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Résumé :
Le traitement des signaux radars et des im-

ages SAR nécessite généralement des représenta-
tions et des opérations à valeurs complexes, telles
que les transformées de Fourier et d’ondelettes,
les filtres de Wiener et les filtres adaptés, etc.
Cependant, la grande majorité des architectures
d’apprentissage profond sont actuellement basées
sur des opérations à valeurs réelles, ce qui lim-
ite leur capacité d’apprentissage à partir de don-
nées complexes. Malgré l’émergence des réseaux
de neurones à valeurs complexes (CVNN), leur ap-
plication au radar et à l’imagerie SAR manque en-
core d’études sur leur pertinence et leur efficac-
ité. Et la comparaison avec un réseau de neurones
à valeurs réelles (RVNN) équivalent est générale-
ment biaisée.

Dans cette thèse, nous proposons d’étudier
les mérites des CVNNs pour classifier des don-

nées complexes. Nous montrons que les CVNNs
atteignent de meilleures performances que leur
equivalent réel pour classifier des vecteurs à don-
nées gaussiennes non circulaires. Nous définis-
sons également un critère d’équivalence entre les
CVNNs et les RVNNs, entièrement connectés ou
convolutifs, en termes du nombre de paramètres
entraînables, tout en leur conservant une archi-
tecture similaire. Nous comparons ainsi statis-
tiquement les performances de perceptrons mul-
ticouches (MLPs), de réseaux convolutifs (CNNs)
et entièrement convolutifs (FCNNs) utilisés pour la
segmentation d’images SAR polarimétriques. Le
partitionnement des images SAR et l’équilibrage
des classes sont étudiés afin d’éviter des biais
d’apprentissage. En parallèle, nous avons égale-
ment proposé une librairie open-source pour fa-
ciliter l’implémentation des CVNNs et la compara-
ison avec des réseaux équivalents réels.

Title: Complex-Valued Neural Networks for Radar Applications
Keywords: Complex-Valued Neural Networks, Polarimetric Synthetic Aperture Radar, Classification,
Semantic Segmentation

Abstract:
Radar signal and SAR image processing gen-

erally require complex-valued representations and
operations, e.g., Fourier, wavelet transforms,
Wiener, matched filters, etc. However, the vast
majority of architectures for deep learning are cur-
rently based on real-valued operations, which re-
strict their ability to learn from complex-valued
features. Despite the emergence of Complex-
Valued Neural Networks (CVNNs), their applica-
tion on radar and SAR still lacks study on their
relevance and efficiency. And the comparison
against an equivalent Real-Valued Neural Network
(RVNN) is usually biased.

In this thesis, we propose to investigate the
merits of CVNNs for classifying complex-valued

data. We show that CVNNs achieve better perfor-
mance than their real-valued counterpart for classi-
fying non-circular Gaussian data. We also define a
criterion of equivalence between feed-forward fully
connected and convolutional CVNNs and RVNNs
in terms of trainable parameters while keeping a
similar architecture. We statistically compare the
performance of equivalent Multi-Layer Perceptrons
(MLPs), Convolutional Neural Networks (CNNs),
and Fully Convolutional Networks (FCNs) for po-
larimetric SAR image segmentation. SAR image
splitting and balancing classes are also studied to
avoid learning biases. In parallel, we also proposed
an open-source toolbox to facilitate the implemen-
tation of CVNNs and the comparison with real-
equivalent networks.
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Introduction

In the machine learning community, most neural networks are developed for
processing real-valued features (voice signals, RGB images, videos, etc.). The sig-
nal processing community, however, has a higher interest in developing theories and
techniques in complex fields. Indeed, complex-valued signals are encountered in a
large variety of applications such as biomedical sciences, physics, communications,
and radar. All these fields use signal processing tools [Schreier and Scharf, 2010],
which are usually based on complex filtering operations and Complex-Valued rep-
resentations or features (Discrete Fourier Transform, Wavelet Transform, Wiener
Filtering, Matched Filter, etc.). Thus, Complex-Valued Neural Networks (CVNNs)
appear as a natural choice to process and to learn from these complex-valued fea-
tures since the operation performed at each layer of CVNNs can be interpreted
as complex filtering or multiplications. Notably, CVNNs are more adapted than
RVNNs to extract phase information [Hirose and Yoshida, 2012]. For this reason,
several signal processing fields of study already use CVNNs for their experiments,
such as radio frequency signal processing in wireless communications [Gong et al.,
2017, Zhang and Wu, 2017, Liu et al., 2017,Ding and Hirose, 2014,Marseet and
Sahin, 2017], image processing in computer vision such as classification and seg-
mentation tasks [Akramifard et al., 2012, Hafiz et al., 2015, Popa, 2017, Amilia
et al., 2015, Liu et al., 2014,Olanrewaju et al., 2011,Gu and Ding, 2018,Matlacz
and Sarwas, 2018,Popa, 2018], audio signal processing [Al-Nuaimi et al., 2012,Ki-
nouchi and Hagiwara, 1996,Kataoka et al., 1998,Hayakawa et al., 2018,Tsuzuki
et al., 2013,Tsuzuki et al., 2013], wind prediction [Sepasi et al., 2017,Çevik et al.,
2018, Mandic et al., 2009], power transformers [Chistyakov et al., 2011, Minin
et al., 2012], Traffic Signal Control [Nishikawa et al., 2005,Nishikawa et al., 2006],
cryptography [Dong and Huang, 2019], spam detection [Hu et al., 2008], asso-
ciative memory [Jankowski et al., 1996], medical applications such as epilepsy
diagnosis [Peker et al., 2015] or MRI signal processing [Virtue et al., 2017] and
particularly radar applications (our field of study).

In the early 90’s, works on CVNN back-propagation were published [Hirose,
1992, Georgiou and Koutsougeras, 1992, Benvenuto and Piazza, 1992, Leung and
Haykin, 1991], leaving ground for CVNN to be implemented. Since then, work
on CVNN started to increase in the mid-90’s or early 2000’s [Jankowski et al.,
1996,Kim and Adali, 2001b,Kim and Adali, 2001a,Kim and Adali, 2002,Miyauchi
and Seki, 1992,Miyauchi et al., 1993,Jianping et al., 2002,Cha and Kassam, 1995]
and in 2003, Akira Hirose, most likely the precursor of CVNN published a first book
about the topic in 2003 [Hirose, 2003] and two more later on [Hirose, 2013,Hirose,
2012]. Reference [Nitta, 2004] explains the potential of a single complex-valued
neuron through the concept of the orthogonal boundary where the intersection
of two hyper-surfaces can divide the decision boundary into four regions, reveling
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the potential computational power of CVNNs with respect to RVNN. A. Hirose
explained that the merits of CVNN lie mainly in the properties of complex multipli-
cation that can be seen as phase rotation, and amplitude modulation advocating
for an advantageous reduction of freedom [Hirose, 2013, Hirose, 1992]. Refer-
ences [Hirose, 2009,Hirose, 2011,Hirose, 2010] discussed the merits of CVNN by
relating the mathematical expressions of complex numbers with the signal process-
ing field. Two recent surveys were published recently about CVNN state-of-the-art
advancements [Bassey et al., 2021, Lee et al., 2022]. Both works mention the
biological motivation of CVNN as they represent their behavior better.

Recently, we showed that CVNN are more performant in classifying non-circular
Gaussian data than its real counterpart, which means CVNNs are more sensible
to extract phase information than RVNNs. We do that by comparing vectors of
random non-circular data showing that CVNN can profit from this feature and
extract its full potential by achieving higher accuracy, less overfitting, and lower
variance than the RVNN. Our findings were also cited by Reference [Ko et al.,
2022] to justify some properties of their obtained results as they were analogous
to ours.

Deep learning techniques are becoming widely popular and have extended into
radar and PolSAR image classification [Fix et al., 2021, Marmanis et al., 2018,
Marmanis et al., 2016b,Parikh et al., 2020,Konishi et al., 2021,Chen et al., 2016,
Hou et al., 2016, Zhou et al., 2016]. Usually, these networks are fed with the
amplitude information of the PolSAR image while not making use of the phase
data.

Recently, some publications started using CVNNs as an alternative to con-
ventional Real-Valued Neural Network (RVNN) for radar applications [Hirose,
2013, Bassey et al., 2021] since radar data are generally complex-valued. Know-
ing that Synthetic Aperture Radar (SAR) data is non-circular [El-Darymli et al.,
2014,Vasile and Totir, 2012] and therefore phase information plays a crucial part
in their representation [Datcu et al., 2007, El-Darymli et al., 2013, El-Darymli
et al., 2015], it is no wonder that Complex-Valued Neural Networks are becom-
ing increasingly popular for SAR, PolSAR or InSAR applications [Wilmanski et al.,
2016,Oyama and Hirose, 2018,Gleich and Sipos, 2018]

Reference [Hänsch and Hellwich, 2009a], was one of the first to implement
a Complex-Valued MultiLayer Perceptron (CV-MLP) for PolSAR applications in
2009. Although a comparison was made with Real-Valued MultiLayer Perceptron
(RV-MLP), no confidence interval was given which prevents to assert CV-MLP
merits. Furthermore, a different input representation was used for each model,
making it a non-pertinent comparison. Later on, the same authors suggested giving
the same input representation to get a more precise comparison between the models
on [Hänsch, 2010]. References [Hänsch and Hellwich, 2010] and [De et al., 2017]
also used CV-MLP on a PolSAR database but did not provide a comparison with
RV-MLP. Reference [Cao et al., 2019] did compare CV-MLP against a RV-MLP
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but even though CV-MLP performed better than RV-MLP, confidence intervals
intersect, leaving room for doubt about CV-MLP out-performance.

Works using Complex-Valued Convolutional Neural Network (CV-CNN) have
been published for PolSAR applications. Reference [Zhang et al., 2017] compares
a CV-CNN with RV-CNNs but lacks confidence intervals. Other recent works [Sun
et al., 2019, Zhao et al., 2019a, Zhao et al., 2019b,Qin et al., 2021,Dong et al.,
2020] use a CV-CNN for PolSAR applications but without comparing its result
with a RV-CNN.

References [Xie et al., 2020] and [Shang et al., 2019] added complexity to
the CNN architecture by using a Recurrent Complex-Valued Convolutional Neural
Network and a Complex-Valued Convolutional AutoEncoder (CV-CAE) to obtain
higher accuracy results. Lately, References [Cao et al., 2019, Li et al., 2018a]
achieved state-of-the-art performance using a Complex-Valued Fully Convolutional
Neural Network (CV-FCNN) model architecture. All the previously cited works of
CVNN applications on PolSAR perform a pixel-wise classification task, which can
be seen as a semantic segmentation task. It is, therefore, not a surprise that a
FCNN model achieves es higher accuracy as it performs semantic segmentation by
design.

In all cases cited here, the dimensions of the RVNN are not justified, further-
more, the RVNN has lower capacity than the CVNN model [Mönning and Man-
andhar, 2018,Barrachina et al., 2021c,Barrachina et al., 2022d]. For this reason,
the merits of CVNN over RVNN for PolSAR classification and semantic segmen-
tation are not fully justified. Either the comparison against a conventional RVNN
is lacking, or the models do not have the same capacity. Furthermore, some works
omit confidence intervals, or the intervals intersect. In this work, we have provided
a method to correctly design and dimension a RVNN so that it is equivalent to the
CVNN we want to compare with. Under this framework, we perform classification
tasks on two PolSAR datasets for three different complex model architectures and
their corresponding real-equivalent networks and prove that for the same task and
model architecture, complex networks perform better.

