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Motivation

• Given a large set of data (𝑧! , 𝑙!), find a map 𝑓 such that 𝑓 𝑧! = 𝑙!
• 𝑓 is a neural network based on real-valued features and operations (𝑓ℝ)

• Radar signals are generally complex-valued 

• Polarimetric channels 

• Interferometric channels

• In-Phase and Quadrature channels with reduced Shannon sampling rate

• Radar processing are mainly based on complex filtering 

• Fourier Transform

• Wiener

• Wavelets

Can complex-valued neural networks (𝑓ℂ) exploit phase information 
to achieve better results than real-valued neural networks?

Introduction
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• Convolutional operations are translation
invariant, helping image recognition
algorithms to detect objects regardless of
their location

• Complex multiplication can naturally deal
with phase and amplitude independently.

• Real values cannot rotate any complex
value to a constant

Introduction

Motivation

Example: Rotate any complex value 𝜙 degrees.
Solution: By using 𝑧$ = 𝜌$ ⋅ 𝑒% → 𝑧& ⋅ 𝑧$ = 𝜌&𝜌$
⋅ 𝑒'(%!)%)

“In summary, the phase rotation and amplitude amplification/attenuation 
are the most important features of complex numbers” [1]

[1] A. Hirose, “Complex-Valued Neural Networks: Advances and Applications” IEEE Press Series on Computational Intelligence, 
2013.
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• Non-circular Gaussian data classification

• Real-equivalent neural networks

• PolSAR image segmentation task

• Conclusions
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• Complex-Valued Neural Networks (CVNN)

• Components

• Implementation toolbox
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Components: Input representation

𝑥! + 𝑖𝑦! = 𝑧!
Real-Valued

Input Layer ϵ ℂ Hidden	Layer	ϵ ℂ Output	Layer	ϵ ℝ

Complex-Valued Neural Networks (CVNN)
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Components: Convolutional Layer
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Real part Imaginary part

Complex-Valued Neural Networks (CVNN)

0 0 0 0 0 0 …

0 1+j j 4+3j 1 2+5j …

0 5+6j 5+6j 1+4j 3+j 8j …

0 2+2j 2+5j 9+5j 2+7j 7j …

0 7+7j 4+j6 3+4j 6+2j 8+5j …

0 6+7j 6+3j 3+3j 5+2j 2j …

… … … … … … …

-1+j -1 1

j -j -1-j

j 1 1-j

= 18 − 5𝑗

Complex convolutional layer
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𝑓 𝑧 = 𝑔 𝑥 + 𝑗ℎ 𝑦 (Type A)
𝑓 𝑧 = 𝑔 𝑧 𝑒'+,- . (Type B)

Components: Network functions

[1] Kuroe, et al., "On activation functions for complex-valued neural networks“, Artificial Neural Networks and Neural Information 
Processing - ICANN/ICONIP. Springer, Berlin, Heidelberg, 2003.
[2] Cao, et al., "Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network“, Remote 
Sensing, 2019.

q Inputs
q Trainable parameters
q Functions

Complex-Valued Neural Networks (CVNN)

Activation Functions: 

Loss Functions: 

Optimizers: 

ℂ𝑅𝑒𝐿𝑈 𝑧 = 𝑅𝑒𝐿𝑈 𝑥 + 𝑗𝑅𝑒𝐿𝑈 𝑦

1. Output activation function casts to real

ex. softmax 𝑧 = E
softmax(softmax 𝑥 ⋅ softmax 𝑦 )

2. Loss function casts to real [2]
ex. 𝐿𝑜𝑠𝑠/01 =

&
$
(𝐿𝑜𝑠𝑠001 𝑥, H𝑥 + 𝐿𝑜𝑠𝑠001(𝑦, H𝑦))

Same as conventional real-valued neural networks!

