

Liberté Égalité Fraternité

www.onera.fr

Complex-Valued Neural Networks for Radar Applications

J. Agustín BARRACHINA

ONERA, DEMR CentraleSupelec, SONDRA ED STIC Paris-Saclay Founding DGA-ONERA

Reviewer Reviewer Examiner Examiner Examiner Thesis Director: Co-Supervisor: ONERA supervisors: Florence TUPIN Alexandre BENOIT Laurent FERRO-FAMIL Mihai DATCU Jérémy FIX Jean-Philippe OVARLEZ Chengfang REN Christèle MORISSEAU Gilles VIEILLARD

Outline

- Introduction
- Complex-Valued Neural Networks
- Non-circular complex Gaussian data classification
- Real-equivalent neural networks
- PolSAR image segmentation task
- Conclusions and perspectives

Motivation

- Given a large set of data (z_i, l_i) , find a map f such that $f(z_i) = l_i$
- f is a neural network based on real-valued features and operations $(f_{\mathbb{R}})$
- Radar signals are generally complex-valued
 - Polarimetric channels
 - Interferometric channels
 - In-Phase and Quadrature channels with reduced Shannon sampling rate
- Radar processing are mainly based on complex filtering
 - Fourier Transform
 - Wiener
 - Wavelets

Can complex-valued neural networks $(f_{\mathbb{C}})$ exploit phase information to achieve better results than real-valued neural networks?

Motivation

- Convolutional operations are translation invariant, helping image recognition algorithms to detect objects regardless of their location
- Complex multiplication can naturally deal with phase and amplitude independently.
- Real values cannot rotate any complex value to a constant

Example: Rotate any complex value ϕ degrees. Solution: By using $z_2 = \rho_2 \cdot e^{\phi} \rightarrow z_1 \cdot z_2 = \rho_1 \rho_2 \cdot e^{j(\phi_1 + \phi)}$

"In summary, the phase rotation and amplitude amplification/attenuation are the most important features of complex numbers" [1]

[1] A. Hirose, "Complex-Valued Neural Networks: Advances and Applications" *IEEE Press Series on Computational Intelligence*, 2013.

Outline

- Introduction
- Complex-Valued Neural Networks (CVNN)
- NonComponentssian data classification
- Realmplementation_toolbox/orks
- PolSAR image segmentation task
- Conclusions

Components: Input representation

Components: Convolutional Layer

Input Channel #1 (Red)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

+

Imaginary part

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

Input Channel #2 (Green)

1	0	0
1	-1	-1
1	0	-1

Kernel Channel #2

Complex convolutional layer

0	0	0	0	0	0	
0	1+j	j	4+3j	1	2+5j	
0	5+6j	5+6j	1+4j	3+j	8j	
0	2+2j	2+5j	9+5j	2+7j	7j	
0	7+7j	4+j6	3+4j	6+2j	8+5j	
0	6+7j	6+3j	3+3j	5+2j	2j	

Components: Network functions

- ☑ Inputs
- ☑ Trainable parameters
- □ Functions

Activation Functions:

$$f(z) = g(x) + jh(y) \quad (Type A) \longrightarrow \mathbb{C}ReLU(z) = ReLU(x) + jReLU(y)$$

$$f(z) = g(|z|)e^{jarg(z)} \quad (Type B)$$

Loss Functions:

1. Output activation function casts to real ex. softmax(z) = $\begin{vmatrix} \text{softmax}(\text{softmax}(x) \cdot \text{softmax}(y)) \\ (\text{softmax}(x) + \text{softmax}(y))/2 \\ \text{softmax}(|z|) \end{vmatrix}$

2. Loss function casts to real [2]
ex.
$$Loss_{ACE} = \frac{1}{2}(Loss_{CCE}(x, \hat{x}) + Loss_{CCE}(y, \hat{y}))$$

Optimizers:

Same as conventional real-valued neural networks!

[1] Kuroe, et al., "On activation functions for complex-valued neural networks", *Artificial Neural Networks and Neural Information Processing - ICANN/ICONIP*. Springer, Berlin, Heidelberg, 2003.

[2] Cao, et al., "Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network", *Remote Sensing*, 2019.

