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What is a MIMO Radar?

Multiple-Input Multiple-Output⇒DIVERSITY!!

Multiple-Input (MI)

I Transmit waveform diversity
I Transmit spatial diversity

Multiple-Output (MO)

I Receive spatial diversity

Statistical MIMO Radars Tx and Rx antennas are all widely separated

Coherent MIMO Radars Tx and Rx antennas are closely spaced to form a
single Tx and Rx subarray

Hybrid MIMO Radars Widely separated Tx and Rx subarrays, each
containing one or more antennas
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Statistical MIMO Radar

♦ Widely-separated antennas⇒ spatial diversity
I Independent aspects of target→ overcome fluctuations of target RCS, esp

in case of distributed complex targets⇒ diversity gain
I Moving targets have different LOS speeds for different antennas⇒

geometry gain
I Possibility of target characterization and classification

♦ Without waveform diversity, transmit spatial diversity cannot be
exploited at the receive end

♦ LPI advantage due to isotropic radiation

♦ Non-coherent processing→ no coherent gain BUT no phase
synchronization needed

♦ Applications: Detection, SAR
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Statistical MIMO Radar Vs Multistatic Radar

Joint processing of all antennas
→ Centralized detection strategy

Each rx antenna receives only signals from
corresponding tx antenna

→ Decentralized detection strategy
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Coherent MIMO Radar

◦ No spatial diversity. Diversity comes only from waveforms

◦ Transmit and receive subarray can be sparse→ improve resolution but
can cause grating lobes

◦ Improved direction-finding capabilities at expense of diversity

◦ Improved parameter estimation (identifiability, resolution, etc)

◦ Applications: Direction-finding, STAP/GMTI
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Coherent MIMO Radar Vs Phased-Array Radar

Different waveforms are transmitted from
each closely-spaced transmit antenna

Only one transmit antenna or single
waveform is transmitted from all

closely-spaced transmit antennas
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Configuration overview

SISO SIMO

MISO MIMO
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Configuration overview

SISO SIMO

MISO MIMO

Phased-arrays

Coherent MIMO

Statistical MIMO
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Configuration overview

SISO SIMO

MISO MIMO

Phased-arrays

Coherent MIMO

Statistical MIMO

Hybrid MIMO
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Hybrid Configuration
General case with few assumptions!

Effective number of subarrays Ke:

I Ke ≥ Ñ + M̃ if Ñ, M̃ > 1 (diversity
gain)

I Big Ke robust against target
fluctuations→ surveillance

I Small Ke better gain→ direction
finding

Config Ñ Nn M̃ Mm

SISO 1 ≥ 1 1 ≥ 1
SIMO 1 ≥ 1 > 1 ≥ 1
MISO > 1 ≥ 1 1 ≥ 1
MIMO > 1 ≥ 1 > 1 ≥ 1

Effective number of elements Ne:
I Ne ≥ Nrx + Ntx if Nrx ,Ntx > 1

(diversity gain)
I Maximum Ne if Nrx = Ntx ,

irregardless number of subarrays
I Better to have more Nrx for SIR gain
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Signal Model (1/2)

Received signal after range matched-filtering:

y = Pα + z,

where the vectors y, α and z are the concatenations of all the received
signals, target RCS and clutter returns, respectively:

y =

264 y1,1
...

yM̃,Ñ

375 α =

264 α1,1
...

αM̃,Ñ

375 z =

264 z1,1
...

zM̃,Ñ

375

P is the (
PM̃,Ñ

m,n=1 MmNn) x M̃Ñ matrix
containing all the steering vectors: P =

264 p1,1 0
. . .