(softmax 𝑥 + softmax 𝑦 )/2
softmax(|𝑧|)
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Components: Complex-Backpropagation

Wirtinger Calculus:

𝜕𝑓
𝜕𝑧 ≜

1
2
𝜕𝑓
𝜕𝑥 − j

𝜕𝑓
𝜕𝑦

𝜕𝑓
𝜕𝑧 ≜

1
2
𝜕𝑓
𝜕𝑥 + j

𝜕𝑓
𝜕𝑦

“Given 𝑓 analytic (differentiable) and bounded in all the 
complex domain, then 𝑓 is a constant function”

𝛻.𝑓 ≜ 2
𝜕𝑓
𝜕 ̅𝑧 =

𝜕𝑓
𝜕𝑥 + j

𝜕𝑓
𝜕𝑦

[1] Fischer, Robert FH. Precoding and signal shaping for digital transmission. John Wiley & Sons, 2005.

Liouville’s theorem: 

To optimize the complex-valued weights, using a gradient descent technique, 
we need to compute the partial derivatives of the loss function 

𝑓: ℂ → ℝ relatively to these weights 

q Inputs
q Trainable parameters
q Functions
q Learning algorithm

Complex-Valued Neural Networks (CVNN)
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Implementation toolbox 1/4
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• Since v1.6 (28 July 2020), PyTorch now supports complex vectors and complex gradient.
• Since v1.12 (28 June 2022), Complex32 and Complex Convolutions in PyTorch. 

Complex-Valued Neural Networks (CVNN)

But they are not yet ready to fully support CVNN implementation!
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Implementation toolbox 2/4
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Complex-Valued Neural Networks (CVNN)
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Complex-Valued Neural Networks (CVNN)

Implementation toolbox 3/4

79.000+ PIP downloads!
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Complex-Valued Neural Networks (CVNN)

Implementation toolbox 4/4
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• Real-equivalent neural networks
• PolSAR image segmentation task
• Conclusions
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• 𝜏2 ≜ Ε 𝑍 − Ε 𝑍 $ = 𝜎3$ − 𝜎4$ + 2𝑗𝜎34
• 𝜎2$ = 𝜎3$ + 𝜎4$

16

Circular property

Two sources of non-circularity [1]:
1. Unequal variances
2. Correlation

𝜌 =
𝐸 (𝑥 − 𝐸 𝑥 )(𝑦 − 𝐸 𝑦 )

𝐸 (𝑥 − 𝐸[𝑥])$ 𝐸 (𝑦 − 𝐸[𝑦])$

[1] E. Ollila, "On the Circularity of a Complex Random Variable," in IEEE Signal Processing Letters, 2008.
* For a Gaussian distribution

Complex random variable Z = 𝑋 + 𝑗𝑌 is circular if 𝑍 has the same 
distribution as 𝑒'%Z

∗ 𝜚2=
𝜏2
𝜎2
_ = 0 → 𝑧 𝑖𝑠 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟
≠ 0 → 𝑧 𝑛𝑜𝑡 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟

Non-circular Gaussian classification
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Examples of generated data

1 vector of class 0: 𝜌5 = |𝜌|
1 vector of class 1: 𝜌& = −|𝜌|

*Note:
Each point on the 
graph corresponds to 
one component of the 
input vector

|𝜌| = 0.3

|𝜌| = 0.9

|𝜌| = 0.1

|𝜌| = 0.5
Both classes have 
the same |𝜌|

Non-circular Gaussian classification
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Model Architecture
Complex-Valued Multi-Layer Perceptron
Model:
• Loss: Categorical cross-entropy
• Weight initialization: Glorot uniform
• SGD (Stochastic Gradient Descent)

• Learning rate 0.1
• Wirtinger Derivative

Simulation:
• 30 trials each model
• 300 epochs
• Batch size 100

Dataset:
• Input vector size 128
• 8000 training vectors / 

class
• 2000 validation vectors / 

class

CVNN RVNN

Input Size 128 256
Hidden Layer Size 64  (1HL)