Components: Complex-Backpropagation

- ☑ Inputs
- ☑ Trainable parameters
- ☑ Functions
- □ Learning algorithm

To optimize the complex-valued weights, using a gradient descent technique, we need to compute the partial derivatives of the loss function $f: \mathbb{C} \to \mathbb{R}$ relatively to these weights

Liouville's theorem:

"Given f analytic (differentiable) and bounded in all the complex domain, then f is a constant function"

Wirtinger Calculus:

$$\frac{\partial f}{\partial z} \triangleq \frac{1}{2} \left(\frac{\partial f}{\partial x} - j \frac{\partial f}{\partial y} \right) \qquad \qquad \frac{\partial f}{\partial \overline{z}} \triangleq \frac{1}{2} \left(\frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} \right)$$
$$\nabla_{z} f \triangleq 2 \frac{\partial f}{\partial \overline{z}} = \frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y}$$

[1] Fischer, Robert FH. Precoding and signal shaping for digital transmission. John Wiley & Sons, 2005.

Implementation toolbox 1/4

Tensor	Flow CF	yTorch
cvnn 1.2.10		✓ <u>Latest version</u>
pip install cvnn 🕒		Released: Dec 13, 2021
Library to help implement a com	plex-valued neural network (cvnn) using tensorflow as back-end	
Navigation	Project description	
Project description	Complex-Valued Neural Networks (CVNN)	
Release history	Done by @NEGU93 - J. Agustin Barrachina	
🛓 Download files	docs passing pypi package 1.2.10 conda NEGU93 v1.1.62 DOI 10.5281/zenodo.4452131	

- Since v1.6 (28 July 2020), PyTorch now supports complex vectors and complex gradient.
- Since v1.12 (28 June 2022), Complex32 and Complex Convolutions in PyTorch.

But they are not yet ready to fully support CVNN implementation!

Implementation toolbox 2/4

□ cvnn lines 117.9k Public III Library to help implement a complex-valued neural network (cvnn) using tensorflow as back-end IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CVNN-PolSAR lines 56.2k Public Core code for simulations used for most of my publicatio	ns
Complex-Valued Neural Network	s (CVNN) 🛱 Readme	
Done by @NEGU93 - J. Agustin Barrachina	শ্রু MIT license	
docs passing pypi package 1.2.14 conda NEGU93 v1.2.12 DOI 10.5281/zen	do.4452131 Cite this reposit	itory 🗸
Instalation Guide:	☆ 70 stars	
Using Anaconda	Open ✓ 24 Closed	
conda install -c negu93 cvnn	% 18 forks	
Using PIP	Used by 2	
Vanilla Version installs all the minimum dependencies.	@mscarpiniti / CoVa	I-SGAN
pip install cvnn	@MeerkatPerson / n	nl_project2

Complex-Valued Neural Networks (CVNN)

Implementation toolbox 3/4

79.000+ PIP downloads!

Summary	
PyPI link	https://pypi.org/project/cvnn
Total downloads	78,724
Total downloads - 30 days	2,900
Total downloads - 7 days	1,114

Implementation toolbox 4/4

Docs » Complex-Valued Neural Network (CVNN)

Complex-Valued Neural Network (CVNN)

Author: J. Agustin Barrachina

Version: 1.2.13 of 01/27/2022

Content

- Installation
 - Using Anaconda
- Using PIP
- Using GitHub
- Getting Started
- Complex Layers
 - Complex Convolution
 - Complex Dense
 - Complex Pooling
 - Complex Upsampling techniques
 - Complex Dropout
- Activation Functions
 - TYPE A: Cartesian form
 - TYPE B: Polar form
 - Complex input, real output
 - ReLU-based
 - Phasor activation functions
 - Elementary Transcentental Functions
- Losses
 - Complex Average Cross Entropy
 - Complex Mean Square Error

Outline

- Motivation
- Complex-Valued Neural Networks
- Non-circular Gaussian classification
- ReaGequiaaitynPreperalynetworks
- Pol SZXarinpageosfegeneratationdatask
- GonModelnArchitecture
 - Results
 - Conclusions

Circular property

RÉPUBLIQUE FRANÇAISE Lident Romini The FRENCH AEROSPACE LAB

Complex random variable Z = X + jY is *circular* if *Z* has the same distribution as $e^{j\phi}Z$

$$* \varrho_{Z} = \frac{\tau_{Z}}{\sigma_{Z}} \begin{cases} = 0 \rightarrow z \text{ is circular} \\ \neq 0 \rightarrow z \text{ not circular} \end{cases}$$