All the work cited above uses the polarimetric coherency matrix as an input
representation of the networks. However, we compare the results to those obtained
when using the Pauli vector representation and show both Complex-Valued Fully
Convolutional Neural Network (CV-FCNN) and its real-equivalent model perform
better when using the Pauli vector.

PolSAR studies have the difficulty that rarely more than one image can be
used for classification. For that reason, training, validation, and test set must be
extracted from the same image resulting in similarities between the subsets that
may prevent the appreciation of the generalization performance and yield higher
apparent results than those obtained under new data. We propose a new method
to split the dataset in order to reduce this effect and evaluate its impact.

The difficulties in implementing CVNN models in practice have slowed down
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the field from growing further [Mönning and Manandhar, 2018]. To fill this void, we
implemented a Python toolbox that allowed the implementation of CVNN, which
was made available online and documented accordingly so that the community can
make use of it. Indeed, the need of the community for this toolbox was the subject
of the code’s success which can be seen by their GitHub metrics, downloads, and
citations. In particular, we perform an experiment that justifies the initialization
adaptation for complex layers defined by Reference [Trabelsi et al., 2017], and we
manage to show the importance of using this adaptation correctly.

Chapter 1 explains the theory of conventional neural networks. We introduce
with history and development of neural networks until today’s breakthroughs in
state-of-the-art algorithms. We later explain the neural network’s basic operation
and training phase. Finally, we explain in detail each part of the neural network
algorithm and its variants. As neural networks are a very wide field, we limit the
Chapter to only those advancements and theories that are relevant to our work.

Chapter 2 explains the adaptation of these conventional real networks to the
complex domain and lay ground for Complex-Valued Neural Network (CVNN) im-
plementation. We propose two experiments that prove the importance of the
correct adaptation of the initialization technique to the complex domain. In par-
allel, we describe the published toolbox that allows the implementation of CVNN
using Tensorflow as the back-end. A toolbox like this one was missing, for it filled
a gap that was appreciated by the community, a success that can be seen by the
code’s citations, downloads or other repository metrics discussed in this Chapter as
well. We end the Chapter with an experiment that shows that real-valued tempo-
ral signals might profit from a CVNN when using the Hilbert transform to obtain
higher performance than when using a conventional real-valued model.

Chapter 3 justify the merits of CVNN over RVNN complex-valued Gaussian
datasets that are non-circular, characterized by either a correlation between the
real and imaginary parts or a non-identical variance for the real and imaginary
part. To do so, we randomly generate multiple classes of vectors of non-circular
data that have the property of changing their distribution if we rotate the ran-
dom generator, contrary to circular data, which is invariant to rotation. Classify
them using both CVNN and RVNN, running the simulation several times to infer
statistical results. This experiment was run in different flavors, such as different
sources of non-circularity, different input representations, different model archi-
tecture, hyper-parameters and dimensions, etc., showing that CVNN statistically
out-perform RVNN in general and not for a particular case only.

Chapter 4 explains the theory of Synthetic Aperture Radar (SAR) to lay the
ground for the following Chapter, which deals with these radar images as an input
dataset for pixel-wise classification and segmentation tasks.

Chapter 5 details the experiments and results obtained on PolSAR classifica-
tion and segmentation. We first propose a framework to assert the comparison
between CVNN and RVNN is fair and prove that CVNN perform better for three
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different model architectures and two PolSAR images. We later argue that the
input representation used in most PolSAR classification tasks may not be optimal
for all cases and that convolutional layers may perform better using another repre-
sentation and sustain our argument by performing the corresponding simulations.
Secondly, we show that the classification of PolSAR images is a saturated case and
that this is mainly due to a correlation between training, validation and test set,
and we propose a method to reduce this correlation and lower the saturation of
state-of-the-art applications.

We close this thesis report with the conclusions in Chapter 6, and we discuss
future work perspectives.
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1 - Theory of Real-Valued Neural Networks

1.1 . Terminology

With the late success of Deep Learning, many sources have cited this term and
others, such as Machine Learning (ML), Neural Networks, or Artificial Intelligence
(AI). This has caused much confusion through incorrect uses of the terminologies,
which are often used interchangeably. The French Ministry of National Education
has even created an official report to define all these terms with the objective
of reducing confusion around them [Commission d’enrichissement de la langue
française, 2019].

The Turing test, originally called the imitation game by Alan Turing in 1950,
is a test of a machine’s ability to exhibit intelligent behavior equivalent to, or
indistinguishable from, that of a human. In other words, it posed the question:

« Can computers think? »

- Alan Turin [Turing, 1950]

Regardless of the answer, all algorithms that can create the impression that a
machine is thinking can be classified as Artificial Intelligence. Therefore, AI takes
no regard for the algorithm itself; if you could hand-code every possible response
to a conversation, it would be considered as AI. Indeed, the term is defined by
the Royal Spanish Academy, the global reference for the Spanish language, as the
scientific discipline that takes care of creating software that executes operations
comparable to those made by the human mind, such as logical reasoning or the
capacity of learning [Real Academia Española, 2022].

Neural Networks are all those algorithms of AI that are inspired by the human
brain. Such is the case of a MultiLayer Perceptron (MLP), which will be explained
in the following Section.

Machine Learning, is an algorithm that, instead of coding the machine with
the instruction on how to perform a specific task, learns from the data and ex-
amples. In these algorithms, an initial state of the algorithm is initialized, which
usually performs badly by randomly generating the result if it can output any result
at all, and it is through training that it then "learns" to perform the task.

Finally, Deep Learning is both a ML and an Artificial Neural Network algo-
rithm that receives its name because of the use of multiple neural network layers.
To sum up, all the terms are closely related; most of them are just subsets of
a border definition, being AI a general term that includes all others as shown in
Figure 1.1.

1.2 . History of Neural Networks
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Figure 1.1: Terminology subsets extracted from [Copeland, 2016].
1.2.1 . Associationism

As stated before, AI is all about human brain behavior, and in particular,
Neural Networks tries to achieve that by understanding and simulating how it
works internally. Perhaps the early traces of this question can be referred to
Aristotle’s discussion about Associationism around 300 B.C. [Wang and Raj, 2017].
Associationism states that the mind is a set of conceptual elements organized
as associations between them based on voluntary recollections grouped into four
fundamental categories [Burnham, 1888].

• Similarity

• Contrast

• Frequency

• Contiguity

In Aristotle’s vision, the feel, smell, and/or taste of an apple should naturally
lead to the concept of an apple. But how can one store these relationships?

1.2.2 . Neural Groupings
The Scottish philosopher, inventor, and engineer Alexander Bain (1810-1877),

Figure 1.2, introduced the notion that the information is in the connections [Bain,
1873]. In his model, he processes the associative memory to the distribution of
activity of neural groupings. In contrast to other storage models, Bain’s structure
managed to describe a structure that could store multiple associations. As can
be seen in Figure 1.3. Stimulation from ’a’ and ’c’ triggers ’X’, from ’a’ and ’b’
triggers ’Y’, and ’b’ and ’c’ trigger ’Z’.
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Figure 1.2: Alexander Bain.

Figure 1.3: Illustration of Bain’s Neural Groupings.

The similitude between Bain’s neural grouping and Hebb’s postulate (to be
explained in the next Section) are remarkable, although nowadays, we usually label
Hebb’s postulate rather than Bain’s [Wilkes and Wade, 1997]. This was probably
due to the fact that Bain himself recalled all his ideas [Wang and Raj, 2017].

Indeed, ten years after his main publication on neural groupings, Bain published
some notes and discussions on his theory where he presented two factors he failed
to take properly into account [Bain, 1883]. At the end of his life, Bain withdrew
his ideas not because he doubted logic but because he doubted arithmetic [Wilkes
and Wade, 1997].

1.2.3 . MCP neuron

As stated in Section 1.1, Neural Networks algorithms are based on the hu-
man brain. Therefore they intend to emulate a neuron mathematically. Indeed,
the first model of a human neuron was introduced by Warren Sturgis McCulloch
(1898-1969) and Walter Harry Pitts (1923-1969), Figure 1.4, known as MCP for
McCulloch-Pitts, in their work of 1943 [McCulloch and Pitts, 1943]. Although
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Figure 1.4: W. Pitts (left) and W. McCulloch (right) in 1949 [Moreno-Díazand Moreno-Díaz, 2007].
McCulloch was a neurophysiologist, Pitts was a self-taught logician who ran from
his home at the age of 15 and was homeless until McCulloch invited him to live
with his family. They both died in 1969.

Figure 1.5: Illustration of a biological neuron.
Biological neurons are composed of a soma (body of the neuron), dendrites

that receive signals from other neurons, an axon that connects neurons between
each other and a synapse, which is the connection point to other neurons, as
shown in Figure 1.5. The neuron receives an input signal through the dendrites,
then processes the information in the soma and passes (or not) their output signal
through the axon to other neurons.

McCulloch and Pitts’s model of a neuron is exemplified in Figure 1.6. The
main idea is that after receiving the information from the input, the neuron assigns
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Figure 1.6: Mathematical model of a neuron according to [McCullochand Pitts, 1943].
values to each input, and after adding them and computing a threshold function
T , the neuron’s output is obtained. This can be mathematically described as

O = T

(
N∑
i

Iiwi

)
, (1.1)

where Ii are the inputs (generated from a previous neuron), wi are the weights
that correspond to Ii input. Finally, the T function outputs 1 if its input is higher
than a certain constant value and 0 otherwise.

However, this model did not provide a learning mechanism for the weights,
which was soon solved by Hebbian Learning Rule.

1.2.4 . Hebbian Learning Rule

Figure 1.7: Donald Olding Hebb [Milner and Milner, 1996].
Hebbian Learning Rule is named after Donald Olding Hebb (1904-1985), Figure

1.7. In 1949 he introduced the famous rule
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« Cells that fire together wire together »

- Donald Olding Hebb [Hebb, 1949].

Hebbian Learning Rule basically states that the connection between two units
should be strengthened as the co-occurrences of these two units increase, presenting
a rule to train the network connection. This can be mathematically written as:

∆wi = η xi y , (1.2)
where ∆wi stands for the change of the synaptic weight (wi) connecting neuron

xi (input) and y, and η is the learning rate.
The main drawback of the Hebbian Learning Rule is that as the frequency

between units’ co-occurrences rises, the weight increases exponentially and quickly
becomes dominant. This problem is known as the instability of the Hebbian Learn-
ing Rule [Wang and Raj, 2017].

1.2.5 . Simple Perceptron

(a) Frank Rosenblatt (b) Perceptron machine
Figure 1.8: The perception of Frank Rosenblatt associating the photo-electric cells and cables to recognize alphabet letters.

In 1958, Frank Rosenblatt (1928-1971) merged Hebbian Learning Rule with the
MCP neuron creating what he called the Perceptron [Rosenblatt, 1958], a machine
that showed the ability to learn. However, his breakthrough was not only limited to
the mathematical model but even the physical, electronic machine, as can be seen
in Figure 1.8. Apart from the learning perspective, another difference between the
Perceptron and the MCP neuron is the introduction of a non-linear function like
the sigmoid function instead of the threshold function T detailed previously [Wang
and Raj, 2017].

1.2.6 . The AI Winter
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In 1969, Marvin Minsky (1927-2016) and Seymour Papert unintentionally un-
raveled the winter of Neural Networks after publishing their book Perceptrons [Min-
sky and Papert, 1969]. In this book, they highlighted the Perceptron limitation
to solve XOR operations. These conclusions resulted in a significant reduction in
work in the area until around 1980.