0 pM̃,Ñ

375
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Signal Model (2/2)

Steering vector pm,n

pm,n can be generalized to include different parameters, e.g. Doppler

Interference zm,n

I z ∼ CN (0,M): covariance matrix of each zi is given by Mii ,
inter-correlation matrix between zi and zj is given by Mij

I Takes into account correlation arising from insufficient spacing between
subarrays and non-orthogonal waveforms
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MIMO Gaussian Detector
Consider the following hypothesis test:

H0 : y = z interference only
H1 : y = Pα + z target and interference

Based on Maximum-Likelihood theory, the MIMO detector has been derived
to be:

Λ(y) = y†M−1P(P†M−1P)−1P†M−1y
H1
≷
H0

λ.

Equivalent to multi-dimensional version of OGD and can be considered as a
generalized version of MIMO OGD as it becomes MIMO OGD when the
subarrays are non-correlated.

MIMO OGD:
X
m,n

|p†m,nM−1
m,nym,n|2

p†m,nM−1
m,npm,n
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Statistical Properties

Λ(y)
d
=

{
H0 : 1

2χ
2
2Ke

(0)

H1 : 1
2χ

2
2Ke

(2α†P†M−1Pα)

I Non-centrality parameter is equal to 2α†P†M−1Pα

I Detector is M-CFAR as distribution under H0 does not depend on
correlation between subarrays

I Requirement of independence between subarrays can be relaxed for
some applications, e.g. regulation of false alarms
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Simulation Configurations

Total number of antennas, Np = 13

Variation of Ne with Ke for MISO and SIMO cases

SIMO Case
One single transmit element and

Ke receive subarray with Np−1
Ke

elements

MISO Case
Ke transmit elements and one

single receive subarray with

Np − Ke elements
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Detection Performance

SIMO case MISO case

Pd against SIRpre (dash-dotted lines) and SIRpost (solid lines). Pfa = 10−3

Fluctuating target modeled similar to Swerling I target
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Detection Performance

SIMO case

I Ne remains the same→ same SIR gain
I Threshold higher for higher DoF→

causes performance to degrade
I But higher DoF more robust to target

fluctuations
I High Pd → better with large Ke and small

Ke better at low Pd
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Detection Performance

I Poor performance for Ke = 12 due to high
threshold and no SIR gain

I Ke = 6 has high SIR gain to offset
increase of threshold with DoF

I Ke = 6 is more robust to target
fluctuations→ big advantage over Ke = 3
at high Pd

MISO case
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Adaptive Version

Based on Kelly’s Test, the optimum adaptive detector is derived to be:

Λ̂(y) =
y†M̂−1P(P†M̂−1P)−1P†M̂−1y

Ns + y†M̂−1y

where bM is the Sample Covariance Matrix of M and is given by:

bM =
1

Ns

NsX
l=1

c(l)c(l)†.

c(l) are target-free secondary data (i.i.d) and Ns is the number of secondary
data.
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Statistical Properties

Λ̂(y)
d
=

{
H0 : βKe,Ns−Ne+1(0),
H1 : βKe,Ns−Ne+1(γ),

where γ = 2α†P†M−1Pα · lf lf ∼ βNs−Ne+Ke+1,Ne−Ke

Loss factor lf
I lf is loss factor on SIR due to estimation of covariance matrix
I If only 1 effective element per subarray i.e. Ne = Ke, lf = 1
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Loss factor lf

Mean or expected value of lf is given by:

E(lf ) =
Ns − Ne + Ke + 1

Ns + 1
.

I For fixed Ns , better with smaller Ne and bigger
Ke to reduce loss

I To limit loss to 3 dB, i.e. E(lf > 0.5)
⇒ Ns > 2Ne − 2Ke − 1, providing Ns ≥ Ne so
that SCM is of full rank

I For phased-arrays (Ke = 1)⇒ Ns > 2Ne − 3
⇒ Reed-Mallet-Brennan’s rule
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Non-Gaussian Detector

Detection Performance
Few secondary data→ loss in SIR
due to estimation of covariance matrix
depends greatly on Ke
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Gaussian Detector
Non-Gaussian Detector

Detection Performance
Few secondary data→ loss in SIR
due to estimation of covariance matrix
depends greatly on Ke

Enough secondary data→ SIR loss insignificant
→ more important to increase processing gain
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Why non-Gaussian clutter?