•
$$\tau_Z \triangleq \mathbb{E}[(Z - \mathbb{E}[Z])^2] = \sigma_X^2 - \sigma_Y^2 + 2j\sigma_{XY}$$

• $\sigma_Z^2 - \sigma_X^2 + \sigma_Y^2$

Two sources of non-circularity [1]:

1. Unequal variances

2. Correlation

$$\rho = \frac{E[(x - E[x])(y - E[y])]}{\sqrt{E[(x - E[x])^2]E[(y - E[y])^2]}}$$

[1] E. Ollila, "On the Circularity of a Complex Random Variable," in *IEEE Signal Processing Letters*, 2008.
 * For a Gaussian distribution

Examples of generated data

Model Architecture

Complex-Valued Multi-Layer Perceptron Model:

- Loss: Categorical cross-entropy
- Weight initialization: Glorot uniform
- SGD (Stochastic Gradient Descent)
 - Learning rate 0.1
 - Wirtinger Derivative

	CVNN	RVNN
Input Size	128	256
Hidden Layer Size	64 (1HL) [100, 40] (2HL)	128 [200, 80]
Activation Function	ReLU Type A [2]	ReLU
Dropout	50%	50%
Output Size	2	2
Output Activation	Softmax over absolute value	Softmax

Dataset:

- Input vector size 128
- 8000 training vectors / class
- 2000 validation vectors / class

Simulation:

- 30 trials each model
- 300 epochs
- Batch size 100

Results 1/3

Complex-Valued Neural Networks for Radar Applications 19

Results 2/3

CVNN converges faster

- $|\rho| = 0.3$
- 2 Hidden Layers

Dropout influence

Input representation

- $|\rho| = 0.3$
- 2 Hidden Layers

Conclusions

- Almost 100 cases tested
 - Sources of Non-Circularity
 - Dropout influence
 - Number of layers
 - Input representation
 - Size of the hidden layers
 - Activation functions
 - Learning rate
- CVNNs generalize better
- In general, cases where RVNN outperformed CVNN
 - Under 60% accuracy

[1] Barrachina, Jose Agustin, et al. "Complex-valued vs. real-valued neural networks for classification perspectives: An example on non-circular data." IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.

Outline

- Context / Motivation
- Complex-Valued Neural Networks
- Non-circular Gaussian classification
- Real-equivalent neural networks
- PolSARyircogecstecheetationetavarks
- GonClasicolational neural networks

Multi-Layer Perceptron (MLP) 1/2

What is a real-equivalent network? [1]

Complex Network

Real Network

[1] Mönning, et al. "Evaluation of complex-valued neural networks on real-valued classification tasks." *arXiv preprint arXiv:1811.12351*, 2018

Multi-Layer Perceptron (MLP) 1/2

[1] Mönning, et al. "Evaluation of complex-valued neural networks on real-valued classification tasks." *arXiv preprint arXiv:1811.12351*, 2018

[2] Barrachina et al. "About the Equivalence Between Complex-Valued and Real-Valued Fully Connected Neural Networks-Application to Polinsar Images." *IEEE Machine Learning for Signal Processing (MLSP)*, 2021.

Convolutional Neural Networks (CNN)

$$\begin{cases} \operatorname{tp}_{\mathbb{C}} = 2\sum_{i=1}^{K} C_{i}^{\mathbb{C}} H_{i}^{\mathbb{C}} W_{i}^{\mathbb{C}} F_{i}^{\mathbb{C}} + F_{i}^{\mathbb{C}} \\ \operatorname{tp}_{\mathbb{R}} = \sum_{i=1}^{K} C_{i}^{\mathbb{R}} H_{i}^{\mathbb{R}} W_{i}^{\mathbb{R}} F_{i}^{\mathbb{R}} + F_{i}^{\mathbb{R}} \end{cases} \end{cases}$$

