

Signal processing for MIMO radars: Detection under Gaussian and non-Gaussian environments and application to STAP

CHONG Chin Yuan

Thesis Director: Marc LESTURGIE (ONERA/SONDRA) Supervisor: Frédéric PASCAL (SONDRA)

18th Nov 2011

3

イロト 不得 とくほ とくほとう

Outline

Overview of MIMO Radars

MIMO Detectors

Application: STAP

Conclusions

イロト 不得 とくほと くほとう

æ -

Outline

Overview of MIMO Radars

MIMO Detectors

Application: STAP

Conclusions

PhD Thesis Defense 18th Nov 2011 Signal Processing for MIMO Radars

What is a MIMO Radar?

Multiple-Input (MI)

Transmit waveform diversity

Transmit spatial diversity

Multiple-Output (MO)

ヘロト 人間 ト ヘヨト ヘヨト

Receive spatial diversity

Statistical MIMO Radars Tx and Rx antennas are all widely separated

Coherent MIMO Radars Tx and Rx antennas are closely spaced to form a single Tx and Rx subarray

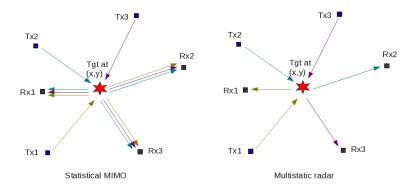
Hybrid MIMO Radars Widely separated Tx and Rx subarrays, each containing one or more antennas

ヘロト ヘアト ヘビト ヘビト

Statistical MIMO Radar

- \diamond Widely-separated antennas \Rightarrow spatial diversity
 - ► Independent aspects of target → overcome fluctuations of target RCS, esp in case of distributed complex targets ⇒ diversity gain
 - ► Moving targets have different LOS speeds for different antennas ⇒ geometry gain
 - Possibility of target characterization and classification
- Without waveform diversity, transmit spatial diversity cannot be exploited at the receive end
- ♦ LPI advantage due to isotropic radiation
- \diamondsuit Non-coherent processing \rightarrow no coherent gain BUT no phase synchronization needed
- ♦ Applications: Detection, SAR

Statistical MIMO Radar Vs Multistatic Radar



Joint processing of all antennas

 \rightarrow Centralized detection strategy

Each rx antenna receives only signals from corresponding tx antenna

→ Decentralized detection strategy

イロト 不得 とくほ とくほ とうほ

・ 同 ト ・ ヨ ト ・ ヨ ト …

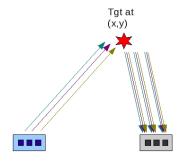
æ

Coherent MIMO Radar

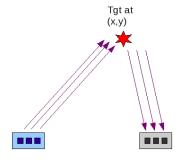
- No spatial diversity. Diversity comes only from waveforms
- $\circ~$ Transmit and receive subarray can be sparse \rightarrow improve resolution but can cause grating lobes
- Improved direction-finding capabilities at expense of diversity
- Improved parameter estimation (identifiability, resolution, etc)
- Applications: Direction-finding, STAP/GMTI

3

Coherent MIMO Radar Vs Phased-Array Radar



Coherent MIMO



Different waveforms are transmitted from each closely-spaced transmit antenna

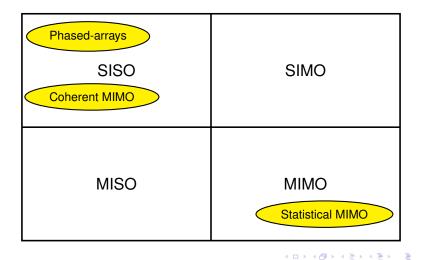
Only one transmit antenna or single waveform is transmitted from all closely-spaced transmit antennas

イロト イポト イヨト イヨト

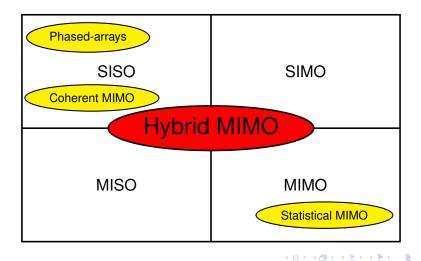
Configuration overview



Configuration overview



Configuration overview



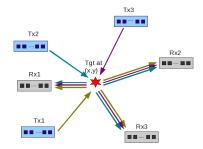
Hybrid Configuration

General case with few assumptions!

Effective number of subarrays K_e :

- $K_e \geq \tilde{N} + \tilde{M}$ if $\tilde{N}, \tilde{M} > 1$ (diversity gain)
- Big K_e robust against target fluctuations → surveillance
- Small K_e better gain → direction finding

Config	Ñ	Nn	Ñ	Mm
SISO	1	≥ 1	1	≥ 1
SIMO	1	≥ 1	> 1	≥ 1
MISO	> 1	≥ 1	1	≥ 1
MIMO	> 1	≥ 1	> 1	<u>≥ 1</u>



Effective number of elements N_e :

- $N_e \ge N_{rx} + N_{tx} \text{ if } N_{rx}, N_{tx} > 1$ (diversity gain)
- Maximum N_e if N_{rx} = N_{tx}, irregardless number of subarrays
- Better to have more N_{rx} for SIR gain

・ロト ・ 理 ト ・ ヨ ト ・

э

PhD Thesis Defense 18th Nov 2011 Signal Processing for MIMO Radars

Gaussian Detector Non-Gaussian Detector

イロト 不得 とくほ とくほとう

3

Outline

Overview of MIMO Radars

MIMO Detectors Gaussian Detector Non-Gaussian Detector

Application: STAP

Conclusions

ヘロト ヘワト ヘビト ヘビト

Signal Model (1/2)

Received signal after range matched-filtering:

$$\mathbf{y} = \mathbf{P}\boldsymbol{\alpha} + \mathbf{z},$$

where the vectors \mathbf{y} , α and \mathbf{z} are the concatenations of all the received signals, target RCS and clutter returns, respectively:

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{1,1} \\ \vdots \\ \mathbf{y}_{\tilde{M},\tilde{N}} \end{bmatrix} \qquad \boldsymbol{\alpha} = \begin{bmatrix} \alpha_{1,1} \\ \vdots \\ \alpha_{\tilde{M},\tilde{N}} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} \mathbf{z}_{1,1} \\ \vdots \\ \mathbf{z}_{\tilde{M},\tilde{N}} \end{bmatrix}$$