[100, 40] (2HL)
128
[200, 80]

Activation Function ReLU Type A [2] ReLU
Dropout 50% 50%
Output Size 2 2
Output Activation Softmax over 

absolute value
Softmax

Non-circular Gaussian classification
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Results 1/3

𝜌

Validation accuracy

Non-circular Gaussian classification
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Results 2/3

• |𝜌| = 0.3
• 2 Hidden Layers

Non-circular Gaussian classification

• CVNN converges faster
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Results 3/3

Dropout influence Input representation

• |𝜌| = 0.3
• 2 Hidden Layers

Non-circular Gaussian classification
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Conclusions

[1] Barrachina, Jose Agustin, et al. "Complex-valued vs. real-valued neural networks for classification perspectives: An example on 
non-circular data." IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.

• Almost 100 cases tested
• Sources of Non-Circularity
• Dropout influence
• Number of layers
• Input representation
• Size of the hidden layers
• Activation functions
• Learning rate

• CVNNs generalize better
• In general, cases where RVNN outperformed CVNN

• Under 60% accuracy

ICASSP 2021

Non-circular Gaussian classification
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Multi-Layer Perceptron (MLP) 1/2

What is a real-equivalent network? [1]

Input Layer ϵ ℂ Hidden	Layer	ϵ ℂ Output	Layer	ϵ ℝ

"5 ∗ 2 = 10ℂ = 20ℝ
10 ∗ 2 = 20ℝ

)5 ∗ 5 = 25ℂ = 50ℝ
10 ∗ 10 = 100ℝ

[1] Mönning, et al. "Evaluation of complex-valued neural networks on real-valued classification tasks." arXiv preprint 
arXiv:1811.12351, 2018 

Complex Network Real Network

Real-equivalent neural networks
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Multi-Layer Perceptron (MLP) 1/2

𝑁!ℝ = 𝑟𝑁!ℂ, 1 ≤ 𝑟 < 2

Input Layer ϵ ℂ																										Hidden	Layer	ϵ ℂ																							Hidden	Layer	ϵ ℂ	 Output	Layer	ϵ ℝ

[1] Mönning, et al. "Evaluation of complex-valued neural networks on real-valued classification tasks." arXiv preprint 
arXiv:1811.12351, 2018 
[2] Barrachina et al. "About the Equivalence Between Complex-Valued and Real-Valued Fully Connected Neural Networks-
Application to Polinsar Images." IEEE Machine Learning for Signal Processing (MLSP), 2021.

Equivalent in terms of 
trainable parameters (𝑡𝑝)

Solution to:  𝑡𝑝 = 𝑟𝑁5𝑁&ℂ + ∑!6&78& 𝑟$𝑁!ℂ𝑁!)&ℂ + 𝑟𝑁7ℂ𝑁9

CVNN

RVNN [1]

RVNN [2]

Real-equivalent neural networks
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Convolutional Neural Networks (CNN)

F:ℝ = r F:ℂ, ∀𝑟 ∈ ℝ

Assumptions

r = −
𝑏
2𝑎

+ 2 +
𝑏
𝑎
+
𝑏#

4𝑎# +
1
𝑎u
!6&

7

𝐹!

0 0 0
2

• 𝐶! = 𝐹!8& , 𝐹5 input channel dimension
• 𝐻!ℂ = 𝐻!ℝ; 𝑊!

ℂ = 𝑊!
ℝ

tpℂ = 2u
!6&

7

𝐶!ℂ𝐻!ℂ𝑊!
ℂ𝐹!ℂ

tpℝ =u
!6&

7

𝐶!ℝ𝐻!ℝ𝑊!
ℝ𝐹!ℝ+F:

ℝ

+F:ℂ

+u
!6&

7

𝐹!