The main problem discussed here was the impossibility of a single Perceptron
to perform the XOR operation. It is worth noticing, in the context of this work,
that a complex-valued Perceptron does not present this limitation [Nitta, 2004].

In 1982, an initiative by Japan’s Ministry of International Trade and Industry
(MITI), titled the Fifth Generation Computer Project (FGCP), reignited the AI
torch, but it did not last long as the 1984 annual meeting of the Association
for the Advancement of Artificial Intelligence (AAAI), Roger Schank and Marvin
Minsky talked about the coming AI Winter [Kaynak, 2021].

1.2.7 . The AI Wars

Neural Networks and other algorithms inspired by the actual biological neuron
are widely known as connectionism. However, it exists another branch of AI known
as Symbolic AI that is based on logic. Indeed, Symbolic AI was the dominant
paradigm for a long period, mainly around 1960 and 1970, during the connection-
ism AI winter. The research community was very divided between these two fields
of AI. In the mid-1970s, Roger Schank coined the distinction between neat AI and
scruffy AI. Algorithms like Symbolic AI which used logic and formal mathematical
optimization paradigms are known as the neats, and many well-known scientists
such as John McCarty (1927-2011) from Stanford University work on that domain.
On the other hand, Scruffies employ a variety of hand-coding or knowledge en-
gineering. The work of Marvin Minsk at MIT, who published the book discussed
in the previous Section (Ref. [Minsky and Papert, 1969]), was strongly associated
with this term. Indeed, even after the 1990s, the discussion was still a topic of
debate [Minsky, 1991].

1.2.8 . Golden era

It turned out that the solution to the main limitation discussed in Reference
[Minsky and Papert, 1969] was simply to stack many layers of multiple perceptrons
side by side to form what is known as MultiLayer Perceptron (MLP) [Kawaguchi,
2000]. This model has the remarkable property known as the universal approxi-
mation property, which roughly describes that a MLP can represent any function
provided it is big enough.

Convolutional Neural Network (CNN) represent a huge breakthrough in image
processing applications, since Yann LeCun presented LeNet [Le Cun et al., 1995] (5
convolutional layers) designed to recognize handwritten digits in images, the major
breakthrough in the history of CNN architectures showing cutting-edge results for
image classification, then AlexNet [Krizhevsky et al., 2017] winner of ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012 [Kang et al., 2020],
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Figure 1.9: The top-5 error rate in the ImageNet Large Scale VisualRecognition Challenge has been rapidly reducing since the introduc-tion of deep neural networks in 2012 [Zhang, 2015].
VGG-16 [Simonyan and Zisserman, 2014] (16 convolutional layers) and GoogleNet
or Inception-V1 [Szegedy et al., 2015] (22 layers) winner of ILSVRC 2014 and
ResNet-50 [He et al., 2016] (50 convolutional layers) winner of ILSVRC 2015 which
could classify objects in images better than humans. The error rate of ILSVRC
winner is displayed in Figure 1.9. In blue, winner methods were not based on CNN,
showing an important reduction in 2012; from then onwards, algorithms based on
a CNN architecture won every year until in 2015, human error rate (in red) was
beaten by AI. As it can be seen looking at state-of-the-art CNN architectures, the
tendency is to make deeper and deeper neural networks, which explains the term
Deep Networks.

In 2015, Reference [Long et al., 2015] developed a network without using any
dense layer but only convolutional layers designed for semantic segmentation tasks.
This architecture is called Fully Convolutional Neural Network (FCNN) and current
state-of-the-art complex-valued architecture for PolSAR segmentation is based on
this model and we will use it later in this work. This model is also similar to a
possible more popular architecture known as U-Network (U-NET), also published
the same year [Ronneberger et al., 2015].

By searching the term Machine Learning on Google Trends, a tool from Google
that analyzes the popularity of top search queries in Google Search across various
regions and languages, we can see a very steep increase in popularity mainly since
2015/2016 (Figure 1.10).

The results of a search in the Web of Knowledge (all databases) with the
search string Artificial Intelligence also puts in evidence the great popularity of AI.
This result is depicted in Figure 1.11 [Kaynak, 2021]. Note that this image was
generated in 2021, so the total number of publications in 2021 is incomplete and
expected to be higher. Such a surge in the number of publications translates into
5–10 times more submissions to the existing journals, which inevitably results in
some bottlenecks on the journey from submission to publication, forcing researchers
to seek new avenues for dissemination of their work.
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Figure 1.10: Machine Learning (Worldwide) search result on GoogleTrends.

Figure 1.11: Number of AI publications per year according toWebKnowl-edge extracted from [Kaynak, 2021].
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1.3 . MultiLayer Perceptron

We will start our explanation by detailing a fully-connected neural network,
also known as MultiLayer Perceptron (MLP). As the name indicates, the network
consists of layers composed of several perceptrons connected to all the perceptrons
of the following layer.

1.3.1 . Notation

A MLP can be represented generically by Figure 1.12. For that given multi-
layered neural network, we define the following variables, which will be used in the
following subsections and throughout our work:

• 0 ≤ l ≤ L corresponds to the layer index where L is the output layer index
and 0 is the input layer index.

• 1 ≤ n ≤ Nl the neuron index, where Nl denotes the number of neurons of
layer l.

• ω
(l)
nm weight of the nth neuron of layer l− 1 with the mth neuron of

layer l.

• σ activation function.

• X
(l)
n = σ

(
V

(l)
n

)
considered the output of layer l and input of layer l + 1,

in particular, X(L)
n = yn. With V

(l)
n being

• V
(l)
n =

Nl−1∑
m=1

ω(l)
nmX(l−1)

m

• en(dn, yn) error function. dn is the desired output for neuron n of the
output layer.

• L =

NL∑
n

en cost or loss function.

• E =
1

P

P∑
p

Lp minimum error function, with P the total number of train-

ing cases or the size of the desired batch size.
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Figure 1.12: Feed-forward Neural Network Diagram.

1.4 . Feed-forward phase

Regardless if we are performing classification or regression tasks, we will have
an input vector X(0) and the desired output d. Because the labels d are used
for training, we say this is a supervised learning algorithm. Although there exist
some variances to doing semi-supervised learning with this type of network, this is
outside the scope of this thesis, and we will not explore it.

The output of neuron n of a layer l is computed as

X(l)
n = σ

Nl−1∑
m

ω(l)
nmX(l−1)

m + bn

 . (1.3)

The new term bn, not discussed in Section 1.3.1, is known as the bias term
and is also a trainable parameter that helps shift the activation function to the left
or the right, which might be critical for successful training.

Knowing that X(0)
n is the input and X

(L)
n is the output, we can simply randomly

initialize
{
ω
(l)
nm

}
l,m,n

, and we will be able to compute the output of the network

given a certain input. This output, however, will be random and far from the
expected behavior. We need, therefore, to train our network.

1.5 . Backpropagation

After computing the output of the network, we can compute the cost or L
function as defined in Section 1.3.1 using the labels or ground truth dn. By
computing the derivative of the loss with respect to each trainable parameter to
obtain the gradient, we would be able to minimize the function by knowing in
which direction we should update the weights. We will, therefore, upgrade the
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weights with the following optimization definition:

∆ω(l)
nm = −η

∂L
∂ω

(l)
nm

. (1.4)
In order to successfully train a neural network, we will therefore need to be able

to compute the gradient automatically using some algorithm. This is done using
the algorithm known as automatic differentiation (autodiff), which is explained
in detail in Appendix C. This algorithm is also used by Tensorflow to compute
the gradients, and it already supports complex numbers for which there was no
need to implement this algorithm in our toolbox. Furthermore, the mathematical
development for the backpropagation algorithm is shown in Appendix B.6. Both
Appendixes (B and C) explain the real case first and then develop the complex-
valued algorithm using the real-valued case as a base.

1.6 . Modules

The model explained so far is a basic model to which many optimizations and
tweaks have been made over the years to improve performance. We will explain
the most relevant for our research here.

1.6.1 . Activation functions
The activation function is of vital importance for the generalization of the

neural network. Indeed, if not used, adding hidden layers would have no effect,
and the network will just perform as a linear classifier.

As discussed previously, in Section 1.2.3, the MCP neuron model proposes
a threshold function T that, when its threshold value is 0, is equivalent to the
binary step (sign) function. However, researchers migrated from its beginning to
the logistic sigmoid function, a special case of the logistic equation defined by
the Belgian mathematician Pierre-François Verhulst (1804-1849) in 1838 [Bacaër,
2011]. The logistic sigmoid function is defined as

Sigmoid(x) =
1

1 + e−x
. (1.5)

Another popular option for feed-forward networks is the hyperbolic tangent
(tanh), whose equation is

tanh(x) =
ex − e−x

ex + e−x
. (1.6)

Both of these functions are s-shapes for their form, as can be seen in Figure
1.13a. tanh function has the virtue of being zero centered, tanh ∈ [−1, 1] and thus
having zero mean. Both these functions, however, have a problem known as the
vanishing gradient. This issue means that for high or low values of x, the gradient
will be null, as we can see from Figure 1.13b, and the network will stop learning.
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(a) S-shape activation functions (b) S-shape activation derivates
Figure 1.13: Logistic Sigmoid and tanh activation functions and itsderivatives.

In 2010, Vinod Nair and Geoffrey Everest Hinton (1947-) proposed to use the
Rectified Linear Unit (ReLU) activation function [Nair and Hinton, 2010], which is
currently the most widely used activation function since that date [Nwankpa et al.,
2020,Ramachandran et al., 2018]. ReLU is a piece-linear activation function as it
can be computed as

ReLU(x) = max(0, x) =

{
x if 0 < x

0 if otherwise .
(1.7)

Figure 1.14: ReLU activation function.
From Equation 1.7, we can deduce that the calculation of this function is

fast to compute as it does not involve any exponential or division as sigmoid or
tanh need. The derivative is also very fast as it can be seen as the sign function
with an indeterminate value at zero (see Figure 1.14). Indeed, although being not
bounded and not derivable at 0, it helps mitigate the vanishing gradient problem.
In general, ReLU seems like the best option for deep networks as they are easier to
optimize, converge faster, generalize better, and faster to compute [Zeiler et al.,
2013,Krizhevsky et al., 2012].
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Due to ReLU popularity, many variations have been developed, such as ELU
[Clevert et al., 2015], LeakyReLU [Maas et al., 2013], SeLU [Klambauer et al.,
2017], Parametric ReLU [He et al., 2015], etc.

A very useful activation function when dealing with classification problems is
the softmax function [Bridle, 1989], which is defined as

softmax(x)i =
exi

NL∑
j=1

exj

, (1.8)

where the input is a vector of size, NL, and i is the i-th element of the softmax
output vector. This function ensures all its outputs are positive and that their sum
adds to 1, constituting a valid probability distribution. If we are to use a neural
network for classification problems, we could design a network whose output size
NL equals the total amount of classes and create our labels to match these outputs;
for example, in a case of four classes, an input vector pertaining to class number
two (counting from zero) would be represented by the vector (0, 0, 1, 0)T . This
kind of representation is known as one-hot encoding. Under this context, we could
use softmax as the output activation function, and it will suffice to choose the
higher value as the prediction.

For all our use cases, we will be using softmax as the output function and any
of the other functions as the hidden layers activation function, with a preference
towards the ReLU function.