P is the $(\sum_{m,n=1}^{\tilde{M},\tilde{N}} M_m N_n) \ge \tilde{M}\tilde{N}$ matrix containing all the steering vectors: **P** = $\begin{bmatrix} \mathbf{p}_{1,1} & \mathbf{0} \\ \ddots & \\ \mathbf{0} & \ddots & \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$

Gaussian Detector Non-Gaussian Detector

ヘロト ヘアト ヘビト ヘビト

æ

Signal Model (2/2)

Steering vector **p**_{m,n}

 $\mathbf{p}_{m,n}$ can be generalized to include different parameters, e.g. Doppler

Interference $\mathbf{z}_{m,n}$

- z ~ CN(0, M): covariance matrix of each z_i is given by M_{ii}, inter-correlation matrix between z_i and z_i is given by M_{ii}
- Takes into account correlation arising from insufficient spacing between subarrays and non-orthogonal waveforms

프 에 에 프 에 다

MIMO Gaussian Detector

Consider the following hypothesis test:

 $\left\{ \begin{array}{ll} H_0: \quad \textbf{y} = \textbf{z} & \text{interference only} \\ H_1: \quad \textbf{y} = \textbf{P}\alpha + \textbf{z} & \text{target and interference} \end{array} \right.$

Based on Maximum-Likelihood theory, the MIMO detector has been derived to be:

$$\Lambda(\mathbf{y}) = \mathbf{y}^{\dagger} \mathbf{M}^{-1} \mathbf{P} (\mathbf{P}^{\dagger} \mathbf{M}^{-1} \mathbf{P})^{-1} \mathbf{P}^{\dagger} \mathbf{M}^{-1} \mathbf{y} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \lambda.$$

Equivalent to multi-dimensional version of OGD and can be considered as a generalized version of MIMO OGD as it becomes MIMO OGD when the subarrays are non-correlated.

MIMO OGD:
$$\sum_{m,n} \frac{|\mathbf{p}_{m,n}^{\dagger} \mathbf{M}_{m,n}^{-1} \mathbf{y}_{m,n}|^2}{\mathbf{p}_{m,n}^{\dagger} \mathbf{M}_{m,n}^{-1} \mathbf{p}_{m,n}}$$

Gaussian Detector Non-Gaussian Detector

ヘロト ヘアト ヘビト ヘビト

æ

Statistical Properties

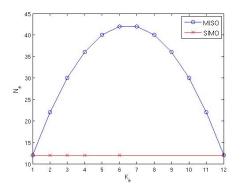
$$\Lambda(\mathbf{y}) \stackrel{d}{=} \begin{cases} H_0 : \frac{1}{2}\chi^2_{2K_e}(\mathbf{0}) \\ H_1 : \frac{1}{2}\chi^2_{2K_e}(2\alpha^{\dagger}\mathbf{P}^{\dagger}\mathbf{M}^{-1}\mathbf{P}\alpha) \end{cases}$$

- Non-centrality parameter is equal to $2\alpha^{\dagger} \mathbf{P}^{\dagger} \mathbf{M}^{-1} \mathbf{P} \alpha$
- Detector is M-CFAR as distribution under H₀ does not depend on correlation between subarrays
- Requirement of independence between subarrays can be relaxed for some applications, e.g. regulation of false alarms

Gaussian Detector Non-Gaussian Detector

Simulation Configurations

Total number of antennas, $N_p = 13$



SIMO Case

One single transmit element and ${\cal K}_{e}$ receive subarray with $\frac{N_{p}-1}{{\cal K}_{e}}$ elements

MISO Case

 K_{e} transmit elements and one single receive subarray with $N_{p} - K_{e}$ elements

・ロト ・ 理 ト ・ ヨ ト ・

3

Variation of Ne with Ke for MISO and SIMO cases

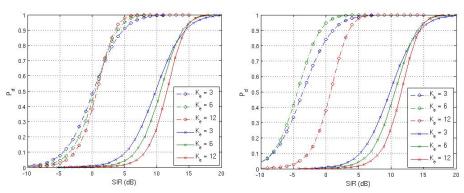
Gaussian Detector Non-Gaussian Detector

MISO case

프 🖌 🛪 프 🛌

ъ

Detection Performance



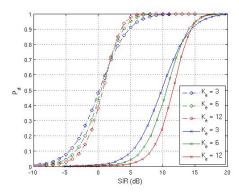
 P_d against SIR_{pre} (dash-dotted lines) and SIR_{post} (solid lines). $P_{fa} = 10^{-3}$ Fluctuating target modeled similar to Swerling I target

SIMO case

PhD Thesis Defense 18th Nov 2011 Signal Processing for MIMO Radars

Gaussian Detector Non-Gaussian Detector

Detection Performance



SIMO case

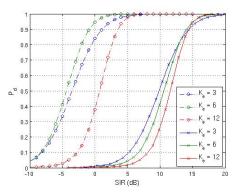
- N_e remains the same \rightarrow same SIR gain
- ► Threshold higher for higher DoF → causes performance to degrade
- But higher DoF more robust to target fluctuations
- ► High $P_d \rightarrow$ better with large K_e and small K_e better at low P_d

(E) < E)</p>

Gaussian Detector Non-Gaussian Detector

Detection Performance

- Poor performance for K_e = 12 due to high threshold and no SIR gain
- K_e = 6 has high SIR gain to offset increase of threshold with DoF
- ► $K_e = 6$ is more robust to target fluctuations → big advantage over $K_e = 3$ at high P_d



★ Ξ → < Ξ → </p>

MISO case

Gaussian Detector Non-Gaussian Detector

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Adaptive Version

Based on Kelly's Test, the optimum adaptive detector is derived to be:

$$\hat{\Lambda}(\mathbf{y}) = \frac{\mathbf{y}^{\dagger} \widehat{\mathbf{M}}^{-1} \mathbf{P} (\mathbf{P}^{\dagger} \widehat{\mathbf{M}}^{-1} \mathbf{P})^{-1} \mathbf{P}^{\dagger} \widehat{\mathbf{M}}^{-1} \mathbf{y}}{N_{s} + \mathbf{y}^{\dagger} \widehat{\mathbf{M}}^{-1} \mathbf{y}}$$

where $\widehat{\mathbf{M}}$ is the Sample Covariance Matrix of \mathbf{M} and is given by:

$$\widehat{\mathbf{M}} = \frac{1}{N_s} \sum_{l=1}^{N_s} \mathbf{c}(l) \mathbf{c}(l)^{\dagger}.$$

 $\mathbf{c}(I)$ are target-free secondary data (i.i.d) and N_s is the number of secondary data.