I As resolution improves, resolution cell becomes smaller→ fewer
scatterers in each cell→ CLT no longer applies→ non-Gaussian clutter

I Widely separated subarrays→ different aspects of each resolution cell
→ non-Gaussian clutter

I Experimental radar clutter measurements→ fit non-Gaussian statistical
models

Subarrays are assumed to be INDEPENDENT!
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Clutter Model

zm,n is modeled by Spherically Invariant Random Vector (SIRV):

zm,n =
√
τm,n xm,n

? speckle - a Gaussian random process xm,n ∼ CN (0,Mm,n) which
models temporal fluctuations of clutter

? texture - square-root of a non-negative random variable τm,n which
models spatial fluctuations of clutter power

I Models different non-Gaussian clutter depending on chosen texture
I Includes Gaussian clutter as special case where texture is a constant
I Gaussian kernel→ classical ML methods for parameter estimation
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MIMO Non-Gaussian Detector

Based on the GLRT-LQ test and independent subarray assumption, the
MIMO GLRT-LQ test is derived to be:

∏
m,n

[
1−

|p†m,nM−1
m,nym,n|2

(p†m,nM−1
m,npm,n)(y†m,nM−1

m,nym,n)

]−MmNn
H1

≷
H0

η

The GLRT-LQ detector is homogeneous in terms of pm,n, Mm,n and ym,n such
that it is invariant to data scaling⇒ detector is texture-CFAR
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Theoretical Performance

Theorem
Given a MIMO radar system containing Ke subarrays with L elements
each, the probability of false alarm of the MIMO GLRT-LQ detector is
given by:

Pfa = λ−L+1
Ke−1∑
k=0

(L− 1)k

k !
(lnλ)k .

where λ = L
√
η.

I Pfa depends only on Ke and L and not on the clutter parameters
⇒ detector is texture-CFAR.

I Does not depend on the covariance matrices which can be different for
each subarray.

I Useful for the analysis of detection performance.
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Simulation Parameters

M̃ Ñ Mm Nn Ke = M̃Ñ Ne = MmNn σ2 = E(τ)

3 2 4 3 6 12 1

Experimental radar clutter measurements:
texture follows Gamma (K-distributed clutter) or Weibull distribution

Texture distribution a b

1. Gamma 2 σ2

a = 0.5

2. Gamma 0.5 σ2

a = 2

1. Weibull σ2

Γ(1+ 1
b )

= 1.1233 1.763

2. Weibull σ2

Γ(1+ 1
b )

= 0.7418 0.658

Gaussian clutter as comparison
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Clutter power

Gaussian clutter

K-distributed clutter

Weibull-textured clutter
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Texture-CFAR property of MIMO Non-Gaussian
Detector

Same threshold for same Pfa irregardless of clutter texture!
Good agreement between theory and simulation!
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Detection Performance under K-distributed Clutter

a = 0.5⇒ impulsive clutter a = 2⇒ similar to Gaussian clutter

Stationary target model (same SIR for all subarrays) as comparison
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Non-Gaussian Detector

Detection Performance under K-distributed Clutter

I Clutter similar to that of Gaussian
clutter

I MIMO GLRT-LQ works better than
MIMO OGD especially when SIR is
low

I MIMO GLRT-LQ more affected by
fluctuations of target but still better
than MIMO OGD

a = 2⇒ similar to Gaussian clutter
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Detection Performance under K-distributed Clutter

a = 0.5⇒ impulsive clutter

I Clutter is impulsive
I MIMO GLRT-LQ works MUCH better

than MIMO OGD due to normalizing
term which takes into account
variation of clutter power