Assumptions

C_i = F_{i-1}, F₀ input channel dimension
H^ℂ_i = H^ℝ_i; W^ℂ_i = W^ℝ_i

$$\mathbf{F}_{\mathbf{i}}^{\mathbb{R}} = \mathbf{r} \, \mathbf{F}_{\mathbf{i}}^{\mathbb{C}}, \forall r \in \mathbb{R}$$

$$r = -\frac{b^{*0}}{2a} + \sqrt{2 + \frac{b^{*0}}{a} + \frac{b^{2}}{4a^{2}} + \frac{1}{a} \sum_{i=1}^{K} F_{i}} \quad \text{for large } a \quad \sqrt{2} \quad \left\{ \begin{array}{c} a = \sum_{i=2}^{K} F_{i-1}^{\mathbb{C}} H_{i} \ W_{i} \ F_{i}^{\mathbb{C}} \\ b = 2F_{0}^{\mathbb{C}} H_{1} \ W_{1} \ F_{1}^{\mathbb{C}} + \sum_{i=1}^{K} F_{i} \end{array} \right\}$$

Outline

- Context / Motivation
- Complex-Valued Neural Networks
- Non-circular complex Gaussian classification
- Real-equivalent neural networks
- PolSAR image segmentation task
- Con Eulby-Gonvolutional Meural Networks (FCNN)
 - Baseline experiments
 - Studies on input representation
 - Subsets correlation reduction
 - Accuracy balancing

PolSAR theory

Polarimetric data

Sinclair vector

$$S = \left(S_{HH}, \sqrt{2}S_{HV}, S_{VV}\right)^T$$

Coherency matrix

$$\mathbf{T} = \frac{1}{n} \sum_{j}^{n} k_{j} k_{j}^{H} ,$$

[1] Lee, Jong-Sen, and Pottier, Eric. "Polarimetric radar imaging: from basics to applications". CRC press, 2017.

[1] Cao, et al. "Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network." *Remote Sensing*, 2019.

[2] Trabelsi, et al. "Deep complex networks". arXiv preprint arXiv: 170509792, 2017.

[3] Zafar, et al. "Hands-on convolutional neural networks with TensorFlow" Packt Publishing Ltd, 2018.

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternit ONERA

THE ERENCH AFROSPACE LAB

Baseline experiments: Oberfpaffenhofen data

RÉPUBLIQUE FRANÇAISE Librit Realitie Paramati

E-SAR (Open-sourced: European Space Agency)

- German Aerospace Center (DLR) & Microwaves and Radar Institute
- L-Band
- 1988
- Size 1300x1200

Polarimetric Interferometric data

- C^{6×6} Hermitian
- Real-valued diagonal
- Total 21 values

Sliding Window Operation (SWO)

[1] Li, Y, et al., "A Novel Deep Fully Convolutional Network for PolSAR Image Classification". Remote Sensing, 2018,

Baseline experiment: Oberpfaffenhofen results

Accuracy	FCNN [1]		CNN [2-5]		MLP [6]	
	CV	RV	CV	RV	CV	RV
Overall	98.55±0.21	98.23±0.15	96.45 ± 0.04	96.32 ± 0.04	88.87±0.03	88.03±0.13
Average	98.14±0.28	97.79±0.30	95.69 ± 0.05	95.50 ± 0.06	85.25 ± 0.05	84.38±0.16

*On Oberpfaffenhofen PolSAR dataset

[1] Cao, et al., "Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network." *Remote Sensing*, 2019.

[2] Zhang, et al., "Complex-valued convolutional neural network and its application in polarimetric SAR image classification." *IEEE Transactions on Geoscience and Remote Sensing*, 2017.

[3] Zhao, et al. "Contrastive-regulated CNN in the complex domain: A method to learn physical scattering signatures from flexible PolSAR images." *IEEE Transactions on Geoscience and Remote Sensing*, 2019.

[4] Zhao, et al. "Learning physical scattering patterns from PolSAR images by using complex-valued CNN." *IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE*, 2019.

[5] Qin, et al. "Superpixel-oriented classification of PolSAR images using complex-valued convolutional neural network driven by hybrid data." *IEEE Transactions on Geoscience and Remote Sensing*, 2020.

[6] Hänsch, Ronny. "Complex-valued multi-layer perceptrons - an application to polarimetric SAR data." *Photogrammetric Engineering & Remote Sensing*, 2010.

RÉPUBLIQUE FRANÇAISE **Baseline experiment: Oberpfaffenhofen results** Liberté Égalité Fraternité

- Model architecture has higher impact than data type ٠
- Complex-valued networks perform better than their real equivalent •

ONERA

THE ERENCH AFPOSPACE LA

RÉPUBLIQUE FRANÇAISE **Baseline experiment: Oberpfaffenhofen results**

Median Overall Accuracy (OA) model predictions for each model

[1] Barrachina, et al. "About the equivalence between complex-valued and real-valued fully connected neural networks - application to PolInSAR images" IEEE Machine Learning for Signal Processing (MLSP), 2021

[2] Barrachina, et al. "Comparison Between Equivalent Architectures of Complex-valued and Real-valued Neural Networks-Application on Polarimetric SAR Image Segmentation." Journal of Signal Processing Systems, 2022.