Gaussian Detector Non-Gaussian Detector

イロト 不得 とくほと くほとう

3

Statistical Properties

$$\begin{split} \hat{\boldsymbol{\Lambda}}(\mathbf{y}) &\stackrel{d}{=} \begin{cases} \mathbf{H}_{0} : & \beta_{K_{e},N_{s}-N_{e}+1}(\mathbf{0}), \\ \mathbf{H}_{1} : & \beta_{K_{e},N_{s}-N_{e}+1}(\gamma), \end{cases} \\ \end{split}$$
where $\gamma = 2\alpha^{\dagger} \mathbf{P}^{\dagger} \mathbf{M}^{-1} \mathbf{P} \alpha \cdot l_{f} \qquad l_{f} \sim \beta_{N_{s}-N_{e}+K_{e}+1,N_{e}-K_{e}}$

Loss factor If

- If is loss factor on SIR due to estimation of covariance matrix
- If only 1 effective element per subarray i.e. $N_e = K_e$, $I_f = 1$

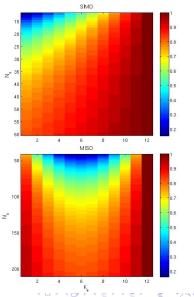
Gaussian Detector Non-Gaussian Detector

Loss factor *I_f*

Mean or expected value of l_f is given by:

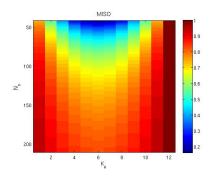
$$E(I_f) = \frac{N_s - N_e + K_e + 1}{N_s + 1}$$

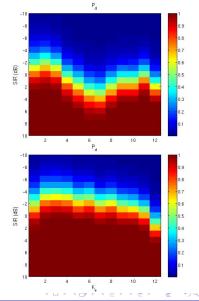
- For fixed N_s, better with smaller N_e and bigger K_e to reduce loss
- ► To limit loss to 3 dB, i.e. $E(I_f > 0.5)$ $\Rightarrow N_s > 2N_e - 2K_e - 1$, providing $N_s \ge N_e$ so that SCM is of full rank
- ► For phased-arrays ($K_e = 1$) $\Rightarrow N_s > 2N_e 3$ \Rightarrow Reed-Mallet-Brennan's rule



Gaussian Detector Non-Gaussian Detector

Detection Performance

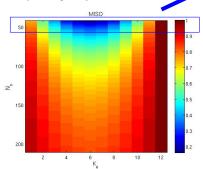


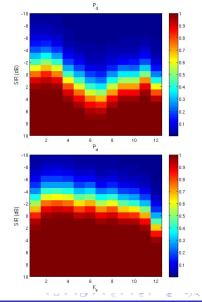


Gaussian Detector Non-Gaussian Detector

Detection Performance

Few secondary data \rightarrow loss in SIR due to estimation of covariance matrix depends greatly on K_e

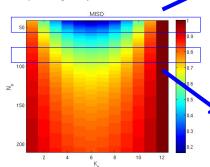




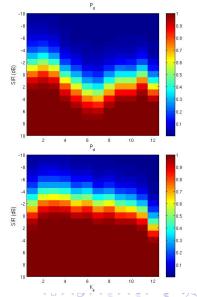
Gaussian Detector Non-Gaussian Detector

Detection Performance

Few secondary data \rightarrow loss in SIR due to estimation of covariance matrix depends greatly on K_e



Enough secondary data \rightarrow SIR loss insignificant \rightarrow more important to increase processing gain



Gaussian Detector Non-Gaussian Detector

ヘロト ヘアト ヘビト ヘビト

1

Why non-Gaussian clutter?

- As resolution improves, resolution cell becomes smaller → fewer scatterers in each cell → CLT no longer applies → non-Gaussian clutter
- ► Widely separated subarrays → different aspects of each resolution cell → non-Gaussian clutter
- ► Experimental radar clutter measurements → fit non-Gaussian statistical models

Subarrays are assumed to be INDEPENDENT!

Gaussian Detector Non-Gaussian Detector

・ロト ・ 理 ト ・ ヨ ト ・

Clutter Model

 $\mathbf{z}_{m,n}$ is modeled by Spherically Invariant Random Vector (SIRV):

 $\mathbf{z}_{m,n} = \sqrt{\tau_{m,n}} \, \mathbf{x}_{m,n}$

- * speckle a Gaussian random process $\mathbf{x}_{m,n} \sim \mathcal{CN}(\mathbf{0}, \mathbf{M}_{m,n})$ which models temporal fluctuations of clutter
- * *texture* square-root of a non-negative random variable $\tau_{m,n}$ which models spatial fluctuations of clutter power
- Models different non-Gaussian clutter depending on chosen texture
- Includes Gaussian clutter as special case where texture is a constant
- Gaussian kernel \rightarrow classical ML methods for parameter estimation

Gaussian Detector Non-Gaussian Detector

- ⊒ →

MIMO Non-Gaussian Detector

Based on the GLRT-LQ test and independent subarray assumption, the MIMO GLRT-LQ test is derived to be:

$$\prod_{m,n} \left[1 - \frac{|\mathbf{p}_{m,n}^{\dagger} \mathbf{M}_{m,n}^{-1} \mathbf{y}_{m,n}|^2}{(\mathbf{p}_{m,n}^{\dagger} \mathbf{M}_{m,n}^{-1} \mathbf{p}_{m,n})(\mathbf{y}_{m,n}^{\dagger} \mathbf{M}_{m,n}^{-1} \mathbf{y}_{m,n})} \right] \overset{-M_m N_n}{\underset{H_0}{\overset{H_1}{\gtrless}} \eta}$$

The GLRT-LQ detector is homogeneous in terms of $\mathbf{p}_{m,n}$, $\mathbf{M}_{m,n}$ and $\mathbf{y}_{m,n}$ such that it is invariant to data scaling \Rightarrow detector is texture-CFAR

Gaussian Detector Non-Gaussian Detector

ヘロト ヘアト ヘビト ヘビト

Theoretical Performance

Theorem

Given a MIMO radar system containing K_e subarrays with L elements each, the probability of false alarm of the MIMO GLRT-LQ detector is given by:

$$P_{fa} = \lambda^{-L+1} \sum_{k=0}^{K_{e}-1} \frac{(L-1)^{k}}{k!} (\ln \lambda)^{k}.$$

where $\lambda = \sqrt[L]{\eta}$.