I MIMO GLRT-LQ more affected by
fluctuations of target but still better
than MIMO OGD
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Detection Performance under Gaussian Clutter
MIMO GLRT-LQ is slightly worse than MIMO OGD under Gaussian clutter

but more robust as it works under different types of clutter!
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Adaptive Non-Gaussian MIMO Detector
The adaptive detector is obtained by replacing Mm,n by its estimate bMm,n:

Y
m,n

"
1−

|p†m,n bM−1
m,nym,n|2

(p†m,n bM−1
m,npm,n)(y†m,n bM−1

m,nym,n)

#−MmNn

Under non-Gaussian clutter, the SCM is no longer the ML estimate
⇒ use Fixed Point Estimate given by:

bMFP =
MmNn

Nsm,n

Nsm,nX
l=1

ym,n(l)y†m,n(l)

y†m,n(l)bM−1
FP ym,n(l)

I Can be solved by iterative algorithm which tends to bMFP irregardless of the initial
matrix

I Asymptotic distribution of bMFP is the same as that of the SCM with MmNn
MmNn+1 Nsm,n

secondary data under Gaussian clutter
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Detection Performance under K-distributed Clutter

a = 0.5⇒ impulsive clutter a = 2⇒ similar to Gaussian clutter

Estimation of covariance matrix:

MIMO aGLRT-LQ→ FPE (10 iterations) while MIMO AMF, MIMO Kelly’s Test→ SCM

PhD Thesis Defense 18th Nov 2011 Signal Processing for MIMO Radars



Overview of MIMO Radars
MIMO Detectors

Application: STAP
Conclusions

Gaussian Detector
Non-Gaussian Detector

Detection Performance under K-distributed Clutter

I Clutter is similar to Gaussian case
I MIMO aGLRT-LQ better than MIMO AMF

and MIMO Kelly’s Test
I MIMO AMF more affected by estimation

of covariance matrix since SCM is NOT
ML under non-Gaussian clutter

MIMO AMF:
X
m,n

|p†m,n bM−1
m,nym,n|2

p†m,n bM−1
m,npm,n

spaci

MIMO Kelly’s Test:
Y
m,n

241−
|p†m,n bM−1

SCM,m,nym,n|2

(p†m,n bM−1
SCM,m,npm,n)(Nsm,n + y†m,n bM−1

SCM,m,nym,n)

35−Nsm,n

a = 2⇒ similar to Gaussian clutter
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Detection Performance under K-distributed Clutter

a = 0.5⇒ impulsive clutter
I Clutter is impulsive
I MIMO aGLRT-LQ is much better than

MIMO AMF and MIMO Kelly’s Test as it
can take into account variations of
clutter power

I MIMO AMF and MIMO Kelly’s Test are
affected by the
estimation of covariance matrix

I MIMO Kelly’s Test more similar to MIMO
aGLRT-LQ when Nsm,n is small while it is
nearer to MIMO AMF when Nsm,n is large
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Adaptive Version - Gaussian Clutter

I When Nsm,n = 20Ne, MIMO aGLRT-LQ is

slightly worse than MIMO AMF, as in

non-adaptive case

I MIMO aGLRT-LQ is slightly better than MIMO
AMF when Nsm,n = 2Ne!

� Under Gaussian clutter, MIMO AMF
expected to perform worse than MIMO
Kelly’s Test as ym,n is not used in
derivation of detector

� For large Nsm,n, MIMO Kelly’s Test ≈
MIMO AMF BUT normalizing term is no
longer negligible for small Nsm,n and
MIMO Kelly’s Test→ MIMO aGLRT-LQ
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Motivation

Why use Space-Time Adaptive Processing (STAP)?
I Main application: Ground Moving Target Indication (GMTI)
I Slow moving target in strong clutter background
I Moving platform causes angle-Doppler dependence of clutter→

enables slow target detection
I Joint processing of temporal and spatial dimensions→ better

suppression of clutter

Why use Multi-Input Multi-Output (MIMO) techniques?
I Increase angular resolution→ further increase separation between

clutter and target→ more efficient clutter suppression and lower
Minimum Detectable Velocity (MDV)