1.6.2 . Loss
For multi-class classification tasks, Categorical cross-entropy is probably the

most well-known loss function of all and the only one we will be discussing here.
Categorical cross-entropy is defined as

en(dn, yn) =
∑
i

dn,i log(yn,i) , (1.9)
with dn,i being the ith component of the nth sample (i.e., either 0 or 1 de-

pending on the label).
Notice that this definition is for multi-class tasks using one-hot encoding repre-

sentation. We could simplify the definition for binary classification tasks by using:

en(dn, yn) = −dn log(yn)− (1− dn) log(1− yn) . (1.10)
Among the two terms, only one will be used depending on the value of dn. In

both cases, a correct prediction will yield a 1 inside the log function, which will
equal a loss value of zero, as seen in Figure 1.15. As the interior of the log goes
farther from 1, the error increases faster. This behavior translates into a higher
penalization where predictions had higher confidence than errors where the model
was not certain of the decision.
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Figure 1.15: − log10 function

For our semantic segmentation experiments, we sometimes used patch images
where not all pixels had a label. This was represented as a vector with zeros like
d = (0, 0, 0, 0)T . Although not specifically mentioned in the following Chapters,
these cases were contemplated in the code, and the loss function ignored those
pixels.

1.6.3 . Optimizer

The optimizer listed in Equation 1.4 is known as gradient descent. In this
case, the loss function is computed using the average of all the training examples
to approach the optimal minima. However, we normally have a huge number of
training examples which can make the training extremely slow to compute, as all
costs must be computed before each parameter upgrade. Instead, what is done is to
split the input dataset into smaller batches of a given size and trains iteratively per
batch. If you have, for example, one hundred batches, the trainable parameters will
be updated one hundred times with only seeing each training example once. Once
all the batches have been used for training, we say we did one epoch. Training
a neural network is composed of hundreds or even thousands of epochs. This
methodology is called Stochastic Gradient Descent (SGD).

Extensive work has been done in the field of optimizers. Adding momentum
to the SGD algorithm can simulate some sort of inertia that increase stability
and avoid certain local minima. AdaGrad [Duchi et al., 2011] uses a different
learning rate for each neuron at each layer. There is RMS-Prop (Root Mean Square
Propagation) [Tieleman and Hinton, 2012] which can be seen as the combination
of both momentum and AdaGrad. Other optimizations might be mentioned, such
as Adadelta [Zeiler, 2012] or Ftrl [McMahan et al., 2013] but probably the most
significant of all (and the one we will choose to work within our experiments) is
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Adam (Adaptive Moment Estimation) [Kingma and Ba, 2014]. Adam is easy to
implement, computationally efficient, and requires little memory [Kingma and Ba,
2014]. Both Adam and RMS-Prop clearly outperform SGD [Choi et al., 2019,Desai,
2020]. Other modifications were done to Adam optimizer such as Nadam [Dozat,
2016] or AmsGrad [Reddi et al., 2018].

1.6.4 . Initialization

As explained in Section 1.4, one must randomly initialize the trainable param-
eters. However, which law to use for this initialization was not explained. One of
the most popular initialization algorithms is Glorot, also known as Xavier initial-
ization technique [Glorot and Bengio, 2010]. This method proposes to maintain a
constant variance when doing the feed-forward and backpropagation phases. As it
is not possible to maintain both cases at the same time, a compromise is chosen.

Xavier initialization technique was designed for sigmoid activation functions,
which were popular at that time. To develop their methodology, Glorot et al.
assumed to be working on the linear part of the activation function. This is a
bold assumption when using ReLU as an activation function and, therefore He (or
Kaiming) initialization technique was born [He et al., 2015], which avoids the use
of this assumption.

1.6.5 . Convolutional Neural Networks

So far, we have used a fully-connected layer for our models. However, several
different layers can be used. In this section, we will remit ourselves to only one
different type of layer, which is very popular whenever we are dealing with images,
the convolutional layer [Le Cun et al., 1999]. These layers give the name to the
famous Convolutional Neural Network (CNN)s, which are used in most state-of-
the-art benchmarks [Patel and Patel, 2020].

Convolutional layers consist of a set of filters or kernels. Each kernel is slid
through the input image, multiplying its values with those of the input element-wise
and then adding them later to form the output or feature map. This procedure is
exemplified in Figure 1.16.

Normally, zeros are added to the input image (known as zero-padding) to pre-
vent the feature map from being of a smaller size. Other parameters are important
such as stride, defined as the step size of the kernel when traversing the image or
dilatation rate [Yu and Koltun, 2015], which defines a spacing between the values
in a kernel. In particular, a stride of 2 is used on the Pooling layers to reduce
the size of the image. Reference [Dumoulin and Visin, 2016] talks about all these
variables and how they relate to the convolutional layer output shape.

A popular layer used when implementing CNN is the pooling layer which reduces
the size of the giving input. The two main pooling layers are the average pooling
(reduce the size by performing an average of adjacent pixels) and the max pooling
(keeps the maximum value of a given boxcar section exemplified in Figure 1.17).
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Figure 1.16: Convolutional layer example extracted from [Yamashitaet al., 2018].
1.6.6 . Overfitting and Regularization

If we are to fit the dots on Figure 1.18 with a polynomial equation using only
the blue dots as training, we could have different curves depending on the order
of the polynomial equation we are to implement. Indeed, the lower right plot
will obtain 100% accuracy on the training data, but we can easily see how the
upper figure generalizes better for the desired task. This phenomenon is known as
overfitting. If we train long enough on certain data, it is possible that although the
accuracy rises, the network generalizes poorly for unseen data. A simple technique
to avoid this is called early stopping [Morgan and Bourlard, 1990] which consists
of using a validation set that computes the loss after each epoch, and the moment
the loss starts to rise compared to previous epochs, we stop the training.

Another simple and powerful technique to reduce overfitting is Dropout [Srivas-
tava et al., 2014], which consists of randomly eliminating some neurons at certain
epochs.

When training Deep Neural Networks, the distribution of each layer inputs
changes during training because the parameters of the previous layer change, slow-
ing down, training [Ioffe and Szegedy, 2015]. It is possible to speed up this process
by using Batch Normalization (BN) which normalizes layer inputs. Batch Normal-
ization also reduces overfitting as well as provides similar regularization benefits as
Dropout [Ioffe and Szegedy, 2015].
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Figure 1.17: Max pooling example extracted from [Yamashita et al.,2018].

Figure 1.18: Overfitting example extracted from [Selmo et al., 2018].
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2 - Implementation of the Complex-Valued
Neural Network Modules

Although CVNN has been investigated for par-
ticular structures of complex-valued data [Hirose
and Yoshida, 2012,Hänsch and Hellwich, 2009a,Hi-
rose, 2012, Hirose, 2009], the difficulties in im-
plementing CVNN models in practice have slowed
down the field from growing further [Mönning and
Manandhar, 2018]. Indeed, the two most popu-
lar Python libraries for developing deep neural net-
works, which are Pytorch, from Meta (formerly
named Facebook) and Tensorflow from Google do
not fully support the creation of complex-valued
models.

Even though Tensorflow does not fully support
the implementation of a CVNN, it has one signifi-
cant benefit: It enables the use of complex-valued
data types for the automatic differentiation (au-
todiff) algorithm [Hoffmann, 2016] to calculate the
complex gradients as defined in Appendix C. Since
July 2020, PyTorch also added this functionality as BETA with the version 1.6
release. later on, on June 2022, after the release of version 1.12, PyTorch ex-
tended its complex functionality by adding complex convolutions (also as BETA).
Although this indicates a clear intention to develop towards CVNN support, there
is still a lot of development to be done.

Libraries to develop CVNNs do exist, the most important one of them being
probably the code published in [Trabelsi et al., 2017]. However, we have decided not
to use this library since the latter uses Theano as a back-end, which is no longer
maintained. Another code was published on GitHub that uses Tensorflow and
Keras to implement CVNN [Dramsch, 2019]. However, as Keras does not support
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Figure 2.1: PIP cvnn presentation page.

complex-valued numbers, the published code simulates complex operations using
real-valued datatypes. Therefore, the user has to transform its complex-valued
data into a real-valued equivalent before using this library. The same happened
with ComplexPyTorch [Matthès et al., 2021] until it was updated in January 2021
to support complex tensors.

During this thesis, we created a Python tool to deal with the implementation
of CVNN models using Tensorflow as back-end. Note that the development of
this library started in 2019, whereas PyTorch support for complex numbers started
in mid-2020, which is the reason why the decision to use Tensorflow instead of
Pytorch was made. To the author’s knowledge, this was the first library that
natively supported complex-number data types. The library is called CVNN and
was published [Barrachina, 2021] using CERN’s Zenodo platform which received
already 18 downloads. It can be installed using both Python Index Package (PIP)
(Figure 2.1) and Anaconda. The latter already has 193 downloads as of the 8th

October 2022, as shown in Figure 2.2, from which none of those downloads were
ourselves.

The library was open-sourced for the community on GitHub [Barrachina, 2019]
and has received a very positive reception from the community. As can be seen
from Figure 2.3, the GitHub repository received an average of 2 clones and almost
50 visits per day in the last two weeks. With 62 stars at the beginning of October
2022. It also has a total of 16 forks and one pull request for a new feature that has
already been reviewed and accepted. Six users are actively watching every update
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Figure 2.2: Anaconda cvnn presentation page.

Figure 2.3: GitHub cvnn toolbox traffic.
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on the code as they have activated the notifications. Finally, two users have codes
in GitHub importing the library. Thirty issues have been reported, and it was also
subject to 31 private emails. All these metrics are evidence of the impact and
interest of the community in the published code.

The library was documented using reStructuredText and uploaded for world-
wide availability. The link for the full documentation (displayed in Figure 2.4a) can
be found in the following link: complex-valued-neural-networks.rtfd.io.
The documentation received a daily view which varied from a minimum of 18
views on one day to a maximum of 173 views as shown in Figure 2.4b

The Python testing framework Pytest was used to maintain a maximum degree
of quality and keep it as bug-free as possible. Before each new feature implementa-
tion, a test module was created to assert the expected behavior of the feature and
reduce bugs to a minimum. This methodology also guaranteed feature compatibil-
ity as all designed test modules must pass in order to deploy the code. The library
allows the implementation of a Real-Valued Neural Network (RVNN) as well with
the intention of changing as little as possible the code when using complex data
types. This made it possible to perform a straight comparison against Tensorflow ’s
models, which helped in the debugging. Indeed, some Pytest modules achieved
the same result that Tensorflow when initializing the models with the same seed.

Special effort was made on the User eXperience (UX) by keeping the Appli-
cation Programming Interface (API) as similar as possible to that of Tensorflow.
The following code extract would work both for a Tensorflow or cvnn application
code:

1 import numpy as np
2 import tensorflow as tf
3
4 # Gets the dataset , when using cvnn you normally want this

to be complex
5 # for example numpy arrays of dtype np.complex64
6 # to be done by each user
7 (train_images , train_labels), (test_images , test_labels) =

get_dataset ()
8
9 # This function returns a tf.Model object
10 model = get_model ()
11
12 # Compile as any TensorFlow model
13 model.compile(optimizer=’adam’, metrics =[’accuracy ’], loss

=tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True))

14 model.summary ()
15
16 # Train and evaluate
17 history = model.fit(train_images , train_labels , epochs=

epochs , validation_data =( test_images , test_labels))
18 test_loss , test_acc = model.evaluate(test_images ,
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(a) Read the Docs documentation presentation page.