- ► P_{fa} depends only on K_e and L and not on the clutter parameters \Rightarrow detector is texture-CFAR.
- Does not depend on the covariance matrices which can be different for each subarray.
- Useful for the analysis of detection performance.

Gaussian Detector Non-Gaussian Detector

ヘロト ヘアト ヘビト ヘビト

ъ

Simulation Parameters

Ñ	Ñ	Mm	Nn	$K_{ extsf{e}} = ilde{M} ilde{N}$	$N_e = M_m N_n$	$\sigma^2 = E(\tau)$
3	2	4	3	6	12	1

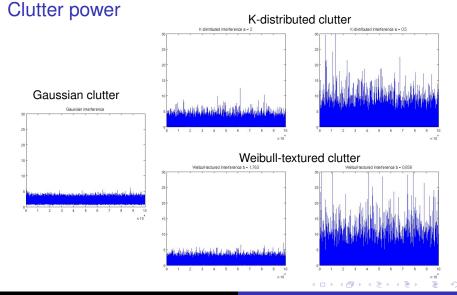
Experimental radar clutter measurements:

texture follows Gamma (K-distributed clutter) or Weibull distribution

Texture distribution	а	b
1. Gamma	2	$\frac{\sigma^{2}}{a} = 0.5$
2. Gamma	0.5	$\frac{\sigma^2}{a} = 2$
1. Weibull	$\frac{\sigma^2}{\Gamma(1+\frac{1}{b})} = 1.1233$	1.763
2. Weibull	$\frac{\sigma^2}{\Gamma(1+\frac{1}{b})} = 0.7418$	0.658

Gaussian clutter as comparison

Gaussian Detector Non-Gaussian Detector



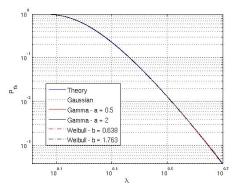
PhD Thesis Defense 18th Nov 2011 Signal Processing for MIMO Radars

Gaussian Detector Non-Gaussian Detector

프 🖌 🛪 프 🕨

Texture-CFAR property of MIMO Non-Gaussian Detector

Same threshold for same P_{fa} irregardless of clutter texture! Good agreement between theory and simulation!

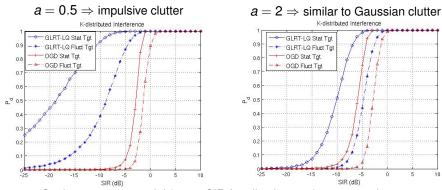


Gaussian Detector Non-Gaussian Detector

(七日) (日)

э

Detection Performance under K-distributed Clutter

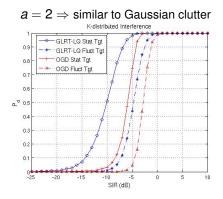


Stationary target model (same SIR for all subarrays) as comparison

Gaussian Detector Non-Gaussian Detector

Detection Performance under K-distributed Clutter

- Clutter similar to that of Gaussian clutter
- MIMO GLRT-LQ works better than MIMO OGD especially when SIR is low
- MIMO GLRT-LQ more affected by fluctuations of target but still better than MIMO OGD

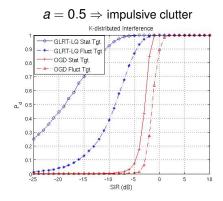


< 17 ▶

(七日) (日)

Gaussian Detector Non-Gaussian Detector

Detection Performance under K-distributed Clutter



Clutter is impulsive

- MIMO GLRT-LQ works MUCH better than MIMO OGD due to normalizing term which takes into account variation of clutter power
- MIMO GLRT-LQ more affected by fluctuations of target but still better than MIMO OGD

(* E) * E)

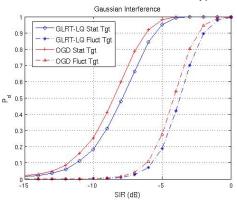
Gaussian Detector Non-Gaussian Detector

< 🗇 🕨

э

Detection Performance under Gaussian Clutter

MIMO GLRT-LQ is slightly worse than MIMO OGD under Gaussian clutter but more robust as it works under different types of clutter!



Gaussian Detector Non-Gaussian Detector

Adaptive Non-Gaussian MIMO Detector

The adaptive detector is obtained by replacing $\mathbf{M}_{m,n}$ by its estimate $\widehat{\mathbf{M}}_{m,n}$:

$$\prod_{m,n} \left[1 - \frac{|\mathbf{p}_{m,n}^{\dagger} \widehat{\mathbf{M}}_{m,n}^{-1} \mathbf{y}_{m,n}|^2}{(\mathbf{p}_{m,n}^{\dagger} \widehat{\mathbf{M}}_{m,n}^{-1} \mathbf{p}_{m,n}) (\mathbf{y}_{m,n}^{\dagger} \widehat{\mathbf{M}}_{m,n}^{-1} \mathbf{y}_{m,n})} \right]^{-M_m N_n}$$

Under non-Gaussian clutter, the SCM is no longer the ML estimate \Rightarrow use Fixed Point Estimate given by:

$$\widehat{\mathbf{M}}_{FP} = \frac{M_m N_n}{N_{sm,n}} \sum_{l=1}^{N_{sm,n}} \frac{\mathbf{y}_{m,n}(l) \mathbf{y}_{m,n}^{\dagger}(l)}{\mathbf{y}_{m,n}^{\dagger}(l) \widehat{\mathbf{M}}_{FP}^{-1} \mathbf{y}_{m,n}(l)}$$