I More degrees of freedom for clutter cancellation
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SISO-STAP Signal Model (1/2)

I Only one transmit and one receive subarray
I Transmit and receive are co-located→ all elements see the same target RCS
I Different waveforms transmitted s.t. received signal can be separated

Received signal after range matched-filtering:

y = aejφ p(θ, fd ) + c + n

where

space

aejφ is the complex target RCS

where space

p(θ, fd ) is the space-time steering vector,

where space

θ is the receive/transmit angle and fd is the relative Doppler frequency,

where space

c ∼ CN (0,Mc) is the clutter vector and Mc is the clutter covariance matrix,

where space

n ∼ CN (0, σ2I) is the noise vector and σ2 is the noise power.
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SISO-STAP Signal Model (2/2)
The steering vector p can also be expressed as:

p(θ, fd ) = a(θ)⊗ b(θ)⊗ v(fd ).

Note that p(θ, fd ) = a(θ)⊗ v(fd ) for classical STAP.

The receive, transmit and Doppler steering vectors are as follows:

a(θ) = [1 · · · exp(j2π
(M − 1)dr

λ
sin θ)]T ,

b(θ) = [1 · · · exp(j2π
(N − 1)dt

λ
sin θ)]T ,

v(fd ) = [1 · · · exp(j2π(L− 1) PRI · fd )]T ,

where

space

M, N are number of receive/transmit elements,

where space

dr , dt are the inter-element spacing for the receive/transmit subarrays,

where space

L is number of pulses and PRI is the Pulse Repetition Interval,

where space

v is the platform velocity and λ is the wavelength of the radar.
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Element Distribution Configurations (1/2)
Maximum Ne

Given a fixed Np , the maximum possible
effective number of elements is given by:

Nmax
e =

8<:
N2

p
4 Np even

N2
p−1
4 Np odd

Maximum La

Given a fixed Np , the maximum possible
aperture size given critical sampling is:

Lmax
a =

8<: (
Np

2

4 − 1)λ2 Np even

(
Np

2−5
4 )λ2 Np odd

Config N M Ne La/λ

1 1 9 9 4
2 2 8 16 7.5
3 5 5 25 12
4 8 2 16 7.5
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Element Distribution Configurations (2/2)
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Generalized MIMO Brennan’s Rule

Define α, β and γ as below:

α =
dr

λ/2
, β =

2vPRI
λ/2

, γ =
dt

λ/2
.

In the case where α, β and γ are integers, the rank of clutter covariance matrix
is given by the number of distinct (integer) values Nd in:

mα+ nγ + lβ ∀

8<: m = 0, . . . ,M − 1
n = 0, . . . ,N − 1
l = 0, . . . , L− 1.

I When α, β and γ are not integers, the rank of Mc is approximated by Nd .
I When α = 1, i.e. dr = λ/2, we obtain the MIMO extension of Brennan’s Rule.
I If min(α, β, γ) = 1, then Nd = (M − 1)α+ (N − 1)γ + (L− 1)β + 1.

I If α, γ and β are divisible by min(α, β, γ), then Nd = (M−1)α+(N−1)γ+(L−1)β
min(α,β,γ)

+ 1.
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Synthetic Array

I β = 1⇒ radar moves by one element
spacing between pulses
Lsyn = 3λ and Nd = 7
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Synthetic Array

I β = 2⇒ less overlap of array
between pulses→ increase in
synthetic array size and improve
resolution BUT clutter rank increases
and ambiguities arise
Lsyn = 4.5λ and Nd = 10
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Synthetic Array

I β = 2 AND α = 2⇒ positions of
elements from pulse to pulse are
aligned→ reduces clutter rank AND
same ambiguities. Resolution
improves further
Lsyn = 6λ and Nd = 7
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Element Spacing Configurations (1/2)