Equivalence

Real-equivalent neural networks

for large 𝑎

𝑎 =u
!6$

7

𝐹!8&ℂ 𝐻! 𝑊! 𝐹!ℂ

𝑏 = 2𝐹5ℂ𝐻& 𝑊& 𝐹&ℂ
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• Conclusions / Perspectives
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PolSAR theory

𝑆 = 𝑆;; , 2𝑆;< , 𝑆<<
=

𝑘 =
1
2

𝑆;; + 𝑆<<
𝑆;; − 𝑆<<
2𝑆;<

Coherency matrix

T =
1
𝑛u

'

>

𝑘'𝑘'; ,

Polarimetric data

Pauli vector

Sinclair vector

[1] Lee, Jong-Sen, and Pottier, Eric. ”Polarimetric radar imaging: from basics to applications”. CRC press, 2017.

PolSAR image segmentation task
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Fully-convolutional Neural Networks (FCNN)

29

[1] Cao, et al. "Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network." Remote 
Sensing, 2019.
[2] Trabelsi, et al. "Deep complex networks”. arXiv preprint arXiv: 170509792, 2017.
[3] Zafar, et al. “Hands-on convolutional neural networks with TensorFlow” Packt Publishing Ltd, 2018.

PolSAR image segmentation task
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E-SAR (Open-sourced: European Space Agency)
• German Aerospace Center (DLR) & Microwaves and 

Radar Institute
• L-Band
• 1988
• Size 1300x1200

30

Baseline experiments: Oberfpaffenhofen data

• ℂ?×? Hermitian
• Real-valued diagonal
• Total 21 values

Polarimetric Interferometric data

Sliding Window Operation (SWO)
[1] Li, Y, et al., “A Novel Deep Fully Convolutional Network for PolSAR Image Classification”. Remote Sensing, 2018,

PolInSAR image Labels

PolSAR image segmentation task
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Baseline experiment: Oberpfaffenhofen results

Accuracy FCNN [1] CNN [2-5] MLP [6]

CV RV CV RV CV RV

Overall 98.55±0.21 98.23±0.15 96.45±0.04 96.32±0.04 88.87±0.03 88.03±0.13
Average 98.14±0.28 97.79±0.30 95.69±0.05 95.50±0.06 85.25±0.05 84.38±0.16

[1] Cao, et al., "Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network." Remote
Sensing, 2019.
[2] Zhang, et al., "Complex-valued convolutional neural network and its application in polarimetric SAR image classification." IEEE
Transactions on Geoscience and Remote Sensing, 2017.
[3] Zhao, et al. "Contrastive-regulated CNN in the complex domain: A method to learn physical scattering signatures from flexible
PolSAR images." IEEE Transactions on Geoscience and Remote Sensing, 2019.
[4] Zhao, et al. "Learning physical scattering patterns from PolSAR images by using complex-valued CNN." IGARSS 2019-2019
IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019.
[5] Qin, et al. "Superpixel-oriented classification of PolSAR images using complex-valued convolutional neural network driven by
hybrid data." IEEE Transactions on Geoscience and Remote Sensing, 2020.
[6] Hänsch, Ronny. "Complex-valued multi-layer perceptrons - an application to polarimetric SAR data." Photogrammetric
Engineering & Remote Sensing, 2010.

*On Oberpfaffenhofen PolSAR dataset

PolSAR image segmentation task
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Baseline experiment: Oberpfaffenhofen results

Accuracy per class comparison

• Model architecture has higher impact than data type
• Complex-valued networks perform better than their real equivalent

PolSAR image segmentation task

100%

90%

80%

70%

60%

50%
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Baseline experiment: Oberpfaffenhofen results

33

Ground Truth

[1] Barrachina, et al. “About the equivalence between complex-valued and real-valued fully connected neural networks - application 
to PolInSAR images” IEEE Machine Learning for Signal Processing (MLSP), 2021
[2]  Barrachina, et al. "Comparison Between Equivalent Architectures of Complex-valued and Real-valued Neural Networks-
Application on Polarimetric SAR Image Segmentation." Journal of Signal Processing Systems, 2022.