(b) cvnn documentation daily total views in Read The Docs.
Figure 2.4: Documentation hosted by Read the Docs.
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test_labels , verbose =2)

For creating the model, two APIs are available, the first one known as the
sequential API whose usage is something like the following code extract:

1 import cvnn.layers as layers
2
3 def get_model ():
4 model = tf.keras.models.Sequential ()
5 model.add(layers.ComplexInput(input_shape =(32, 32, 3))

)
6 model.add(layers.ComplexConv2D (32, (3, 3), activation=

’cart_relu ’))
7 model.add(layers.ComplexAvgPooling2D ((2, 2)))
8 model.add(layers.ComplexConv2D (64, (3, 3), activation=

’cart_relu ’))
9 model.add(layers.ComplexMaxPooling2D ((2, 2)))
10 model.add(layers.ComplexConv2D (64, (3, 3), activation=

’cart_relu ’))
11 model.add(layers.ComplexFlatten ())
12 model.add(layers.ComplexDense (64, activation=’

cart_relu ’))
13 model.add(layers.ComplexDense (10, activation=’

convert_to_real_with_abs ’))
14 # An activation that casts to real must be used at the

last layer.
15 # The loss function cannot minimize a complex number
16 return model

However, some models are simply impossible to create with the sequential API
like a U-NET architecture. For that, the functional API must be used like this:

1 import cvnn.layers as layers
2
3 def get_model ():
4 inputs = layers.complex_input(shape =(128, 128, 3))
5 c0 = layers.ComplexConv2D (32, activation=’cart_relu ’,

kernel_size =3)(inputs)
6 c1 = layers.ComplexConv2D (32, activation=’cart_relu ’,

kernel_size =3)(c0)
7 c2 = layers.ComplexMaxPooling2D(pool_size =(2, 2),

strides =(2, 2), padding=’valid ’)(c1)
8 t01 = layers.ComplexConv2DTranspose (5, kernel_size =2,

strides =(2, 2), activation=’cart_relu ’)(c2)
9 concat01 = tf.keras.layers.concatenate ([t01 , c1], axis

=-1)
10
11 c3 = layers.ComplexConv2D (4, activation=’cart_relu ’,

kernel_size =3)(concat01)
12 out = layers.ComplexConv2D (4, activation=’cart_relu ’,

kernel_size =3)(c3)
13 return tf.keras.Model(inputs , out)
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When using Keras loss functions, the output of the model must be real-valued
as Tensorflow will not work with complex values. There are activation functions
defined that receive complex values as input but output real value results to deal
with this problem. Another solution is to use the cvnn library-defined loss functions
instead.

Tensorflow blocks the use of a complex-valued loss as the optimizer input
but allows the update over complex-valued trainable parameters by means of the
Wirtinger calculus (Appendix B.5). As the loss is real-valued, the optimizer can
be the same as the one used for real-valued networks, so no implementation was
needed in this regard. However, the other modules must be implemented. Their
detail will be described in the following Sections.

2.1 . Complex-Valued layers

CVNN, as opposed to conventional RVNN, possesses complex-valued input,
which allows working with imaginary data without any pre-processing needed to
cast its values to the real-valued domain. Each layer of the complex network op-
erates analogously to a real-valued layer with the difference that its operations are
on the complex domain (addition, multiplication, convolution, etc.) with trainable
parameters being complex-valued (weights, bias, kernels, etc.). Activation func-
tions are also defined on the complex domain so that f : C → C and will be
described on Section 2.3.

A wide variety of complex layers is supported by the library, and the full
list can be found in complex-valued-neural-networks.rtfd.io/en/latest/
layers.html.

Some layers, such as dense layers, can be extended naturally as addition and
multiplication are defined in the complex domain. Therefore, just by making the
neurons complex-valued, their behavior is evident. The same analogy can be made
for convolutional layers as the transformation from the complex to the real plane
does not change the resolution of the image to justify increasing the kernel size or
changing the stride.

Special care must be taken when implementing ComplexDropout as applying
it to both real and imaginary parts separately will result in unexpected behavior
as the ignoring weights will not be coincident, e.g., one might mask the real part
while using the imaginary part for the computation. This, however, was taken
into account for the layer implementation. The usage of this layer is analogous
to Tensorflow Dropout layer, also known as inverted dropout, which also uses the
boolean training parameter indicating whether the layer should behave in training
mode (adding dropout) or in inference mode (doing nothing).

Other layers, such as ComplexFlatten or ComplexInput, needed to be imple-
mented as Tensorflow equivalent Flatten and Input cast the output to float.

2.1.1 . Complex Pooling Layers
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Pooling layers are not so straightforward. In the complex domain, their values
are not ordered as the real values, meaning there is no sense of a maximum value,
rendering it impossible to implement a Max Pooling layer directly on the input.
Reference [Zhang et al., 2017] proposes to use the norm of the complex figure
to make this comparison, and this method is used for the toolbox implementation
of the ComplexMaxPooling layer. Average Pooling opens the possibility to other
interpretations as well. Even if, for computing the average, we could add the
complex numbers and divide by the total number of terms as one would do with
real numbers, another option arises known as circular mean. The circular or angular
mean is designed for angles and similar cyclic quantities.

(a) Arithmetic mean (b) Circular mean
Figure 2.5: Mean example for two complex values.

When computing the average of 2 + 0 i and 0 + 1 i, the conventional complex
mean will yield 1 + 0.5 i for what the angle will be π/6 although the vectors had
angles of π/2 and 0 (Figure 2.5a). The circular mean consists of normalizing the
values before computing the mean, which yields 0.5 + 0.5 i, having an angle of
π/4 (Figure 2.5b). The circular mean will have a norm inside the unit circle. It
will be at the unit circle if all angles are equal, and it will be null if the angles are
equally distributed. Another option for computing the mean is to use the circular
mean definition for the angle and then compute the arithmetic mean of the norm
separately, as represented in Figure 2.6.

All these options were used for computing the average pooling so the user
could choose the case that fits their data best.

2.1.2 . Complex Upsampling layers
Upsampling techniques, which enable the enlargement of 2D images, were

implemented. In particular, 3 techniques were applied, all of them documented
in complex-valued-neural-networks.readthedocs.io/en/latest/layers/
complex_upsampling.html.

• Complex Upsampling Upsampling layer for 2D inputs. The upsampling
can be done using the nearest neighbor or bilinear interpolation. There are
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Figure 2.6: Circular mean with norm average.

Figure 2.7: Upsampling alignments options extracted from [bkkm16,2019].
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at least two possible ways to implement the upsampling method depending
if the corners are aligned or not (see Figure 2.7). Our implementation does
not align corners.

• Complex Transposed Convolution Sometimes called Deconvolution al-
though it does not compute the inverse of a convolution [Zeiler et al., 2010].

• Complex Un-Pooling Inspired on the functioning of Max Un-pooling ex-
plained in Reference [Zafar et al., 2018]. Max un-pooling technique receives
the maxed locations of a previous Max Pooling layer and then expands an
image by placing the input values on those locations and filling the rest with
zeros as shown in Figure 2.8.

Complex un-pooling locations are not forced to be the output of a max pooling
layer. However, in order to use it, we implemented as well a layer class named
ComplexMaxPooling2DWithArgmax which returns a tuple of tensors, the max pooling
output and the maxed locations to be used as input of the un-pooling layer.

There are two main ways to use the unpooling layer, either by using the ex-
pected output shape or using the upsampling_factor parameter.

1 from cvnn.layers import ComplexUnPooling2D , complex_input ,
ComplexMaxPooling2DWithArgmax

2 import tensorflow as tf
3 import numpy as np
4
5 x = get_img () # Gets an image just for the example
6 # Removes the batch size shape
7 inputs = complex_input(shape=x.shape [1:])
8 # Apply max -pooling and also get argmax
9 max_pool_o , max_arg = ComplexMaxPooling2DWithArgmax(

strides=1, data_format="channels_last", name="argmax")(
inputs)

10 # Applies the Unpooling
11 outputs = ComplexUnPooling2D(x.shape [1:])([max_pool_o ,

max_arg ])
12
13 model = tf.keras.Model(inputs=inputs , outputs=outputs ,

name="pooling_model")
14 model.summary ()
15 model(x)

It is possible to work with variable size images using a partially defined ten-
sor, for example, shape=(None, None, 3). In this case, the second option (using
upsampling_factor) is the only way to deal with them in the following manner.

1 # Input is an unknown size RGB image
2 inputs = complex_input(shape =(None , None , 3))
3 max_pool_o , pool_argmax = ComplexMaxPooling2DWithArgmax(

strides=1, data_format="channels_last", name="argmax")(
inputs)
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Figure 2.8: Max Unpooling graphical explanation extracted from [Zafaret al., 2018].
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4 unpool = ComplexUnPooling2D(upsampling_factor =2)([
max_pool_o , pool_argmax ])

5
6 model = tf.keras.Model(inputs=inputs , outputs=outputs ,

name="pooling_model")
7 model.summary ()
8 model(x)

All the discussed layers in this Section have a dtype parameter which defaults to
tf.complex64, however, if tf.float32 or tf.float64 is used, the layer behaviour
should be arithmetically equivalent to the corresponding Tensorflow layer, allowing
for fast test and comparison. In some cases, for example, ComplexFlatten, this
parameter has no effect as the layer can already deal with both complex- and
real-valued input. Also, a method get_real_equivalent is implemented which
returns a new layer object with a real-valued dtype and allows a output_multiplier
parameter in order to re-dimension the real network if needed. This is used to

obtain an equivalent real-valued network as described in Section 5.1.

2.2 . Complex-Valued Backpropagation

As mentioned earlier in this Chapter, the loss function remains real-valued to
minimize an empirical risk during the learning process. Despite the architectural
change for handling complex-valued inputs, the main challenge of CVNN is the
way to train such neural networks.

A problem arises when implementing the learning algorithm (commonly known
as backpropagation). The parameters of the network must be optimized using
the gradient or any partial-derivative-based algorithm. However, standard complex
derivatives only exist for the so-called holomorphic or analytic functions.

Because of Liouville’s theorem (discussed in Appendix B.4), CVNNs are bound
to use non-holomorphic functions and therefore can not be derived using standard
complex derivative definition. CVNNs bring in non-holomorphic functions in at
least two ways [Hirose et al., 2013]:

• with the loss function being minimize over complex parameters

• with the non-holomorphic complex-valued activation functions

Liouville’s theorem implications were considered to be a big problem around
1990 as some researchers believed it led to the impossibility of obtaining and/or
analyzing the dynamics of the CVNNs [Hirose, 2013].

However, Wirtinger calculus (discussed in Appendix B.5) generalizes the no-
tion of complex derivative, making the holomorphic function a special case only,
allowing researchers to successfully implement CVNNs. Under Wirtinget calculus,
the gradient is defined as [Amin et al., 2011,Li and Adalı, 2008]:

∇zf = 2
∂f

∂z
. (2.1)
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When applying reverse-mode autodiff on the complex domain, some good tech-
nical reports can be found, such as [Boeddeker et al., 2017] or [Hunger, 2007].
However, it is left to be verified if Tensorflow correctly applies the equations men-
tioned in these reports. Indeed, no official documentation could be found that
asserts the implementation of these equations and Wirtinger Calculus when using
Tensorflow gradient on complex variables. This is not the case with PyTorch, where
they explicitly say that Wirtinger calculus is used when computing the derivative in
the following link: pytorch.org/docs/stable/notes/autograd.html. In said
link, they indirectly say also that "This convention matches TensorFlow’s conven-
tion for complex differentiation [...]" referencing the implementation of Equation
2.1.

However, we do know reverse-mode autodiff is the method used by Tensorflow
[Géron, 2019]. When reverse engineering the gradient definition of Tensorflow,
the conclusion discussed on the official Tensorflow ’s GitHub repository issue report
3348 is that the gradient for f : C → C is computed as:

∇zf =

(
∂f

∂z
+

∂f

∂z

)
= 2

∂Re(f)

∂z
. (2.2)

For application purposes, as the loss function is real-valued, we are only inter-
ested in cases where f : Cn −→ R for what the above equation can be simplified
as:

∇zf = 2
∂f

∂z
=

(
∂f

∂x
+ i

∂f

∂y

)
, (2.3)

which indeed coincides with Wirtinger calculus definition. For this reason, it
was not necessary to implement autodiff from scratch, and Tensorflow ’s algorithm
was used instead.