- Can be solved by iterative algorithm which tends to M_{FP} irregardless of the initial matrix
- Asymptotic distribution of $\widehat{\mathbf{M}}_{FP}$ is the same as that of the SCM with $\frac{M_m N_n}{M_m N_{n+1}} N_{sm,n}$ secondary data under *Gaussian* clutter

Non-Gaussian Detector

5 10

э

ヘロト ヘアト ヘビト ヘビト

Detection Performance under K-distributed Clutter

 $a = 0.5 \Rightarrow$ impulsive clutter $a = 2 \Rightarrow$ similar to Gaussian clutter - aGLRT-LQ : N_{a i} = 2L_i - aGLRT-LQ : N_{e1} = 2L - aGLRT-LQ : N. ; = 20L; 0.9 - - - aGLRT-LQ : N. = 20L - AMF : N_{si} = 2L 0.8 AMF : N. = 20L 0.8 AMF : N. . = 2L. 0.7 0.7 Kelly : N_{a1} = 20L 0.6 G-...Kelly : N. . = 20L ۵ م o_[™] 0.5 0.4 0.4 0.3 0.2 0.1 -5 -25 -20 -15 -10 10 -15 -10 -5 n SCR (dB) SIR (dB)

Estimation of covariance matrix:

MIMO aGLRT-LQ \rightarrow FPE (10 iterations) while MIMO AMF, MIMO Kelly's Test \rightarrow SCM

Gaussian Detector Non-Gaussian Detector

 $a = 2 \Rightarrow$ similar to Gaussian clutter

・ロト ・ 理 ト ・ ヨ ト ・

э

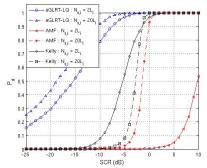
Detection Performance under K-distributed Clutter

e aGLRT-LQ : N_{s i} = 2L Clutter is similar to Gaussian case - - - aGLRT-LQ : N = 20L - AMF : N_{e i} = 2L_i MIMO aGLRT-LQ better than MIMO AMF 0.8 and MIMO Kelly's Test MIMO AMF more affected by estimation - - - Kelly : N. . = 20L of covariance matrix since SCM is NOT o TO .5 ML under non-Gaussian clutter 0.4 MIMO AMF: $\sum_{m,n} \frac{|\mathbf{p}_{m,n}^{\dagger} \mathbf{M}_{m,n}^{-1} \mathbf{y}_{m,n}|^2}{\mathbf{p}_{m,n}^{\dagger} \mathbf{M}_{m-1}^{-1} \mathbf{p}_{m,n}}$ 0.1 -15 -10 -5 n 5 10 SIR (dB) -N_{sm,n} MIMO Kelly's Test: $\prod_{m,n} \left[1 - \frac{|\mathbf{p}_{m,n}^{\dagger} \widehat{\mathbf{M}}_{SCM,m,n}^{-1} \mathbf{y}_{m,n}|^2}{(\mathbf{p}_{m,n}^{\dagger} \widehat{\mathbf{M}}_{SCM,m,n}^{-1} \mathbf{p}_{m,n})(N_{Sm,n} + \mathbf{y}_{m,n}^{\dagger} \widehat{\mathbf{M}}_{SCM,m,n}^{-1} \mathbf{y}_{m,n})} \right]$

Gaussian Detector Non-Gaussian Detector

Detection Performance under K-distributed Clutter

 $a = 0.5 \Rightarrow$ impulsive clutter



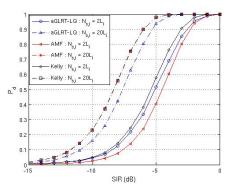
- Clutter is impulsive
- MIMO aGLRT-LQ is much better than MIMO AMF and MIMO Kelly's Test as it can take into account variations of clutter power
- MIMO AMF and MIMO Kelly's Test are affected by the estimation of covariance matrix
- MIMO Kelly's Test more similar to MIMO aGLRT-LQ when N_{sm,n} is small while it is nearer to MIMO AMF when N_{sm,n} is large

(E) < E)</p>

Gaussian Detector Non-Gaussian Detector

Adaptive Version - Gaussian Clutter

- When N_{sm,n} = 20N_e, MIMO aGLRT-LQ is slightly worse than MIMO AMF, as in non-adaptive case
- MIMO aGLRT-LQ is slightly better than MIMO AMF when N_{sm,n} = 2N_e!
 - Under Gaussian clutter, MIMO AMF expected to perform worse than MIMO Kelly's Test as y_{m,n} is not used in derivation of detector
 - ♦ For large $N_{sm,n}$, MIMO Kelly's Test ≈ MIMO AMF BUT normalizing term is no longer negligible for small $N_{sm,n}$ and MIMO Kelly's Test → MIMO aGLRT-LQ



・ 同 ト ・ ヨ ト ・ ヨ ト

SISO-STAP MISO-STAP

イロト 不得 とくほ とくほとう

ъ

Outline

Overview of MIMO Radars

MIMO Detectors

Application: STAP SISO-STAP MISO-STAP

Conclusions

SISO-STAP MISO-STAP

ヘロト ヘ戸ト ヘヨト ヘヨト

Motivation

Why use Space-Time Adaptive Processing (STAP)?

- Main application: Ground Moving Target Indication (GMTI)
- Slow moving target in strong clutter background
- \blacktriangleright Moving platform causes angle-Doppler dependence of clutter \rightarrow enables slow target detection
- ▶ Joint processing of temporal and spatial dimensions → better suppression of clutter

Why use Multi-Input Multi-Output (MIMO) techniques?

- ► Increase angular resolution → further increase separation between clutter and target → more efficient clutter suppression and lower Minimum Detectable Velocity (MDV)
- More degrees of freedom for clutter cancellation

SISO-STAP MISO-STAP

ヘロン 人間 とくほ とくほ とう

SISO-STAP Signal Model (1/2)

- Only one transmit and one receive subarray
- Fransmit and receive are co-located \rightarrow all elements see the same target RCS
- Different waveforms transmitted s.t. received signal can be separated

Received signal after range matched-filtering:

$$\mathbf{y} = a e^{j\phi} \; \mathbf{p}(\theta, \mathbf{f}_d) + \mathbf{c} + \mathbf{n}$$

where $ae^{l\phi}$ is the complex target RCS $\mathbf{p}(\theta, f_d)$ is the space-time steering vector, θ is the receive/transmit angle and f_d is the relative Doppler frequency, $\mathbf{c} \sim \mathcal{CN}(\mathbf{0}, \mathbf{M}_c)$ is the clutter vector and \mathbf{M}_c is the clutter covariance matrix, $\mathbf{n} \sim \mathcal{CN}(\mathbf{0}, \sigma^2 \mathbf{I})$ is the noise vector and σ^2 is the noise power.