MLSP 2021
JSPS 2022

PolSAR image segmentation task

Median Overall Accuracy (OA) model predictions for each model
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Baseline experiment: Flevoland data
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[1] Z. Zhang, et al. "Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification,"
IEEE Transactions on Geoscience and Remote Sensing, 2017.

Airbone Syntetic Aperture Radar (AIRSAR)
• NASA / Jet Propulsion Laboratory (JPL)
• Maestro-1 Campaign
• L-Band
• 1989
• Size 750x1024

PolSAR image Labels [1]

PolSAR image segmentation task
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Baseline experiment: Flevoland results 1/4

35

CV-FCNN RV-FCNN
Overall 
Accuracy

Median 99.80±0.02 99.67±0.03

Mean 99.79±0.01 99.66±0.02

IQR 99.74-99.84 99.58-99.74

Full range 99.58-99.91 99.38-99.88

Average
Accuracy

Median 98.55±0.38 98.25±0.44

Mean 98.35±0.19 97.87±0.23

IQR 97.84-99.52 97.08-99.10

Full range 94.20-99.87 93.07-99.75

FCNN test accuracy results

PolSAR image segmentation task
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Baseline experiment: Flevoland results 2/4
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“if median intervals do not overlap, there is a 95% confidence that their values differ” 
R. McGill et al., “Variations of box plots,” The American Statistician, 1978 

PolSAR image segmentation task
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Baseline experiment: Flevoland results 3/4
• CVNN converges faster

PolSAR image segmentation task
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(a) CV-FCNN (b) RV-FCNN

Baseline experiment: Flevoland results 4/4

[1] Barrachina, et al. "Merits of Complex-Valued Neural Networks for PolSAR image segmentation" GRETSI XXVIIIème Colloque 
Francophone de Traitement du Signal et des Images, Nancy, France, 2022

GRETSI 2022

PolSAR image segmentation task
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Baseline experiment: Flevoland conclusions

CVNN outperformance over an equivalent-RVNN is almost undeniable

• Run the experiment for 3 different models (MLP, CNN, FCNN)

• Results show complex models have

• Higher OA and AA

• Less overfitting

• Less variance on results

• Faster convergence

PolSAR image segmentation task
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Studies on Input Representation: SF data
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Polarimetric Coherency matrix
• ℂ𝟑×𝟑 Hermitian
• Real-valued diagonal
• Total 6 values

[1] Liu, X, et al., “PolSF: PolSAR Image Datasets on San Francisco.”  IFIP Advances in Information and Communication 
Technology, Springer, 2022 .

Polarimetric Pauli vector
• ℂ𝟑
• All complex-valued
• Total 3 values

Coherency matrix
• Has real-valued diagonal
• Performs average of 

adjacent pixels (loss of 
information)

Airbone Syntetic Aperture Radar (AIRSAR)
• NASA / Jet Propulsion Laboratory (JPL)
• L-Band
• 10x10 m$ spatial resolution [1]
• August 1989
• Resolution 900x1024

PolSAR image Labels [1]

PolSAR image segmentation task
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Studies on Input Representation: Results 1/2

41

CV-FCNN RV-FCNN
Pauli Vector Coherency 

Matrix
Pauli Vector Coherency 

Matrix
Average 
Accuracy

Median 98.00±0.27 96.80±0.25 96.75±0.32 95.20±0.44
Mean 97.55±0.15 96.54±0.12 96.39±0.18 94.98±0.21
Full range 93.90-98.79 93.44-98.63 92.37-97.69 91.06-97.64

Overall 
Accuracy

Median 99.64±0.01 99.45±0.02 99.40±0.02 99.19±0.03
Mean 99.64±0.01 99.44±0.01 99.40±0.01 99.18±0.02
Full range 99.53-99.70 98.91-99.61 99.16-99.53 98.76-99.43