The mathematical equations on how to compute this figure are explained on
Appendix B.6 and it’s implementation for automatic calculation on a CPU or GPU
is described in Appendix C.1 and C.2.

2.3 . Complex Activation functions

One of the essential characteristics of CVNN is its activation functions, which
should be non-linear and complex-valued. An activation function is usually chosen
to be piece-wise smooth to facilitate the computation of the gradient. The complex
domain widens the possibilities to design an activation function, but the probable
more natural way would be to extend a real-valued activation function to the
complex domain.

Our toolbox currently supports a wide range of complex-activation functions
listed on act_dispatcher dictionary.

1 act_dispatcher = {
2 ’linear ’: linear ,
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3 # Complex input , real output
4 ’cast_to_real ’: cast_to_real ,
5 ’convert_to_real_with_abs ’: convert_to_real_with_abs ,
6 ’sigmoid_real ’: sigmoid_real ,
7 ’softmax_real_with_abs ’: softmax_real_with_abs ,
8 ’softmax_real_with_avg ’: softmax_real_with_avg ,
9 ’softmax_real_with_mult ’: softmax_real_with_mult ,
10 ’softmax_of_softmax_real_with_mult ’:

softmax_of_softmax_real_with_mult ,
11 ’softmax_of_softmax_real_with_avg ’:

softmax_of_softmax_real_with_avg ,
12 ’softmax_real_with_polar ’: softmax_real_with_polar ,
13 # Phasor networks
14 ’georgiou_cdbp ’: georgiou_cdbp ,
15 ’mvn_activation ’: mvn_activation ,
16 ’complex_signum ’: complex_signum ,
17 # Type A (cartesian)
18 ’cart_sigmoid ’: cart_sigmoid ,
19 ’cart_elu ’: cart_elu ,
20 ’cart_exponential ’: cart_exponential ,
21 ’cart_hard_sigmoid ’: cart_hard_sigmoid ,
22 ’cart_relu ’: cart_relu ,
23 ’cart_leaky_relu ’: cart_leaky_relu ,
24 ’cart_selu ’: cart_selu ,
25 ’cart_softplus ’: cart_softplus ,
26 ’cart_softsign ’: cart_softsign ,
27 ’cart_tanh ’: cart_tanh ,
28 ’cart_softmax ’: cart_softmax ,
29 # Type B (polar)
30 ’pol_tanh ’: pol_tanh ,
31 ’pol_sigmoid ’: pol_sigmoid ,
32 ’pol_selu ’: pol_selu ,
33 # Elementary Transcendental Functions (ETF)
34 ’etf_circular_tan ’: etf_circular_tan ,
35 ’etf_circular_sin ’: etf_circular_sin ,
36 ’etf_inv_circular_atan ’: etf_inv_circular_atan ,
37 ’etf_inv_circular_asin ’: etf_inv_circular_asin ,
38 ’etf_inv_circular_acos ’: etf_inv_circular_acos ,
39 ’etf_circular_tanh ’: etf_circular_tanh ,
40 ’etf_circular_sinh ’: etf_circular_sinh ,
41 ’etf_inv_circular_atanh ’: etf_inv_circular_atanh ,
42 ’etf_inv_circular_asinh ’: etf_inv_circular_asinh ,
43 # ReLU
44 ’modrelu ’: modrelu ,
45 ’crelu ’: crelu ,
46 ’zrelu ’: zrelu ,
47 ’complex_cardioid ’: complex_cardioid
48 }

Indeed, to implement an activation function, it will suffice to add it to the
act_dispatcher dictionary to have full functionality.
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In our published toolbox, there are two ways of using an activation function,
either by using a string listed on act_dispatcher like

1 ComplexDense(units=x, activation=’cart_sigmoid ’)

or by using the function directly

1 from cvnn.activations import cart_sigmoid
2
3 ComplexDense(units=x, activation=cart_sigmoid)

This usage also support using tf.keras.layers.Activation to implement an
activation function directly as an independent layer.

1 from cvnn.activations import cart_relu
2
3 layer = tf.keras.layers.Activation(’cart_relu ’)
4 layer = tf.keras.layers.Activation(cart_relu)

Although complex activation functions used on CVNN are numerous [Scarda-
pane et al., 2018, Bassey et al., 2021, Lee et al., 2022], we will mainly focus on
two types of activation functions that are an extension of the real-valued func-
tions [Kuroe et al., 2003]:

• Type-A: σA(z) = σRe (Re(z)) + i σIm (Im(z)),

• Type-B: σB(z) = σr(|z|) exp (i σϕ(arg(z))),

where σRe, σIm, σr, σϕ are all real-valued functions1. Re and Im operators are the
real and imaginary parts of the input, respectively, and the arg operator gives the
phase of the input. Note that in Type-A, the real and imaginary parts of an input
go through nonlinear functions separately, and in Type-B, the magnitude and phase
go through nonlinear functions separately.

The most popular activation functions, sigmoid, hyperbolic tangent (tanh) and
Rectified Linear Unit (ReLU), are extensible using Type-A or Type-B approach. Al-
though tanh is already defined on the complex domain for what, its transformation
is probably less interesting.

Other complex-activation functions are supported by our toolbox including el-
ementary transcentental functions (complex-valued-neural-networks.rtfd.
io/en/latest/activations/etf.html) [Kim and Adali, 2001a,Kim and Adali,
2001b] or phasor activation function (complex-valued-neural-networks.rtfd.
io/en/latest/activations/mvn_activation.html) such as multi-valued neu-
ron (MVN) activation function [Ajzenberg and Tošić, 1972,Aizenberg et al., 1973]
or Georgiou CDBP [Georgiou and Koutsougeras, 1992].

1Although not with the same notation, these two types of complex-valued activa-tion functions are also discussed in Section 3.3 of [Hirose, 2012]
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2.3.1 . Complex Rectified Linear Unit (ReLU)
Normally, σϕ is left as a linear mapping [Kuroe et al., 2003, Hirose, 2012].

Under this condition, using Rectified Linear Unit (ReLU) activation function for
σr has a limited interest since the latter makes σB converge to a linear function,
limiting Type-B ReLU usage. Nevertheless, ReLU has increased in popularity over
the others as it has proved to learn several times faster than equivalents with
saturating neurons [Krizhevsky et al., 2012]. Consequently, probably the most
common complex-valued activation function is Type-A ReLU activation function
more often defined as Complex-ReLU or CReLU [Trabelsi et al., 2017,Cao et al.,
2019].

However, several other ReLU adaptations to the complex domain were defined
throughout the bibliography as zReLU [Guberman, 2016], defined as

zReLU(z) =

{
z if 0 < arg(z) < π/2

0 if otherwise
, (2.4)

letting the output as the input only if both real and imaginary parts are positive.
Another popular adaptation is modReLU [Arjovsky et al., 2016], defined as

modReLU(z) =

ReLU (|z|+ b)
z

|z| if |z| ≥ b

0 if otherwise
, (2.5)

where b is an adaptable parameter defining a radius along which the output of the
function is 0. This function provides a point-wise non-linearity that affects only the
absolute value of a complex number. Another extension of ReLU, is the complex
cardioid proposed by [Virtue et al., 2017]

σ(z) =
(1 + cos (arg(z))) z

2
. (2.6)

This function maintains the phase information while attenuating the magnitude
based on the phase itself.

These last three activation functions (cardioid, zReLU and modReLU) were
analyzed and compared against each other in [Scardapane et al., 2018].

The discussed variants were implemented in the toolbox documented as usual in
complex-valued-neural-networks.rtfd.io/en/latest/activations/relu.
html.

2.3.2 . Output layer activation function
The image domain of the output layer depends on the set of data labels. For

classification tasks, real-valued integers or binary numbers are frequently used to
label each class. For these cases, one option would be to cast the labels to the
complex domain as done in [Zhang et al., 2017], where a transformation is done
to a label c ∈ R like T : c → c+ i c.
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The second option is to use an activation function σ : C → R as the output
layer. A popular real-valued activation used for classification tasks is the softmax
function [Goodfellow et al., 2016] (normalized exponential), which maps the mag-
nitude to [0, 1], so the image domain is homogeneous to a probability. There are
several options on how to transform this function to accept complex input and still
have its image ∈ [0; 1]. These options include either performing an average of the
magnitudes σRe, σIm or σr, σϕ, using only one of the magnitudes like σr or apply the
real-valued softmax to either the addition or multiplication of σRe, σIm or σr, σϕ,
between other options. Most of these variants are implemented in the library de-
tailed in this Chapter and documented in complex-valued-neural-networks.
rtfd.io/en/latest/activations/real_output.html.

2.4 . Complex-compatible Loss functions

For CVNNs, the loss or cost function to minimize will have a real-valued output
as one can not look for the minimum of two complex numbers. If the application
is that of classification or semantic segmentation (as it is in all the cases of study
of this work), there are a few options on what to do.

Some loss functions support this naturally. Reference [Hänsch, 2010] compares
the performance of different type of complex input compatible loss functions. If the
loss function to be used does not support complex-valued input, a popular option is
to manage this through the output activation function as explained in the previous
Section 2.3.2. However, a second option for non-complex-compatible loss functions
such as categorical cross-entropy is to compare both the real and imaginary parts
of the prediction independently with the labels and compute the loss function as
an average of both results. Reference [Cao et al., 2019], for example, defines a
loss function as the complex average cross-entropy as:

LACE =
1

2

[
LCCE (Re(y), d) + LCCE (Im(y), d)

]
, (2.7)

where LACE is the complex average cross-entropy, LCCE is the well-known
categorical cross-entropy. y is the network predicted output, and d is the corre-
sponding ground truth or desired output. For real-valued output LACE = LCCE .
This function was implemented in the published code alongside other variants, such
as multiplying each class by weight for imbalanced classes or ignoring unlabeled
data. All these versions are documented in complex-valued-neural-networks.
rtfd.io/en/latest/losses.htm.

When the desired output is already complex-valued (regression tasks), more
natural definitions can be used, such as proposed by [Bassey et al., 2021], where
the loss is defined as

L =
1

2

∑
k

ekek , (2.8)
where ek(yk, dk) is a complex error computation of yk and dk such as a subtraction.
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2.5 . Complex Batch Normalization

The complex Batch Normalization (BN) was adapted from the real-valued BN
technique by Reference [Trabelsi et al., 2017]. For normalizing a complex vector,
we will treat the problem as a 2D vector instead of working on the complex domain
so that z = a+ i b ∈ C −→ x = (a, b) ∈ R2.

