation

modelling due to material spectral variability, atmospheric effects, and sensor noise. This

dissertation has concentrated on alleviating the aforementioned challenges by proposing new

techniques and detectors. The proposed works have been grouped into two different directions:

7.1.1 First thesis direction (PartII)

We have exploited the well-known Robust Principal Component Analysis (RPCA) for target

detection in hyperspectral imagery. By taking similar assumptions to those used in RPCA, a

given hyperspectral image (HSI) has been decomposed into the sum of a low-rank background

HSI (denoted as L) consisting only of the background without the targets, and a sparse target

HSI (denoted as E) that only contains the targets (with the background is suppressed). After

105
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evaluating the RPCA on several real hyperspectral images, we proved that the direct use of RPCA

is inadequate to distinghuising the true targets from the surrounding background. In particular,

we found that RPCA searches for small heterogeneous and high contrast regions that may not

necessarily be the true targets of interest.

In order to potentially alleviate this problem, we have incorporated into the RPCA imaging,

the prior target information that can often be provided to the user. In hyperspectral, this prior

information is usually related to the target spectral signature which can be already measured

by some laboratories and present in some online spectral libraries. In this regard, we have

constructed a pre-learned target dictionary At, and the given HSI is being decomposed as the

sum of a low-rank background HSI L and a sparse target HSI denoted as (AtC)T , where C

is a sparse activation matrix. Following our proposed modification of RPCA, two detection

strategies were available to us to realize the target detection:

First detection strategy: the sparse component (AtC)T is the object of interest

We use the sparse image (AtC)T directly as a detector. Note that for this scheme to work,

we require as few false alarms as possible to be deposited in the target image, but we do not

need the target fraction to be entirely removed from the background. As long as enough of the

target fractions are moved to the target image such that non-zero support is detected at the

corresponding pixel location, it will be adequate for our detection scheme.

Second detection strategy: the low-rank component (L) is the object of interest

We use the background HSI L for a more accurate construction of the background dictionary

Ab. For each test pixel in the original HSI, we create a concentric window of size m × m on

the background HSI L, and all the pixels within the window (except the center pixel) will each

contribute to one column in Ab. Note that this concentric window amounts to an OWR of size

m×m with IWR of size 1×1. Next, we make use of the SRBBH detector, but with the background

dictionary Ab constructed in the preceding manner. Note that for this scheme to work, we do not

need a clean separation (by clean separation, we mean that all the targets are present in the sparse

image with no false alarms); specifically, we require the entire target fraction to be separated from

the background and deposited in the target image, but some of the background objects can also be

deposited in the target image. As long as enough signatures of these background objects remain in

the background HSI L, the Ab constructed will be adequately representative of the background.

Evaluation performances of the two detection strategies

Both detection strategies are evaluated independently to each other on both synthetic as well as

real experiments, and the results of which demonstrate their effectiveness for hyperspectral target

detection. In particular, they can deal with targets of any shapes or targets that occur in close
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proximity, and are resilient to most values of fill-fractions unless they are too small.

7.1.2 Second thesis direction (PartIII)

When the spectral dimension p is considered large compared to the sample size n, the traditional

covariance estimators behave poorly. In many studies, the researchers assume that compounding

the large dimensionality problem can be alleviated by leveraging on the assumption that the true

unknown covariance matrix (of the background surrounding the test pixel) Σ is sparse, namely,

many entries are zero. In this thesis direction, the covariance matrix Σ is first regarded as being

made up of Σ = T−1 D T−T , where T is a unit lower triangular matrix (aka Cholesky factor)

and D is a diagonal matrix with positive entries. Then, two kinds of sparsity are imposed for

large covariance matrices through their Cholesky factor T. The first method aims to estimate

the entries of T using such a method as the ordinary least squares (OLS), and then imposes

sparsity by exploiting some of the generalized thresholding techniques such as Soft and Smoothly

Clipped Absolute Deviation (SCAD). The second aims to directly estimate a sparse version of

T by proposing a generalized version of the estimator already developed in [82]. The resulting

estimated sparse covariance matrices are always guaranteed to be positive definite.

Evaluation performances: some important findings

Enforcing sparsity on the covariance matrix seems to be a strong assumption, but can be

critically important if the true covariance model for a given HSI is indeed sparse or approximately

sparse. We have demonstrated that taking advantage of the possible sparsity in the estimation

can potentially improve the target detection performance. On the other hand, if the true

covariance model is not sparse (or not highly sparse), our estimators do not have worse detection

results than to those of the traditional ones.
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7.2 Looking Ahead

Throughout this PhD thesis, new opportunities of investigation presented themselves as areas

of future research. These opportunities include:

1. Changing the l2,1 norm in problem (2.11): we have already mentioned in part 4.2 of

Chapter 4, that there is a need to change the l2,1 norm in (2.11) by another one closer

to the ideal l2,0 norm in order to probably alleviate the manual selection problem for the

parameters.