ヘロア 人間 アメヨア 人口 ア

SISO-STAP Signal Model (2/2)

The steering vector **p** can also be expressed as:

 $\mathbf{p}(\theta, f_d) = \mathbf{a}(\theta) \otimes \mathbf{b}(\theta) \otimes \mathbf{v}(f_d).$

Note that $\mathbf{p}(\theta, f_d) = \mathbf{a}(\theta) \otimes \mathbf{v}(f_d)$ for classical STAP.

The receive, transmit and Doppler steering vectors are as follows:

$$\begin{aligned} \mathbf{a}(\theta) &= [1 \cdots \exp(j2\pi \frac{(M-1)d_r}{\lambda}\sin\theta)]^T, \\ \mathbf{b}(\theta) &= [1 \cdots \exp(j2\pi \frac{(N-1)d_t}{\lambda}\sin\theta)]^T, \\ \mathbf{v}(f_d) &= [1 \cdots \exp(j2\pi(L-1)\operatorname{PRI} \cdot f_d)]^T, \end{aligned}$$

where M, N are number of receive/transmit elements, d_r, d_t are the inter-element spacing for the receive/transmit subarrays, L is number of pulses and PRI is the Pulse Repetition Interval, v is the platform velocity and λ is the wavelength of the radar.

SISO-STAP MISO-STAP

Element Distribution Configurations (1/2)

Maximum N_e

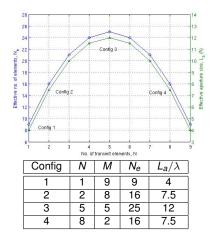
Given a fixed N_p , the maximum possible effective number of elements is given by:

$$N_{\theta}^{max} = \begin{cases} \frac{N_{\rho}^2}{4} & N_{\rho} \text{ ever} \\ \frac{N_{\rho}^2 - 1}{4} & N_{\rho} \text{ odd} \end{cases}$$

Maximum La

Given a fixed N_p , the maximum possible aperture size given critical sampling is:

$$L_a^{max} = \begin{cases} \left(\frac{N_{\rho}^2}{4} - 1\right)\frac{\lambda}{2} & N_{\rho} \text{ even} \\ \left(\frac{N_{\rho}^2 - 5}{4}\right)\frac{\lambda}{2} & N_{\rho} \text{ odd} \end{cases}$$



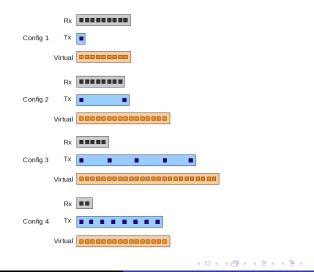
ヨト イヨト

э

SISO-STAP MISO-STAP

3

Element Distribution Configurations (2/2)



Supélec So N RA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Generalized MIMO Brennan's Rule

Define α , β and γ as below: $\alpha = \frac{d_r}{\lambda/2}, \qquad \beta = \frac{2\nu PRI}{\lambda/2}, \qquad \gamma = \frac{d_t}{\lambda/2}.$ In the case where α , β and γ are integers, the rank of clutter covariance matrix is given by the number of distinct (integer) values N_d in: $m\alpha + n\gamma + l\beta \quad \forall \quad \begin{cases} m = 0, \dots, M - 1 \\ n = 0, \dots, N - 1 \\ l = 0 \end{cases}$

SISO-STAP

• When α , β and γ are not integers, the rank of **M**_c is approximated by N_d.

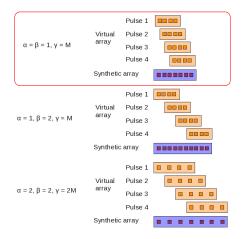
When $\alpha = 1$, i.e. $d_r = \lambda/2$, we obtain the MIMO extension of Brennan's Rule.

If min
$$(\alpha, \beta, \gamma) = 1$$
, then $N_d = (M-1)\alpha + (N-1)\gamma + (L-1)\beta + 1$.

• If α , γ and β are divisible by min(α , β , γ), then $N_d = \frac{(M-1)\alpha + (N-1)\gamma + (L-1)\beta}{\min(\alpha,\beta,\gamma)} + 1$.

SISO-STAP MISO-STAP Supélec SON RA

Synthetic Array



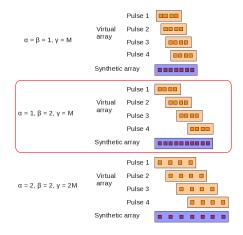
► $\beta = 1 \Rightarrow$ radar moves by one element spacing between pulses $L_{syn} = 3\lambda$ and $N_d = 7$

イロト 不得 とくほ とくほとう

3

SISO-STAP MISO-STAP

Synthetic Array



▶ $\beta = 2 \Rightarrow$ less overlap of array between pulses \rightarrow increase in synthetic array size and improve resolution BUT clutter rank increases and ambiguities arise $L_{syn} = 4.5\lambda$ and $N_d = 10$

イロン 不同 とくほ とくほ とう

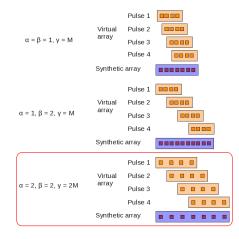
э

S O N R A

Supéleo

SISO-STAP MISO-STAP

Synthetic Array



► $\beta = 2$ AND $\alpha = 2 \Rightarrow$ positions of elements from pulse to pulse are aligned \rightarrow reduces clutter rank AND same ambiguities. Resolution improves further

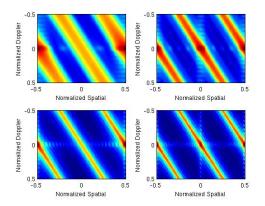
ヘロア 人間 アメヨア 人口 ア

э

 $L_{syn} = 6\lambda$ and $N_d = 7$

SISO-STAP MISO-STAP

Element Spacing Configurations (1/2)