To normalize a complex variable, we need to compute

o = Σ̂− 1
2 (x− µ̂) , (2.9)

where o is the normalized output, µ̂ is the mean estimate of E[x], and Σ̂ ∈ R2×2

is the estimated covariance matrix of x so that

Σ̂ =

[
Σrr Σri

Σir Σii

]
=

[
Cov(Re(x)Re(x)) Cov(Re(x)Im(x))
Cov(Im(x)Re(x)) Cov(Im(x)Im(x))

]
. (2.10)

During the batch normalization layer initialization, two variables Σ′ ∈ R2×2

(moving variance) and µ′ ∈ R2 (moving mean) are initialized. By default, Σ′ =

I/
√
2 and µ′ is initialized to zero.
During the training phase, Σ̂ and µ̂ are computed on the innermost dimension

of the training input batch (for multi-dimensional inputs where z ∈ CN → x ∈
RN×2). The output of the layer is then computed as in Equation 2.9. The moving
variance and moving mean are iteratively updated using the following rule:

µ′
k+1 = mµ′

k + (1−m) µ̂k (2.11)
Σ′

k+1 = mΣ′
k + (1−m) Σ̂k , (2.12)

where m is the momentum, a constant parameter set to 0.99 by default.
During the inference phase, that is, for example, when performing a prediction,

no variance nor average is computed. The output is directly calculated using the
moving variance and moving average as

x̂ = Σ′− 1
2 (x− µ′) . (2.13)

Analogously to the real-valued batch normalization, it is possible to shift and
scale the output by using the trainable parameters β and Γ. In this case, the output
o for both the training and prediction phase will be changed to ô = Γo+ β. By
default, β is initialized to (0, 0)T ∈ R2 and

Γ =

(
1/
√
2 0

0 1/
√
2

)
. (2.14)

2.6 . Complex Random Initialization

If we are to blindly apply any well-known random initialization algorithm to
both real and imaginary parts of each trainable parameter independently, we might
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lose the special properties of the used initialization. This is the case, for example,
for Glorot, also known as Xavier, initializer [Glorot and Bengio, 2010].

Assuming that:

• The input features have the same variance Var
[
X

(0)
i

]
≜ Var

[
X(0)

]
,∀i ∈

[|1;N0|] and have zero mean (can be adjusted by the bias input).

• All the weights are statistically centered, and there is no correlation between
real and imaginary parts.

• The weights at layer l share the same variance Var
[
ω
(l)
i,j

]
≜ Var

[
ω(l)
]
,∀(i, j) ∈

[|1;Nl+1|] × [|1;Nl|] and are statistically independent of the others layer
weights and of inputs X(0).

• We are working on the linear part of the activation function. Therefore,
σ(z) ≈ z, which is the same as saying that σ(z, z) ≈ z. The partial
derivatives will then be


∂σ

∂z
≈ 1

∂σ

∂z
≈ 0

(2.15)

so that
∂σ
(
V

(l)
n

)
∂V

(l)
n

≈ 1 and
∂σ
(
V

(l)
n

)
∂V

(l)
n

≈ 0, with V
(l)
n defined in Section

1.3.1. This is an acceptable assumption when working with logistic sigmoid or
tanh activation functions.

Using the notation of Section 1.3.1, for a dense feed-forward neural network
with a bias initialized to zero (as is often the case), each neuron at hidden layer l
is expressed as

X(l)
n ≜ σ

(
V (l)
n

)
= σ

Nl−1∑
m=1

ω(l)
nmX(l−1)

m

 ,∀n ∈ [|1;Nl|]. (2.16)

Since σ is working on the linear part, from (2.16) we get that

Var
[
X(l)

n

]
= Var

Nl−1∑
m=1

ω(l)
nmX(l−1)

m

 , (2.17)

where X
(l−1)
m is a combination of ω(k), 1 ≤ k ≤ l−1 and x(0), so it is independent

of ω(l) which leads to

Var
[
X(l)

n

]
=

Nl−1∑
m=1

Var
[
ω(l)
nm

]
Var

[
X(l−1)

m

]
, (2.18)
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As the weights share the same variance at each layer,

Var
[
X(l)

n

]
= Var

[
ω(l)
]Nl−1∑
m=1

Var
[
X(l−1)

m

]
,

= Var
[
ω(l)
]
Var

[
ω(l−1)

]Nl−1∑
m=1

Nl−2∑
p=1

Var
[
X(l−2)

p

]
,

= Nl−1Var
[
ω(l)
]
Var

[
ω(l−1)

]Nl−2∑
p=1

Var
[
X(l−2)

p

]
. (2.19)

We can now obtain the variance of X(l)
n as a function of x(0) by applying Equation

(2.19) recursively and assuming X
(0)
n , n = 1, . . . , N0 sharing the same variance,

Var
[
X(l)

n

]
= Var

[
x(0)

] l∏
m=1

Nm−1Var
[
ω(m)

]
. (2.20)

From a forward-propagation point of view, to keep a constant flow of information,
then

Var
[
X(l)

n

]
= Var

[
X(l′)

n

]
, ∀1 ≤ l < l′ ≤ N (2.21)

which implies that Nm−1Var
[
ω(m)

]
= 1 , ∀1 ≤ m ≤ N .

On the other hand,

∂L
∂V

(l)
n

=

Nl+1∑
k=1

∂L
∂V

(l+1)
k

∂V
(l+1)
k

∂X
(l)
n

∂X
(l)
n

∂V
(l)
n

+
∂L

∂V
(l+1)
k

∂V
(l+1)
k

∂X
(l)
n

∂X
(l)
n

∂V
(l)
n

+R ,

=

Nl+1∑
k=1

∂L
∂V

(l+1)
n

ω
(l+1)
k,n . (2.22)

where R is the remaining terms depending on
∂X

(l)
n

∂V
(l)
n

, which is assumed to be 0

because the activation function is working in the linear regime at the initialization,

i.e.
∂X

(l)
n

∂V
(l)
n

≈ 1 and
∂X

(l)
n

∂V
(l)
n

≈ 0. The last equality is held since
∂V

(l+1)
k

∂X
(l)
n

= ω
(l+1)
k,n

and ∂V
(l+1)
k

∂X
(l)
n

= 0 (see (B.60) in Appendix for the general case).

Assuming the loss variation w.r.t. the output neuron is statistically independent
of any weights at any layers, then we can deduce recursively from (2.22),

Var

[
∂L

∂V
(l)
n

]
= Var

[
∂L

∂V
(L)
n

]
L∏

m=l+1

NmVar
[
ω(m)

]
. (2.23)
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From a back-propagation point of view, we want to keep a constant learning flow:

Var

[
∂L

∂V
(l)
n

]
= Var

[
∂L

∂V
(l′)
n

]
, ∀1 ≤ l < l′ ≤ N, (2.24)

which implies NmVar
[
ω(m)

]
= 1, ∀1 ≤ m ≤ N .

Conditions (2.21) and (2.24) are not possible to be satisfied at the same time
(unless Nl = Nl+1, ∀1 ≤ l < N , meaning all layers should have the same width)
for what Reference [Glorot and Bengio, 2010] proposes the following trade-of

Var
[
ω(l)
]
=

2

Nl +Nl+1
,∀1 ≤ l < N . (2.25)

If the weight initialization is a uniform distribution ∼ U , for the real-valued
case, the initialization that has the variance stated on Equation 2.25 is:

ω(l) ∼ U

[
−

√
6√

Nl +Nl+1

,

√
6√

Nl +Nl+1

]
. (2.26)

For a complex variable with no correlation between real and imaginary parts,
the variance is defined as:

Var
[
ω(l)
]
= Var

[
Re
(
ω(l)
)]

+Var
[
Im
(
ω(l)
)]

, (2.27)
it is therefore logical to choose both variances Var

[
Re
(
ω(l)
)]

and Var
[
Im
(
ω(l)
)]

to be equal:

Var
[
Re
(
ω(l)
)]

= Var
[
Im
(
ω(l)
)]

=
1

Nl +Nl+1
. (2.28)

With this definition, the complex variable could be initialized as:

Re
(
ω(l)
)
= Im

(
ω(l)
)
∼ U

[
−

√
3√

Nl +Nl+1

,

√
3√

Nl +Nl+1

]
. (2.29)

By comparing (2.26) with (2.29) it is concluded that to correctly implement a
Glorot initialization, one should divide the real and imaginary part of the complex
weight by

√
2.

It is also possible to define the initialization technique from a polar perspective.
The variance definition is

Var
[
ω(l)
]
= E

[∣∣∣∣ω(l) − E
[
ω(l)
]2∣∣∣∣] = E

[∣∣∣ω(l)
∣∣∣2]+ ∣∣∣E [ω(l)

]∣∣∣2 . (2.30)
By choosing the phase to be a uniform distribution between 0 and 2π and

knowing the absolute is always positive, then E
[
ω(l)
]
= 0 and Equation 2.30 can

be simplified to:

Var
[
ω(l)
]
= E

[∣∣∣ω(l)
∣∣∣2] . (2.31)
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It will therefore suffice to choose any random initialization, such as, for example,
a Rayleigh distribution [Rayleigh, 1880], for

∣∣ω(l)
∣∣ = ρ ∈ R+

0 so that

E
[
ρ2
]
=

2

Nl +Nl+1
. (2.32)

2.6.1 . Impact of complex-initialization equation application
A simulation was done for a complex multi-layer network with four hidden layers

of size 128, 64, 32 and 16, respectively, with a logistic sigmoid activation function
to test the impact of this constant division by

√
2 on a signal classification task.

One-hundred and fifty epochs were done with one thousand runs of each model to
obtain statistical results.

The task consisted in classifying different signals used in radar applications.
Temporal and time-frequency representations of each signal are shown in Figures
2.9 and 2.10 respectively. The generated signals are

• Sweep or chirp signal. These are signals whose frequency changes over time.
These types of signals are commonly applied to radar. The chirp-generated
signals were of two types, either linear chirp, where the frequency changed
linearly over time or S-shaped, whose frequency variation gets faster at both
the beginning and the end, forming an S-shaped spectrum as can be seen
in Figure 2.10.

• Phase-Shift Keying (PSK) modulated signals, a digital modulation process
that conveys data by changing the phase of a constant frequency refer-
ence signal. These signals were BPSK (2-phase states) and QPSK (4-phase
states)

• Quadrature Amplitude Modulation (QAM) signals, which are a combination
of amplitude and phase modulation. These signals were 16QAM (4 phase
and amplitude states) and 64QAM (8 phase and amplitude states).

A noise signal (null), without any signal of interest, was also used, making a
total of 7 different classes.

Instead of using measured signals, and with the goal of facilitating the studies,
the signals were randomly generated, which also allowed having the ground truth.
These generated signals had the following properties:

• 256 samples per signal

• Peak-to-peak amplitude of 1

• Chirp signals with frequencies from 0.05 to 0.45 times the sample frequency

• Number of moments between 8 and 64 for the codes BPSK, QPSK, 16QAM
and 64QAM
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Figure 2.9: Temporal amplitude examples of used signals [Vieillard,2018].
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Figure 2.10: Spectrogram examples of used signals [Vieillard, 2018].

68



Thermal noise was added to each signal and was transformed to the complex
domain using the Hilbert Transform, a popular transformation in signal processing
applications [Hahn, 1996], which provides an analytic mapping of a real-valued
function to the complex plane.

The Hilbert transpose has its origins in 1902 when the English mathematician
Godfrey Harold Hardy (1877 – 1947) introduced a transformation that consisted
in the convolution of a real function f(s) [Hardy, 1902, Hardy, 1909], with the
Cauchy kernel 1/π(t − s) which, being an improper integral, must be defined in
terms of its principal value (p.v.) [King, 2009],

H(f)(t) =
1

π
p.v.

∫ +∞

−∞

f(s)

t− s
ds =

1

π
lim
ε→0

∫ +∞

ε

f(t− s)− f(t+ s)

s
ds . (2.33)

One of the most important properties of this transformation is that its repeated
application allows for the recovery of the original function, with only a change of
sign, that is,

g(t) = H(f)(t) ⇔ f(t) = −H(g)(t) . (2.34)
The functions f and g that satisfy this relation are called Hilbert transform

pairs, in honor of David Hilbert, who first studied them in 1904 [Hilbert, 1912].
In fact, it is for this reason that in 1924 [Hardy, 1924b, Hardy, 1924a], Hardy
graciously proposed calling transformation (2.33) as Hilbert Transform.