ONERA

THE FRENCH AEROSPACE LA

Liberte Égalité Ersternité

Complex-Valued Neural Networks for Radar Applications 34

PolSAR image segmentation task

Baseline experiment: Flevoland data

Airbone Syntetic Aperture Radar (AIRSAR)

- NASA / Jet Propulsion Laboratory (JPL)
- Maestro-1 Campaign
- L-Band
- 1989
- Size 750x1024

[1] Z. Zhang, et al. "Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification," *IEEE Transactions on Geoscience and Remote Sensing*, 2017.

Baseline experiment: Flevoland results 1/4

		CV-FCNN	RV-FCNN
Overall Accuracy	Median	99.80 ± 0.02	99.67 ± 0.03
	Mean	99.79±0.01	99.66±0.02
	IQR	99.74-99.84	99.58-99.74
	Full range	99.58-99.91	99.38-99.88
Average	Median	98.55 ± 0.38	98.25 ± 0.44
Accuracy	Mean	98.35 ± 0.19	97.87 ± 0.23
	IQR	97.84-99.52	97.08-99.10
	Full range	94.20-99.87	93.07-99.75

FCNN test accuracy results

Baseline experiment: Flevoland results 2/4

"if median intervals do not overlap, there is a 95% confidence that their values differ" R. McGill et al., "Variations of box plots," *The American Statistician*, 1978

Complex-Valued Neural Networks for Radar Applications 36

Complex-Valued Neural Networks for Radar Applications

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Eraternite ONERA

THE FRENCH AEROSPACE LAB

Baseline experiment: Flevoland results 4/4

[1] Barrachina, et al. "Merits of Complex-Valued Neural Networks for PolSAR image segmentation" *GRETSI XXVIIIème Colloque Francophone de Traitement du Signal et des Images,* Nancy, France, 2022

Baseline experiment: Flevoland conclusions

RÉPUBLIQUE FRANÇAISE Lobert Balant Balant Balant He FRENCH AEROSPACE LAB

CVNN outperformance over an equivalent-RVNN is almost undeniable

- Run the experiment for 3 different models (MLP, CNN, FCNN)
- Results show complex models have
 - Higher OA and AA
 - Less overfitting
 - Less variance on results
 - Faster convergence

Studies on Input Representation: SF data

Airbone Syntetic Aperture Radar (AIRSAR)

• NASA / Jet Propulsion Laboratory (JPL)

A Mountain; B Water; C Urban; D Vegetation; E Bare Soil

- L-Band
- 10x10 m² spatial resolution [1]
- August 1989
- Resolution 900x1024

PolSAR image

Labels [1]

Polarimetric Pauli vector

- C³
- All complex-valued
- Total 3 values

Polarimetric Coherency matrix

- $\mathbb{C}^{3 \times 3}$ Hermitian
- Real-valued diagonal
- Total 6 values

Coherency matrix

- Has real-valued diagonal
- Performs average of adjacent pixels (loss of information)

[1] Liu, X, et al., "PoISF: PoISAR Image Datasets on San Francisco." *IFIP Advances in Information and Communication Technology, Springer, 2022*.

Studies on Input Representation: Results 1/2

		CV-F0	CNN	RV-FCNN	
		Pauli Vector	Coherency Matrix	Pauli Vector	Coherency Matrix
Average Accuracy	Median	98.00 ± 0.27	96.80 ± 0.25	96.75±0.32	95.20 ± 0.44
	Mean	97.55±0.15	96.54 ± 0.12	96.39 ± 0.18	94.98 ± 0.21
	Full range	93.90-98.79	93.44-98.63	92.37-97.69	91.06-97.64
Overall	Median	99.64±0.01	99.45 ± 0.02	99.40 ± 0.02	99.19 ± 0.03
Accuracy	Mean	99.64±0.01	99.44 ± 0.01	99.40 ± 0.01	99.18±0.02
	Full range	99.53-99.70	98.91-99.61	99.16-99.53	98.76-99.43

FCNN test accuracy results

Studies on Input Representation: Results 2/2

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternite ONERA

THE FRENCH AEROSPACE LAB

Studies on Input Representation: Conclusions

We showed that FCNN or related models used for PolSAR segmentation tasks can profit independently from both:

- Using a Complex-Valued Neural Network instead of a Real-Valued Neural Network
- Using Pauli vector as an input representation instead of the Coherency matrix
 - This has the extra benefit of using less memory space (half for CVNN and 2/3

for RVNN).