FCNN test accuracy results

PolSAR image segmentation task
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Studies on Input Representation: Results 2/2

42

FCNN

PolSAR image segmentation task

• The performance improvement of using 
Pauli instead of coherency or a complex 
model instead of a real model is similar
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Studies on Input Representation: Conclusions

43

We showed that FCNN or related models used for PolSAR segmentation tasks can

profit independently from both:

• Using a Complex-Valued Neural Network instead of a Real-Valued Neural Network

• Using Pauli vector as an input representation instead of the Coherency matrix

- This has the extra benefit of using less memory space (half for CVNN and 2/3

for RVNN).
ICIP 2022

PolSAR image segmentation task

[1] Barrachina, et al. "Real- and Complex-Valued Neural Networks for SAR image segmentation through different polarimetric
representations" IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 2022.



Complex-Valued Neural Networks for Radar Applications

Subsets correlation reduction: Bretigny data

44

Train Validation Test
• Very High Accuracy 

(around 99%)
• SWO may generate 

overlapping sets
• Images from patches 

may be very close to 
each other

• Allows for 
oversampling

ONERA proprietary
• X-Band
• 1.32x1.38 m$ spatial 

resolution [1]
• 30 incidence angle
• Resolution: 1533x3392

PolSAR image segmentation task

[1] P. Formont, et al., "Statistical Classification for Heterogeneous Polarimetric SAR Images", Selected Topics in Signal 
Processing, 2011.
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Subsets correlation reduction: results 1/2

45

Validation
Ac

cu
ra

cy
Lo

ss

Train

PolSAR image segmentation task



Complex-Valued Neural Networks for Radar Applications

Train Box Plot Test Box Plot

Subsets correlation reduction: results 2/2

CV-FCNN RV-FCNN
Median 92.76±0.36 89.86±0.96
Mean 92.77±0.46 89.92±1.23
Range 92.37-93.17 88.89-91.02

CV-FCNN

PolSAR image segmentation task

RV-FCNN
CV-FCNN RV-FCNN

46
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Subsets correlation reduction: conclusions

47

RVNN
CVNN

IGARSS 2022

• Successfully reduced 
the performance for a 
saturated task

PolSAR image segmentation task

[1] Barrachina, et al. "Complex-Valued Neural Networks for Polarimetric SAR segmentation using Pauli representation" IEEE 
International Geoscience and Remote Sensing Symposium (IGARSS), Physics Aware Machine Learning for Synthetic Aperture 
Radar Applications, Kuala Lumpur, Malaysia, 2022
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Coherency Matrix Pauli Vector
CV RV CV RV

FCNN OA 99.83±0.02 99.69±0.06
AA 98.69±0.33 98.62±0.20

CNN OA 95.78±0.26 94.43±0.67 95.40±0.50 94.78±0.71
AA 89.72±0.67 85.82±1.53 88.05±1.50 86.90±1.86

MLP OA 95.09±0.02 95.13±0.01 88.55±0.04 87.77±0.04
AA 87.10±0.15 88.40±0.09 64.69±0.08 63.13±0.10

Accuracy balancing: Motivation
PolSAR image segmentation task

Test accuracy mean results for Bretigny dataset without splitting (%)
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1. Generate image patches (total 9):
a. 2 pure green
b. 4 pure red
c. 2 mixed
d. 1 no labels (discarded)

2. Remove exceeding one class images
a. 2 pure green
b. 2 pure red
c. 2 mixed

3. Balance total pixels
a. 13 red pixels
b. 8 green pixels

Accuracy balancing: Dataset problematic
PolSAR image segmentation task
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Dataset Coherency Matrix Pauli Vector
CV RV CV RV