Config	α	γ	rank(M _c)
а	1	α	39
b	2	α	24
С	1	α M=5	55
d	2	<i>αM</i> =10	40

S O N R A

Supéle

- Ambiguity in Doppler ($\beta = 2$)
- Spatial ambiguities added to reduce width of clutter ridges and clutter rank (Config b and d)

< ∃⇒

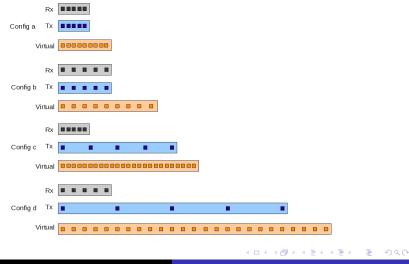
э

► Additional clutter ridges overlap existing ones → no increase in number of clutter ridges

< 🗇

SISO-STAP MISO-STAP

Element Spacing Configurations (2/2)



PhD Thesis Defense 18th Nov 2011 Signal Processing for MIMO Radars

SISO-STAP MISO-STAP

・ロト ・ 理 ト ・ ヨ ト ・

э

Cramér-Rao Bounds

Cramér-Rao bound (CRB)

Cramér-Rao bound (CRB) expresses a lower bound on the variance of estimators of a deterministic parameter. For $\boldsymbol{y} \sim \mathcal{CN}(\boldsymbol{\mu}(\Theta), \boldsymbol{M}(\Theta))$, the Fisher Information Matrix J is given by:

$$[\mathbf{J}(\boldsymbol{\Theta})]_{i,j} = \operatorname{tr}\left[\mathbf{M}(\boldsymbol{\Theta})^{-1} \frac{\partial \mathbf{M}(\boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}_{i}} \mathbf{M}(\boldsymbol{\Theta})^{-1} \frac{\partial \mathbf{M}(\boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}_{j}}\right] + 2\Re\left[\frac{\partial \boldsymbol{\mu}^{\dagger}(\boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}_{i}} \mathbf{M}(\boldsymbol{\Theta})^{-1} \frac{\partial \boldsymbol{\mu}(\boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}_{j}}\right]$$

Signal parameters to be estimated are:

$$\boldsymbol{\Theta} = [\boldsymbol{\Theta}_{\mathcal{S}} \ \boldsymbol{\Theta}_{\mathcal{I}}].$$

M does not depend on $\Theta_S \rightarrow$ signal and interference (clutter and noise) parameters are disjoint \rightarrow CRB for Θ_S same whether **M** is known or not.

SISO-STAP MISO-STAP

Simulation Parameters

Radar parameters:

ſ	Np	L	λ	PRI	Pos. of tx/rx subarray	range	θ	β
ſ	10	16	20 m	5 s	(0,0) m	70e3 m	0	2

Generation of clutter covariance matrix:

- Modeled by integration over azimuth angles, 180° (front lobe of receive subarray)
- Isotropic antenna elements
- Classical power budget equation for clutter with constant reflectivity
- CNR = 60 dB per element per pulse
- Estimated using N_s = 500 secondary data

Element distribution configuration:

Config	1	2	3	4
Ν	1	2	5	8
М	9	8	5	2

Element spacing configuration:

Config	а	b	С	d	
α	1	2	1	2	
γ	α	α	αM	αM	

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

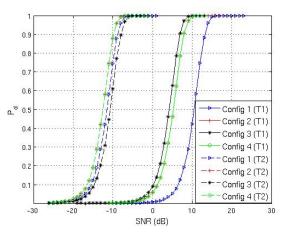
SISO-STAP MISO-STAP

프 🖌 🔺 프 🛌

э

Detection Performance, Config 1-4, Adaptive (1/2)

T1 at $\omega_{T}=$ 0.01 and T2 at $\omega_{T}=$ 0.2



SISO-STAP MISO-STAP

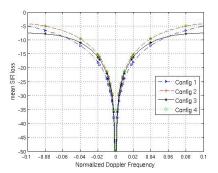
Detection Performance, Config 1-4, Adaptive (2/2)

Target T1:

- More important to have narrow clutter notch as target has low velocity
- ► MIMO configurations have larger L_a → smaller SIR loss for slow targets

Target T2:

- More important to have higher gain
- Config 3 also has largest N_e → largest SIR gain but also much loss from estimation of covariance matrix



Config	N _s /MNL	$E(I_f)$ for $N_s = 500$
1	3.47	0.71
2	1.95	0.49
3	1.25	0.20
4	1.95	0.49

< < >> < <</>

→ E > < E >

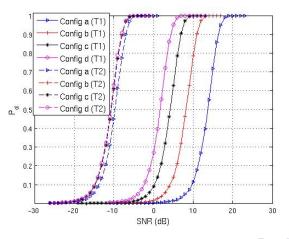
SISO-STAP MISO-STAP

▶ ★ 臣 ▶ …

э

Detection Performance, Config a-d, Adaptive (1/2)

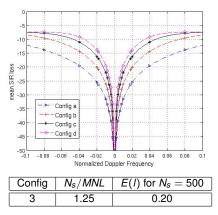
T1 at $\omega_{\mathcal{T}}=$ 0.01 and T2 at $\omega_{\mathcal{T}}=$ 0.2



SISO-STAP MISO-STAP

Detection Performance, Config a-d, Adaptive (2/2)

- Same MNL → same loss from estimation of covariance matrix → similar results for T2
- For T1, different detection performance due to different element spacing and resulting L_a



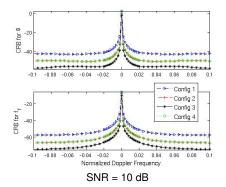
< < >> < <</>

→ E > < E >

э

SISO-STAP MISO-STAP

Estimation Performance, Config 1-4

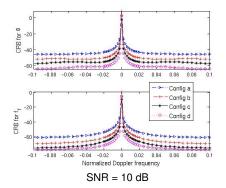


- Inter-element spacing according to Config c (α = 1 and γ = M)
- CRB is low far from the clutter ridge, much higher at the clutter ridge ($f_T = 0$) due to strong clutter
- Config 3 gives the lowest CRB in general, i.e. better estimation accuracy. Its CRB peak is also the narrowest, indicating that it has the smallest MDV
- All the MIMO configurations (Config 2-4) better than classical STAP configuration (Config 1)