RÉPUBLIQUE FRANÇAISE

[1] Barrachina, et al. "Real- and Complex-Valued Neural Networks for SAR image segmentation through different polarimetric representations" *IEEE International Conference on Image Processing (ICIP)*, Bordeaux, France, 2022.

Subsets correlation reduction: Bretigny data

ONERA proprietary

- X-Band
- $1.32 \times 1.38 \text{ m}^2$ spatial resolution [1]
- 30 incidence angle •
- Resolution: 1533x3392

Very High Accuracy (around 99%)

RÉPUBLIQUE FRANÇAISE

ONERA

THE FRENCH AEROSPACE LAB

- SWO may generate overlapping sets
- Images from patches may be very close to each other
- Allows for oversampling

[1] P. Formont, et al., "Statistical Classification for Heterogeneous Polarimetric SAR Images", Selected Topics in Signal Processing, 2011

Validation Test

Subsets correlation reduction: results 1/2

Validation

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternite ONERA

THE ERENCH AFROSPACE LAB

Subsets correlation reduction: results 2/2

	CV-FCNN	RV-FCNN
Median	92.76±0.36	89.86 ± 0.96
Mean	92.77 ± 0.46	89.92 ± 1.23
Range	92.37-93.17	88.89-91.02

ONERA

Successfully reduced the performance for a saturated task

RVNN

[1] Barrachina, et al. "Complex-Valued Neural Networks for Polarimetric SAR segmentation using Pauli representation" IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Physics Aware Machine Learning for Synthetic Aperture Radar Applications, Kuala Lumpur, Malaysia, 2022

Accuracy balancing: Motivation

		Coherency Matrix		Pauli Vector	
		CV	RV	CV	RV
FCNN	OA			99.83±0.02	99.69 ± 0.06
	AA			98.69 ± 0.33	98.62 ± 0.20
CNN	OA	95.78±0.26	94.43 ± 0.67	95.40 ± 0.50	94.78±0.71
	AA	89.72±0.67	85.82 ± 1.53	88.05 ± 1.50	86.90 ± 1.86
MLP	OA	95.09 ± 0.02	95.13±0.01	88.55 ± 0.04	87.77±0.04
	AA	87.10±0.15	88.40±0.09	64.69 ± 0.08	63.13 ± 0.10

Test accuracy mean results for Bretigny dataset without splitting (%)

- 1. Generate image patches (total 9):
 - 2 pure green a.
 - b. 4 pure red
 - 2 mixed C.
 - 1 no labels (discarded) d.
- 2. Remove exceeding one class images
 - 2 pure green а.
 - 2 pure red b.
 - 2 mixed C.
- 3. Balance total pixels
 - 8 green pixels b.

Accuracy balancing: Results

Dataset		Coherency Matrix		Pauli Vector	
		CV	RV	CV	RV
FCNN	OA	83.08 ± 1.80	46.14 ± 3.41	98.85 ± 0.07	98.50 ± 0.13
	AA	69.45 ± 2.90	55.73 ± 2.82	98.17±0.12	98.04 ± 0.27
CNN	OA	94.41 ± 0.06	94.42 ± 0.09	94.83±0.11	94.60 ± 0.10
	AA	94.84 ± 0.06	94.36 ± 0.06	95.42 ± 0.06	95.25 ± 0.04
MLP	OA	92.77±0.11	92.82±0.16	71.70 ± 0.09	71.84 ± 0.10
	AA	92.38 ± 0.03	92.85±0.04	81.13±0.06	80.56 ± 0.10

Test accuracy mean results for dataset balancing (%)

Accuracy balancing: Results

Weighted loss average

$$Loss = \frac{1}{occ_{min}} \sum_{c} occ_{c} \ Loss_{c}$$

Dataset		Coherency Matrix		Pauli Vector	
	-	CV	RV	CV	RV
CNN	OA	90.66 ± 0.48	87.11 ± 1.28	92.35±0.81	91.61 ± 1.11
	AA	89.96 ± 0.30	86.31 ± 0.82	92.12 ± 1.06	91.53 ± 1.17
MLP	OA	93.40 ± 0.13	92.70 ± 0.20	71.96 ± 0.32	71.51 ± 0.22
	AA	91.05 ± 0.08	91.39 ± 0.08	79.27 ± 0.06	78.04 ± 0.01

Test accuracy mean results for weighted loss with dataset (%)

Accuracy balancing: Results

CNN Coherency matrix results per class.