FCNN OA 83.08±1.80 46.14±3.41 98.85±0.07 98.50±0.13
AA 69.45±2.90 55.73±2.82 98.17±0.12  98.04±0.27

CNN OA 94.41±0.06 94.42±0.09 94.83±0.11  94.60±0.10
AA 94.84±0.06 94.36±0.06 95.42±0.06 95.25±0.04

MLP OA 92.77±0.11 92.82±0.16 71.70±0.09 71.84±0.10
AA 92.38±0.03 92.85±0.04 81.13±0.06 80.56±0.10 

Test accuracy mean results for dataset balancing (%)

Accuracy balancing: Results
PolSAR image segmentation task
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Accuracy balancing: Results

Dataset Coherency Matrix Pauli Vector
CV RV CV RV

CNN OA 90.66±0.48 87.11±1.28  92.35±0.81  91.61±1.11
AA 89.96±0.30 86.31±0.82 92.12±1.06 91.53±1.17

MLP OA 93.40±0.13 92.70±0.20 71.96±0.32 71.51±0.22
AA 91.05±0.08 91.39±0.08 79.27±0.06 78.04±0.01
Test accuracy mean results for weighted loss with dataset (%)

Weighted loss average 𝐿𝑜𝑠𝑠 =
1

𝑜𝑐𝑐!"#
'
$

𝑜𝑐𝑐$ 𝐿𝑜𝑠𝑠$

PolSAR image segmentation task
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Accuracy balancing: Results

CNN Coherency matrix results per class.
• C: CV-CNN;
• C-DB: CV-CNN dataset balanced;
• C-WL: CV-CNN;
• R: RV-CNN; weighted loss;
• R-DB: RV-CNN dataset balanced;
• R-WL: RV-CNN weighted loss

PolSAR image segmentation task
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Accuracy balancing: Conclusions

• Results for split dataset were analogous with a few differences

• CV-MLP always outperform RV-MLP

• CV-CNN performed better with the Pauli vector for the OA and with the coherency

matrix for the AA.

• Complex models generalized better except for the MLP model without dataset splitting

• FCNN works better with Pauli vector whereas MLP models work better when using the

coherency matrix

• For CNN, which input representation to use was unclear

• Weighted loss did not work well for FCNN models

• Regardless of that case, both balancing methods worked correctly with a slight tendency

towards dataset subsampling

PolSAR image segmentation task
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Conclusions

• We hope to motivate further works on CVNN by providing a CVNN toolbox

• We showed the interest of CVNN for datasets which have the non-circular property or

related

• We proved that CVNN outperforms RVNN on PolSAR segmentation tasks

• Using the Pauli vector may be a better input representation depending on the model

used

• Particular attention should be used for the dataset preprocessing to reduce correlation

between training and validation sets. We show that this has a vital importance to avoid

saturation of the task
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Perspectives

• Use different images for training, validation and test (example, different images of the same

place taken at different moments or different places with same classes)

• Explore the interest of CVNN for real dataset using a pertinent transformation (for example,

Hilbert transform)

• Extend despekling techniques with keeping the phase information

• Quaternion / Clifford Algebra Neural Networks

• Analyze the impact on different activation functions, pooling layers, etc.

• Explore other applications such as data augmentation, change detection, object and target

detection, style transfer, complex-valued autoencoder

• Generate physic-aware complex-valued PolSAR image (Complex-Valued GAN)
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Thank you!
Results viewer
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User Interface
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Accuracy Balancing: Dataset problematic
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swo 3x3, stride 3, padding
• Total 9 images

• 2 pure green
• 4 pure red
• 2 mixed

Accuracy Balancing: Dataset problematic
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Valorisation: Reddit
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Motivation

What is the relationship?
𝑧& = 𝑦$ + 𝑗𝑥&

𝑥$
𝑦$

𝑦#

𝑥#

“If we know a priori that the objective quantities include “phase” and/or “amplitude”, we can 
reduce […] the freedom by employing a complex-valued neural network” [1]

Introduction

[1] A. Hirose, “Complex-Valued Neural Networks: Advances and Applications” IEEE Press Series on Computational Intelligence, 
2013.