2. Extension of the work in [163] by taking into consideration the spatial correla-

tion in hyperspectral imagery (see [33]): the fact is that in hyperspectral imagery,

neighboring pixels have a similar spectral characteristics. This property has not been

exploited in the work of Zhang et al. in [163]. Hence, it will be important to exlploit this

fact (more precisely, the work of Chen et al. in [33]) into the work of [163].

7.2.1 Changing the l2,1 norm in problem (2.11)

Recall that our proposed modified version of RPCA in Chapter 2 was (see problem (2.10)):

min
L,C

{
τ rank(L) + λ ‖C‖2,0 +

∥∥∥D− L− (At C)T
∥∥∥2

F

}
.

Since problem (2.10) is NP-HARD to solve due to the rank term and l2,0 norm, hence, we used

the nuclear norm ||L||∗ as a surrogate for the rank(L) term, and the l2,1 norm for the l2,0 norm,

as can be seen in problem (2.11)

The l1-norm regularizer, a continuous and convex surrogate, has been studied extensively in the

literature [50, 139] and has been applied successfully to many applications including signal/image

processing, biomedical informatics and computer vision [8, 129, 148, 150, 158]. Although the l1
norm based sparse learning formulations have achieved great success, they have been shown to be

suboptimal in many cases [28, 161, 162], since the l1 is still too far away from the ideal l0 norm.

To address this issue, many non-convex regularizers, interpolated between the l0 norm and l1

norm, have been proposed to better approximate the l0 norm. They include lq norm (0 < q < 1)

[56], Smoothly Clipped Absolute Deviation [53], Log-Sum Penalty [27], Minimax Concave Penalty

[159], Geman Penalty [64, 145], and Capped-l1 penalty [69, 161, 162].

In this regard, in our problem (2.11), it will be interesting to use other proxies than the l2,1 norm,

closer to l2,0, in order to probably alleviate the l2,1 artifact and also the manual selection problem

of both τ and λ. But although the non-convex regularizers (penalties) are appealing in sparse

learning, it remains a big challenge to solve the corresponding non-convex optimization problems.
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7.2.2 Extension of the work in [163] by taking into consideration the
spatial correlation in hyperspectral imagery (see [33])

The SRBBH detector [163], that has been developed very recently, does not take into account any

joint sparsity model that can incorporate the interpixel correlation within the HSI by assuming

that neighboring pixels usually consist of similar materials and thus have the same spectral

characteristics (this joint sparsity approach has been already developed in [33], but we just aim to

exploit it into the work in [163]).

Hence, as our future enhancements, we attempt to develop the Simultaneous SRBBH (S-SRBBH)

target detector that is similar to the SRBBH in [163], but further considers a simultaneous

joint sparsity model [33] that incorporates the spatial correlation that exists within neighboring

pixels in HSI. More precisely, for each test pixel, all its neighbors within a small neighborhood

can be simultaneously represented by a linear combination of a few common atom signals but

weighted with a different set of coefficients for each pixel.

The Simultaneous SRBBH (S-SRBBH)

We aim to extend the sparsity model of Zhang et al. in [163] (which is briefly overviewed in section

3.1.1).

We define the matrix Xd = [x1, x2, · · · , xd] ∈ Rp×d, where d is the total number of pixels in the

neighborhood. Note that if d = 1, we return back to the SRBBH model. Hence, the S-SRBBH

can be considered as a generalization of SRBBH when d > 1. Therefore if x ∈ H0, we have:

x1 = c1,1ab1 + c1,2ab2 + · · ·+ c1,Nb
abNb

,

...

xd = cd,1ab1 + cd,2ab2 + · · ·+ cd,Nb
abNb

.

This implies:

Xd =
[
ab1 ab2 · · ·abNb

]
[c1 c2 · · · cd] = AbCb , (7.1)

where ab1, ab2 · · · , abNb
are the background samples, Nb is the total number of background samples,

Ab ∈ Rp×Nb , and Cb ∈ RNb×d.

If x ∈ H1, we have:

x1 = c′1,1ab1 + c′1,2ab2 + · · ·+ c′1,Nb
abNb

+z1,1at1 + z1,2at2 + · · ·+ z1,NtatNt
,

...

xd = c′d,1ab1 + c′d,2ab2 + · · ·+ c′d,Nb
abNb

+zd,1at1 + zd,2at2 + · · ·+ zd,Nt
atNt

.
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This implies:

Xd =
[
ab1 ab2 · · ·abNb

]
[c′1 c′2 · · · c′d]

+
[
at1 at2 · · ·atNt

]
[z1 z2 · · · zd]

= [Ab At]
(

C′b
Zt

)
= A S .