- C: CV-CNN;
- C-DB: CV-CNN dataset balanced;
- C-WL: CV-CNN;
- R: RV-CNN; weighted loss;
- R-DB: RV-CNN dataset balanced;
- R-WL: RV-CNN weighted loss

Accuracy balancing: Conclusions

- Results for split dataset were analogous with a few differences
 - CV-MLP always outperform RV-MLP
 - CV-CNN performed better with the Pauli vector for the OA and with the coherency matrix for the AA.
- Complex models generalized better except for the MLP model without dataset splitting
- FCNN works better with Pauli vector whereas MLP models work better when using the coherency matrix
- For CNN, which input representation to use was unclear
- Weighted loss did not work well for FCNN models
- Regardless of that case, both balancing methods worked correctly with a slight tendency towards dataset subsampling

- We hope to motivate further works on CVNN by providing a CVNN toolbox
- We showed the interest of CVNN for datasets which have the non-circular property or related
- We proved that CVNN outperforms RVNN on PolSAR segmentation tasks
- Using the Pauli vector may be a better input representation depending on the model used
- Particular attention should be used for the dataset preprocessing to reduce correlation between training and validation sets. We show that this has a vital importance to avoid saturation of the task

- Use different images for training, validation and test (example, different images of the same place taken at different moments or different places with same classes)
- Explore the interest of CVNN for real dataset using a pertinent transformation (for example, Hilbert transform)
- Extend despekling techniques with keeping the phase information
- Quaternion / Clifford Algebra Neural Networks
- Analyze the impact on different activation functions, pooling layers, etc.
- Explore other applications such as data augmentation, change detection, object and target detection, style transfer, complex-valued autoencoder
- Generate physic-aware complex-valued PolSAR image (Complex-Valued GAN)

Publications: Journals

[1] **José Agustín Barrachina**, Chengfang Ren, Christèle Morisseau, Gilles Vieillard, Jean-Philippe Ovarlez, "Comparison Between Equivalent Architectures of Complex-valued and Real-valued Neural Networks - Application on Polarimetric SAR Image Segmentation" *in Journal of Signal Processing Systems, Springer*, pp. 1-10, 2022.

[2] **José Agustín Barrachina**, Chengfang Ren, Christèle Morisseau, Gilles Vieillard, Jean-Philippe Ovarlez, "Impact of PolSAR pre-processing and balancing methods on complex-valued neural networks segmentation tasks" *in Open Journal of Signal Processing and ICASSP, IEEE,* 2023, (Submitted). arXiv preprint arXiv:2210.17419 2022.

[3] **José Agustín Barrachina**, Chengfang Ren, Christèle Morisseau, Gilles Vieillard, Jean-Philippe Ovarlez, "Theory and implementation of Complex-Valued Neural Networks", 2023 (In preparation)

[1] **Jose Agustin Barrachina**, Chengfang Ren, Gilles Vieillard, Christèle Morisseau, Jean-Philippe Ovarlez, "Real- and Complex-Valued Neural Networks for SAR image segmentation through different polarimetric representations" *IEEE International Conference on Image Processing (ICIP)*, Bordeaux, France, 2022.

[2] **Jose Agustin Barrachina**, Chengfang Ren, Christèle Morisseau, Gilles Vieillard, Jean-Philippe Ovarlez, "Merits of Complex-Valued Neural Networks for PolSAR image segmentation" *GRETSI XXVIIIème Colloque Francophone de Traitement du Signal et des Images,* Nancy, France, 2022.

[3] Jose Agustin Barrachina, Chengfang Ren, Christèle Morisseau, Gilles Vieillard, Jean-Philippe Ovarlez, "Complex-Valued Neural Networks for Polarimetric SAR segmentation using Pauli representation" *IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Physics Aware Machine Learning for Synthetic Aperture Radar Applications,* Kuala Lumpur, Malaysia, 2022. Invited session & 3MT finalist.