イロト イポト イヨト イヨト

SISO-STAP MISO-STAP

Estimation Performance, Config a-d



Config	ref	а	b	С	d
L_a/λ	4	4	8	12	21

- Classical STAP as reference
- Config a-d has equal no. of transmit and receive elements (Config 3) → maximizes SNR gain
- Config a has lower CRB than ref although they have the same La because of SNR gain

イロト イポト イヨト イヨト

Sparse config α > 1 (config b and d) increases L_a further → lower CRB

SISO-STAP MISO-STAP

・ロト ・ 理 ト ・ ヨ ト ・

1

MISO-STAP Signal Model

- Multiple widely separated transmit elements and one receive subarray
- Each tx-rx pair is in bistatic configuration and sees different target RCS, given by: $[a_1 e^{j\phi_1} \cdots a_{K_e} e^{j\phi_{K_e}}]$
- Different waveforms transmitted s.t. received signal can be separated

Received signal after range matched-filtering for the *i*-th subarray:

$$\begin{aligned} \mathbf{y}_i &= a_i \boldsymbol{e}^{j\phi_i} \, \mathbf{a}(\theta_r) \otimes \mathbf{v}(f_{d,i}) + \mathbf{c}_i + \mathbf{n}_i, \\ &= a_i \boldsymbol{e}^{j\phi_i} \, \mathbf{p}_i + \mathbf{c}_i + \mathbf{n}_i, \end{aligned}$$

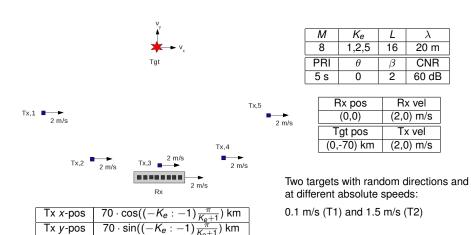
where \mathbf{p}_i is the space-time steering vector, θ_r is the receive angle and $f_{d,i}$ is the relative Doppler frequency, $\mathbf{c}_i \sim \mathcal{CN}(\mathbf{0}, \mathbf{M}_{c,i})$ is the clutter vector and $\mathbf{M}_{c,i}$ is the clutter cov matrix, $\mathbf{n}_i \sim \mathcal{CN}(\mathbf{0}, \sigma^2 \mathbf{I})$ is the noise vector and σ^2 is the noise power.

SISO-STAP MISO-STAP

ヘロン ヘアン ヘビン ヘビン

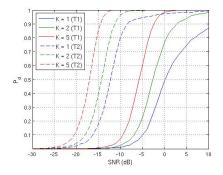
3

Simulation Parameters



SISO-STAP MISO-STAP

Detection Performance

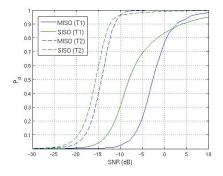


- K_e = 1 is classical STAP
- Better performance for larger K_e due to increased N_e and spatial diversity
- With spatial diversity → more robust to target fluctuations and changes in target velocity
- Due to diversity and geometry gains, detection curves for K_e > 1 converge to one fast

< < >> < <</>

SISO-STAP MISO-STAP

MISO Vs SISO



- Same number of elements for both configurations: $N_p = 10$ and $N_e = 16$
- SISO is better at low P_d because of improved resolutions

< < >> < <</>

 MISO is better at high P_d due to its robustness against fluctuations of target RCS and velocity directions

★ Ξ → ★ Ξ →

э

Conclusions Future Works

イロト 不得 とくほ とくほとう

ъ

Outline

Overview of MIMO Radars

MIMO Detectors

Application: STAP

Conclusions Conclusions Future Works

Conclusions Future Works

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Conclusions (1/4)

Gaussian Detector

- SIR gain depends on N_e which is maximized when equal number of transmit and receive elements irregardless of K_e,
- Larger K_e increases robustness against target fluctuations but also increases detection threshold,
- ♦ Configuration depends on application, e.g. small K_e for direction-finding and big K_e for surveillance,
- \diamond For estimation of covariance matrix, $N_s > 2N_e 2K_e 1$ for 3 dB loss
 - \Rightarrow for limited N_s , small N_e and large K_e to limit loss.

Conclusions Future Works

《曰》《御》《臣》《臣》 [臣]

Conclusions (2/4)

Non-Gaussian Detector

- ♦ Homogeneous structure of the detector results in invariance to the texture characteristics ⇒ texture-CFAR,
- ♦ Small CFAR loss under Gaussian interference and big improvements in performance under non-Gaussian interference ⇒ more robust than the Gaussian detector.

Conclusions Future Works

ヘロン 人間 とくほ とくほ とう

3

Conclusions (3/4)

SISO-STAP

- ♦ Equal number of transmit and receive elements maximizes N_e and effective aperture size (for critical sampling) \Rightarrow increase SIR gain and reduce MDV,
- Sparse configurations:
 - increase effective aperture size, reduce MDV and improve estimation accuracy,
 - do not cause additional ambiguity if spatial and Doppler ambiguities are matched,
 - reduce rank of CCM \Rightarrow fewer secondary data required.

Conclusions Future Works

ヘロン 人間 とくほ とくほ とう

э.

Conclusions (4/4)

MISO-STAP

- Can be easily achieved by adding single tx elements to existing STAP systems,
- Robust against target fluctuations and dependence of target velocity w.r.t. aspect angle,
- ♦ For the same number of elements (N_e and N_ρ), MISO config is better than SISO config at high P_d due to increased robustness; SISO better at low P_d due to improved resolution.

Conclusions Future Works

ヘロン 人間 とくほ とくほ とう

3

Future Works

Signal Model

- Include waveform and range information
- Fluctuating models for target
- Use of tensors for representation and calculations
- Target classification
- 2-step detection and estimation algorithm
- Validation with real data
- Low-rank methods for STAP
- Oiagonal loading
- Estimation bounds

Conclusions Future Works

<ロト <回 > < 注 > < 注 > 、

æ

Thank you!

PhD Thesis Defense 18th Nov 2011 Signal Processing for MIMO Radars