Config α γ rank(Mc )
a 1 α 39
b 2 α 24
c 1 αM=5 55
d 2 αM=10 40

I Ambiguity in Doppler (β = 2)
I Spatial ambiguities added to reduce

width of clutter ridges and clutter rank
(Config b and d)

I Additional clutter ridges overlap
existing ones→ no increase in
number of clutter ridges
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Element Spacing Configurations (2/2)
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Cramér-Rao Bounds

Cramér-Rao bound (CRB)

Cramér-Rao bound (CRB) expresses a lower bound on the variance of estimators of a
deterministic parameter. For y ∼ CN (µ(Θ),M(Θ)), the Fisher Information Matrix J is
given by:

[J(Θ)]i,j = tr

"
M(Θ)−1 ∂M(Θ)

∂Θi
M(Θ)−1 ∂M(Θ)

∂Θj

#
+ 2<

"
∂µ†(Θ)

∂Θi
M(Θ)−1 ∂µ(Θ)

∂Θj

#

Signal parameters to be estimated are:

Θ = [ ΘS ΘI ].

M does not depend on ΘS → signal and interference (clutter and noise)
parameters are disjoint→ CRB for ΘS same whether M is known or not.
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Simulation Parameters

Radar parameters:
Np L λ PRI Pos. of tx/rx subarray range θ β
10 16 20 m 5 s (0,0) m 70e3 m 0 2

Generation of clutter covariance matrix:

I Modeled by integration over azimuth
angles, 180◦ (front lobe of receive
subarray)

I Isotropic antenna elements
I Classical power budget equation for

clutter with constant reflectivity
I CNR = 60 dB per element per pulse
I Estimated using Ns = 500 secondary

data

Element distribution configuration:
Config 1 2 3 4

N 1 2 5 8
M 9 8 5 2

Element spacing configuration:
Config a b c d
α 1 2 1 2
γ α α αM αM
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Detection Performance, Config 1-4, Adaptive (1/2)
T1 at ωT = 0.01 and T2 at ωT = 0.2
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Detection Performance, Config 1-4, Adaptive (2/2)

Target T1:
I More important to have narrow clutter

notch as target has low velocity

I MIMO configurations have larger La →
smaller SIR loss for slow targets

Target T2:
I More important to have higher gain

I Config 3 also has largest Ne → largest

SIR gain but also much loss from

estimation of covariance matrix
Config Ns/MNL E(lf ) for Ns = 500

1 3.47 0.71
2 1.95 0.49
3 1.25 0.20
4 1.95 0.49
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Detection Performance, Config a-d, Adaptive (1/2)
T1 at ωT = 0.01 and T2 at ωT = 0.2
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Detection Performance, Config a-d, Adaptive (2/2)

I Same MNL→ same loss from estimation
of covariance matrix→ similar results for
T2

I For T1, different detection performance

due to different element spacing and

resulting La

Config Ns/MNL E(l) for Ns = 500
3 1.25 0.20
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Estimation Performance, Config 1-4

SNR = 10 dB

I Inter-element spacing according to Config
c (α = 1 and γ = M)

I CRB is low far from the clutter ridge,
much higher at the clutter ridge (fT = 0)
due to strong clutter

I Config 3 gives the lowest CRB in general,
i.e. better estimation accuracy. Its CRB
peak is also the narrowest, indicating that
it has the smallest MDV

I All the MIMO configurations (Config 2-4)
better than classical STAP configuration
(Config 1)
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Estimation Performance, Config a-d

SNR = 10 dB

Config ref a b c d
La/λ 4 4 8 12 21

I Classical STAP as reference
I Config a-d has equal no. of transmit and

receive elements (Config 3)→ maximizes
SNR gain

I Config a has lower CRB than ref although
they have the same La because of SNR
gain

I Sparse config α > 1 (config b and d)
increases La further→ lower CRB
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MISO-STAP Signal Model