(7.2)

where at1, at2 · · · , atNt
are the target samples, Nt denotes the total number of target samples,

At ∈ <p×Nt , A ∈ Rp×(Nb+Nt) is the union of Ab and At, C′b ∈ RNb×d, Zt ∈ RNt×d, and

S ∈ R(Nb+Nt)×d.

Both Cb and S stand to be sparse, and therefore, the two (non-convex and NP-HARD) minimization

subproblems to solve are:

Ĉb = argmin
Cb

‖AbCb −Xd‖F s.t. ‖Cb‖0,2 ≤ k0 , (7.3a)

Ŝ = argmin
S
‖AS−Xd‖F s.t. ‖S‖0,2 ≤ k

′
0 , (7.3b)

where ‖Cb‖0,2 and ‖S‖0,2 denote the total number of nonzero rows of Cb and S, respectively.

We can solve each subproblem using the Simultaneous Orthogonal Matching Pursuit (SOMP)

[143] greedy algorithm. After that Cb and S are being estimated (to contain a few nonzero

rows), the detection performance can be evaluated as:

DS−SRBBH (x) =
∥∥∥Xd −AbĈb

∥∥∥
F
−
∥∥∥Xd −AŜ

∥∥∥
F
, (7.4)

where Ŝ =
(

Ĉ′b
Ẑt

)
. If DS−SRBBH (x) > η with η is being a prescribed threshold value, then x

is declared as target; otherwise, x will be labeled as background.
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The first kind of intellectual and artistic personality belongs
to the hedgehogs, the second to the foxes . . .

— Sir Isaiah Berlin [10]
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Titre : Exploitation de la parcimonie pour la détection de cibles dans les images hyperspectrales 

Mots clés : Parcimonie, image hyperspectrale, détection de cibles  

Résumé : Le titre de cette thèse de doctorat est 

formé de trois mots clés: parcimonie, image 

hyperspectrale, et détection de cibles. La parcimonie 

signifie généralement « petit en nombre ou quantité, 

souvent répartie sur une grande zone ». Une image 

hyperspectrale est constituée d'une série d'images de 

la même scène spatiale, mais prises dans plusieurs 

dizaines de longueurs d'onde contiguës et très étroites, 

qui correspondent à autant de "couleurs". Lorsque la 

dimension spectrale est très grande, la détection de 

cibles devient délicate et caractérise une des 

applications les plus importantes pour les images 

hyperspectrales. Le but principal de cette thèse de 

doctorat est de répondre à la question « Comment et 

Pourquoi la parcimonie peut-elle être exploitée pour 

détecter de cibles dans les images hyperspectrales? ». 

La réponse à cette question nous a permis de 

développer des méthodes de détection de cibles 

prenant en compte l'hétérogénéité de l'environnement, 

le fait que les objets d'intérêt sont situés dans des 

parties relativement réduites de l'image observée et 

enfin que l'estimation de la matrice de covariance d'un 

pixel d'une image hyperspectrale peut être 

compliquée car cette matrice appartient à un espace 

de grande dimension. Les méthodes proposées sont 

évaluées sur des données synthétiques ainsi que 

réelles, dont les résultats démontrent leur efficacité 

pour la détection de cibles dans les images 

hyperspectrales. 

 

 

Title : Exploitation of Sparsity for Hyperspectral Target Detection 

Keywords : Sparsity, hyperspectral image, target detection  

Abstract : The title of this PhD thesis is formed by 

three keywords: sparsity, hyperspectral image, and 

target detection. Sparsity is a word that is used 

everywhere and in everyday life. It generally means 

« small in number or amount, often spread over a 

large area ». A hyperspectral image is a three 

dimensional data cube consisting of a series of 

images of the same spatial scene in a contiguous and 

multiple narrow spectral wavelength (color) bands. 

According to the high spectral dimensionality, target 

detection is not surprisingly one of the most 

important applications in hyperspectral imagery. The 

main objective of this PhD thesis is to answer the 

question « How and Why can sparsity be exploited 

for hyperspectral target detection? ». 

 

Answering this question has allowed us to develop 

different target detection methods that mainly take 

into consideration the heterogeneity of the 

environment, the fact that the total image area of all 

the targets is very small relative to the whole image, 

and the estimation challenge of the covariance matrix 

(surrounding the test pixel) in large dimensions. The 

proposed mehods are evaluated on both synthetic and 

real experiments, the results of which demonstrate 

their effectiveness for hyperspectral target detection. 
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