[4] **Jose Agustin Barrachina**, Chengfang Ren, Gilles Vieillard, Christèle Morisseau, Jean-Philippe Ovarlez, "About the Equivalence Between Complex-Valued and Real-Valued Fully Connected Neural Networks - Application to Polinsar Images" *IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP),* Gold Coast, Queensland, Australia, pp. 1-6, 2021. **Ranked top 15% on reviewer score.**

[5] Jose Agustin Barrachina, Chengfang Ren, Christèle Morisseau, Gilles Vieillard, Jean-Philippe Ovarlez, "Complex-valued vs. real-valued neural networks for classification perspectives: An example on non-circular data" *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),* Toronto, Ontario, Canada, pp. 2990-2994, 2021. r/ML-WAYR week 116.

[1] **Jose Agustin Barrachina**, Chengfang Ren, Christèle Morisseau, Gilles Vieillard, Jean-Philippe Ovarlez, "Complex-Valued Neural Networks for Polarimetric SAR segmentation using Pauli representation" *5th SONDRA Workshop*, Avignon, France, 2022.

[2] **Jose Agustin Barrachina**, "Complex-Valued Neural Networks (CVNN)" *Zenodo*, DOI: https://doi.org/10.5281/zenodo.4452131, 2021. Repository: https://github.com/NEGU93/cvnn

[3] **Jose Agustin Barrachina**, Chengfang Ren, Christèle Morisseau, Gilles Vieillard, Jean-Philippe Ovarlez, "A comparison between complex and real valued fully connected neural networks on noncircular complex data" *XXII Giambiagi Winter School: Artificial intelligence and deep learning in physics,* poster session, Buenos Aires, Argentina, 2020.

Thank you!

Results viewer

User Interface

Results	- 🛛 ×
Dataset SF-AIRSAR OSF-RS2 OBER OBRET Model October of the second of	{dataset': 'DBER', 'model': 'cao', 'dtype': 'complex', 'library': 'curn', 'dataset_method': 'random', 'balance': 'none'}
complex O real_mag O amplitude_phase O amplitude_only O real_only Library @ cvnn O tensorflow	Results
Dataset Mode © coh O k Dataset Method	Dataset
random () separate () single_separated_image Balance one () loss () dataset	○ SF-AIRSAR ○ SF-RS2
Accuracy (total count 30) Train 0A: 99.09% ++ 0.02%	Model
Train AA: 98.82% +- 0.02% Validation OA: 98.40% +- 0.02% Validation AA: 97.58% +- 0.06%	● cao ○ own ○ zhang ○ haensch ○ tan
	Dtype
o - 1 0.00025 0.00045 - 0	● complex ○ real_imag ○ amplitude_phase ○ amplitude_only ○ real_only
- 0	Library
r - 0.02 0.97 0.0077 - 0	● cvnn ○ tensorflow
N - 0.0061 0.00022 0.99 - 0	Dataset Mode
	● coh ─ k
V I Z	Dataset Method
0 none OBER random coh complex cvnn cao	● randam ○ constrate ○ cincle constrated image
1 none OBER random coh real_imag cvnn cao	random O separate O single_separated_image
2 none OBER random coh real_imag tensorflow cao	Balance
3 dataset OBER random coh complex cvnn haensch	none loss dataset
5 dataset OBER random coh real imag tensorflow haensch	
6 none OBER random coh real_imag tensorflow haensch	Accuracy (total count 30)
7 dataset OBER random coh complex cvnn tan	Train OA: 99.09% +- 0.02%

Accuracy Balancing: Dataset problematic

Accuracy Balancing: Dataset problematic

swo 3x3, stride 3, padding

- Total 9 images
 - 2 pure green
 - 4 pure red
 - 2 mixed

Introduction

 x_1

 y_1

 x_2

 y_2

Motivation

What is the relationship?

 $z_1 = y_2 + jx_1$

"If we know a priori that the objective quantities include "phase" and/or "amplitude", we can reduce [...] the freedom by employing a complex-valued neural network" [1]

[1] A. Hirose, "Complex-Valued Neural Networks: Advances and Applications" *IEEE Press Series on Computational Intelligence*, 2013.