I Multiple widely separated transmit elements and one receive subarray
I Each tx-rx pair is in bistatic configuration and sees different target RCS, given by:

[a1ejφ1 · · · aKe ejφKe ]

I Different waveforms transmitted s.t. received signal can be separated

Received signal after range matched-filtering for the i-th subarray:

yi = ai ejφi a(θr )⊗ v(fd,i ) + ci + ni ,

= ai ejφi pi + ci + ni ,

where

space

pi is the space-time steering vector,

where space

θr is the receive angle and fd,i is the relative Doppler frequency,

where space

ci ∼ CN (0,Mc,i ) is the clutter vector and Mc,i is the clutter cov matrix,

where space

ni ∼ CN (0, σ2I) is the noise vector and σ2 is the noise power.
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Simulation Parameters

Tx x-pos 70 · cos((−Ke : −1) π
Ke+1 ) km

Tx y -pos 70 · sin((−Ke : −1) π
Ke+1 ) km

M Ke L λ
8 1,2,5 16 20 m

PRI θ β CNR
5 s 0 2 60 dB

Rx pos Rx vel
(0,0) (2,0) m/s

Tgt pos Tx vel
(0,-70) km (2,0) m/s

Two targets with random directions and
at different absolute speeds:

0.1 m/s (T1) and 1.5 m/s (T2)
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Detection Performance

I Ke = 1 is classical STAP
I Better performance for larger Ke due to

increased Ne and spatial diversity
I With spatial diversity→ more robust to

target fluctuations and changes in target
velocity

I Due to diversity and geometry gains,

detection curves for Ke > 1 converge to

one fast
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MISO Vs SISO

I Same number of elements for both
configurations: Np = 10 and Ne = 16

I SISO is better at low Pd because of
improved resolutions

I MISO is better at high Pd due to its

robustness against fluctuations of target

RCS and velocity directions
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Conclusions (1/4)

Gaussian Detector

♦ SIR gain depends on Ne which is maximized when equal number of
transmit and receive elements irregardless of Ke,

♦ Larger Ke increases robustness against target fluctuations but also
increases detection threshold,

♦ Configuration depends on application, e.g. small Ke for direction-finding
and big Ke for surveillance,

♦ For estimation of covariance matrix, Ns > 2Ne − 2Ke − 1 for 3 dB loss
⇒ for limited Ns, small Ne and large Ke to limit loss.
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Conclusions (2/4)

Non-Gaussian Detector

♦ Homogeneous structure of the detector results in invariance to the
texture characteristics⇒ texture-CFAR,

♦ Small CFAR loss under Gaussian interference and big improvements in
performance under non-Gaussian interference⇒ more robust than the
Gaussian detector.
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Conclusions (3/4)

SISO-STAP

♦ Equal number of transmit and receive elements maximizes Ne and
effective aperture size (for critical sampling)⇒ increase SIR gain and
reduce MDV,

♦ Sparse configurations:
I increase effective aperture size, reduce MDV and improve estimation

accuracy,
I do not cause additional ambiguity if spatial and Doppler ambiguities are

matched,
I reduce rank of CCM⇒ fewer secondary data required.
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Conclusions (4/4)

MISO-STAP

♦ Can be easily achieved by adding single tx elements to existing STAP
systems,

♦ Robust against target fluctuations and dependence of target velocity
w.r.t. aspect angle,

♦ For the same number of elements (Ne and Np), MISO config is better
than SISO config at high Pd due to increased robustness; SISO better
at low Pd due to improved resolution.
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Future Works

♦ Signal Model
I Include waveform and range information
I Fluctuating models for target
I Use of tensors for representation and calculations

♦ Target classification

♦ 2-step detection and estimation algorithm

♦ Validation with real data

♦ Low-rank methods for STAP

♦ Diagonal loading

♦ Estimation bounds
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Thank you!
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