Some examples of Hilbert transform pairs are shown in Table 2.1.

f(t) g(t) = H(f)(t)

sin(t) cos(t)
1/ (t2 + 1) t/ (t2 + 1)
sin(t)/t [1− cos(t)] /t
δ(t) 1/πt

Table 2.1: Examples of Hilbert transform pairs
Considering the definition of the Fourier transform of an absolutely integrable

real function f(s),
F(f)(t) . (2.35)

It can be shown that [King, 2009]

F (H(f)(t)) = −i sgn(t)F(f)(t) . (2.36)
This relation provides an effective way to evaluate the Hilbert transform

H(f) = −iF−1 [sgn(t)F(f)(t)] , (2.37)
avoiding the issue of dealing with the singular structure of the Cauchy kernel.
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One of the most important properties of the Hilbert transform, at least in
reference to this thesis, is that the real and imaginary parts of a function h(z) that
is analytic in the upper half of the complex plane are Hilbert transform pairs. That
is to say that

Im(h) = H(Re(h)) . (2.38)
In this way, the Hilbert transform provides a simple method of performing

the analytic continuation to the complex plane of a real function f(x) defined on
the real axis, defining h(z) = f(z) + i g(z) with g(z) = H(f). This property
of the Hilbert transform was independently discovered by Ralph Kronig [Kronig,
1926] (1904 – 1995), and Hans Kramers [Kramers, 1927] (1894 - 1952) in 1926 in
relation to the response function of physical systems, known as the Kramers-Kronig
relation. At the same time, it began to be used in circuit analysis [Carson, 1926]
in relation to the real and imaginary parts of the complex impedance. Through
the work of pioneers such as the Nobel prize winner Dennis Gabor [Gabor, 1946]
(1900 – 1979), its application in modern signal processing is wide and varied [Hahn,
1996].

The real and imaginary weights where initialized as described in (2.26) (The
definition for real-valued weights, which is equivalent to multiplying the limits of
Equation 2.29 by

√
2) and (2.29) (the original case for complex-valued weights) to

compare them. An initialization that divided the limits of Equation 2.29 by two
was also used to assert that smaller values will not produce a superior result either.

·
√
2 original /2
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cur
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Figure 2.11: Comparison of Glorot Uniform initialization scaled by dif-ferent values.
The results shown in Figure 2.11 prove the importance of the correct adaptation

of Glorot initialization to complex numbers and how failing to do so will impact its
performance negatively.
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2.6.2 . Experiment on different trade-offs
Complex numbers enable choosing different trade-offs than the one chosen

by [Glorot and Bengio, 2010] (Equation 2.25), for example, the following trade-off
can also be chosen:

Var
[
Re
(
ω(l)
)]

=
1

2Nl
,

Var
[
Im
(
ω(l)
)]

=
1

2Nl+1
,

(2.39)

between other options.
In a similar manner, as we did with Glorot (Xavier) initialization, the He weight

initialization described in [He et al., 2015] can be deduced for complex numbers.
the same dataset as the one used in the experiment of Figure 2.11 was done using
Glorot Uniform (GU), Glorot Normal (GN), He Normal (HN), He Uniform (HU),
and Glorot Uniform using the trade-off defined in (2.39) (GUC).

GU GN GUC HU HN

0.525
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0.560
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tes
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acy

Figure 2.12: Initialization Technique Comparison
The results of Figure 2.12 show that the difference between using a normal

or uniform distribution is negligible but that Glorot clearly outperforms He initial-
ization. This is to be expected when using sigmoid activation function because
He initialization was designed for ReLU activation functions. On the other hand,
the trade-off proposed in (2.39) actually achieves lower performances than the one
proposed in [Glorot and Bengio, 2010] for what it was not implemented in the
cvnn toolbox, however, it is possible this results is only specific to this dataset and
for what further research could be done with this trade-off variant. All the other
initialization techniques are documented in complex-valued-neural-networks.
rtfd.io/en/latest/initializers.html and implemented as previously described.
They can be used in standalone mode as follows
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1 import cvnn
2 initializer = cvnn.initializers.GlorotUniform ()
3 values = initializer(shape =(2, 2))
4 # Returns a complex Glorot Uniform tensor of shape (2, 2)

or inside a layer using an initializer object like

1 import cvnn
2 initializer = cvnn.initializers.ComplexGlorotUniform ()
3 layer = cvnn.layers.Dense(input_size =23, output_size =45,

weight_initializer=initializer)

or as a string listed within init_dispatcher like

1 import cvnn
2
3 layer = cvnn.layers.Dense(input_size =23, output_size =45,

weight_initializer="ComplexGlorotUniform")

with init_dispatcher being

1 init_dispatcher = {
2 "ComplexGlorotUniform": ComplexGlorotUniform ,
3 "ComplexGlorotNormal": ComplexGlorotNormal ,
4 "ComplexHeUniform": ComplexHeUniform ,
5 "ComplexHeNormal": ComplexHeNormal
6 }

2.7 . Performance on real-valued data

Using the same signals of previous Sections, some experiments were per-
form comparing Complex-Valued MultiLayer Perceptron (CV-MLP) against a Real-
Valued MultiLayer Perceptron (RV-MLP). 16000 Chirp signals were created, 8000
linear and 8000 S-shaped. 80% was used for training, 10% for validation and the
remaining 10% for testing. Two models (one CV-MLP and one RV-MLP) were
designed and dimensioned as shown in Table 2.2.

CV-MLP RV-MLP
input size 256 512hidden layers activation Type-A Selu Selu
1st hidden layer size 25 50
2nd hidden layer size 10 20output activation modulo softmax modulo softmaxoutput size 7 7

Table 2.2: Design of MLP models
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We used SGD as weight optimization and 50% dropout for both models. We
performed 2000 iterations (1000 for each model) with 2000 epochs each.

Figure 2.13 shows the mean loss per epoch of both training and validation set
for CV-MLP (Figure 2.13a) and RV-MLP (Figure 2.13b). The Figures show that
CV-MLP presents less overfitting than the real-valued model.

(a) CV-MLP (b) RV-MLP
Figure 2.13: Mean loss evolution per epoch.

A histogram of both models’ accuracy and loss values on the test set was
plotted and can be seen in Figure 2.14. It is clear that CV-MLP outperforms RV-
MLP classification accuracy with around 4% higher accuracy. Regarding the loss,
RV-MLP obtained higher variance.

(a) Accuracy (b) Loss
Figure 2.14: Test set histogrammetrics for binary classification on Chirpsignals.

Finally, the simulations were performed for all seven signals obtaining similar
results as before. This time, accuracy results have a higher difference with CVNN
results not intersecting with the RVNN results. Again, RV-MLP had higher loss
variance.

2.7.1 . Discussion
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(a) Accuracy (b) Loss
Figure 2.15: Test set histogram metrics for multi-class classification forall 7 signals.

It is important to note that these networks were not optimized. The main
issue is the softmax activation function used on the absolute value of the complex
output. Although it is not generally used like this, in CVNN, it might be acceptable.
However, for a RVNN, this is unconventional and penalizes their performance
greatly. Furthermore, both models are not equivalent, as will be explained in
Chapter 3.2.1, resulting in RVNN having a higher capacity, which may increase
their performance but also may result in more overfitting.

For all these reasons, the simulations must be revised. However, if the general
conclusions stand, this might indicate that CVNN can outperform RVNN even
for real-valued applications when using an appropriate transformation such as the
Hilbert transform.

2.8 . Conclusion

In this chapter, we described in detail the implementation of the published
library, with examples of how to use the code and with reference to the documen-
tation to be used if needed. We showed that the library had great success in the
community through its increasing popularity.

We also described in detail each adaptation from conventional neural networks
to the complex plane in order to be able to implement Complex-Valued Neural
Networks. Each aspect was revised, and the appropriate mathematics was devel-
oped. With this Chapter it should be possible to understand and implement from a
basic Complex-Valued MultiLayer Perceptron to a Complex-Valued Convolutional
Neural Network and even Complex-Valued Fully Convolutional Neural Network or
Complex-Valued U-Network (CV-UNET).

We performed simulations that verified the adaptation of the initialization tech-
nique and showed that correctly implementing this initialization is crucial for ob-
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taining a good performance.
Finally, we show that CVNNs might be of interest even for real data by using

the Hilbert transformation contrary to the work of [Mönning and Manandhar,
2018]. The classification improved around 4% when using a complex network over
a real one. However, these last results should be revised as the models were not
equivalent, and RVNN might have been overly penalized.
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3 - Interest in CVNN for classifying non-circular
data

In general, we can define a bijective map between complex-valued and real-
valued data using a simple concatenation of real and imaginary part or the Hilbert
transform. So we cannot derive universal rules in practice to prioritize CVNN over
RVNN for complex-valued datasets. Performance highly depends on the charac-
teristics of the complex-valued dataset. Indeed, merely taking real data as input
does not profit from using CVNN [Mönning and Manandhar, 2018]. Furthermore,
the hypothesis of circularity is not always satisfied, as shown in [Vasile and Totir,
2012, El-Darymli et al., 2014] for SAR images which depend on the region of
interest. Therefore, non-circularity parameters are key factors in improving perfor-
mance in radar estimation and classification tasks, as proposed in [Barbaresco and
Chevalier, 2008,Wu et al., 2016].

We thus analyze the influence of the non-circular statistical property on the per-
formance of both CVNN and RVNN networks. We show that particular structures
of complex data, such as, for example, phase information or statistical correlation
between real and imaginary parts, can notably benefit from using CVNN compared
to its real-valued equivalent model. Under this context, CVNN is potentially an
attractive network to obtain better classification performance on complex datasets.

The Chapter is organized as follows: In Section 3.1, we discuss the circularity
property for a random variable. Section 3.2 discusses the feed-forward network
architecture and the dataset used for these experiments. Section 3.3 illustrates the
comparison of statistical performance obtained for CVNN and RVNN networks.
In particular, the sensitivity of CVNN and RVNN results are evaluated either by
changing the dataset characteristics or the network hyper-parameters.

Although CVNN is an acronym that involves numerous complex-valued neu-
ral network architectures, in this Chapter, we will always be referring to a fully
connected feed-forward neural network or a MultiLayer Perceptron (MLP) in ac-
cordance with the existing bibliography [Hirose and Yoshida, 2012, Hänsch and
Hellwich, 2009a,Hirose, 2012,Hirose, 2009,Amin et al., 2011,Hirose, 2013].

3.1 . Circularity

The importance of circularity for CVNNs has already been mentioned by [Hi-
rose, 2012,Hirose, 2013]. We could define a complex random variable to be circular
if, for Z = X + i Y , ∃ z0 = x0 + i y0 from which by rotating the distribution
Z using z0 as the center, the distribution is invariant. Note that if z0 exists, it
will be the location of the distribution and unique. We can therefore use a co-
ordinate system that its origin is coincident with the distribution location so that
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µ = (E[X], E[Y ])T = 0. In this coordinate system, a complex-valued distribution

Z will be circular ⇔ Z
(d)
= Z exp (i θ),∀θ ∈ [0; 2π[. Let us denote the vector

u ≜ (X,Y )T as the real random vector built by stacking the real and imaginary
parts of a complex Normal random variable Z = X + i Y . The probability density
function (pdf) of Z can be identified through the pdf pu of u:

pu(u) = N (µ,Σ) =
1

2π|Σ| exp
[
−1

2
(u− µ)T Σ−1 (u− µ)

]
, (3.1)

with µ = (E[X],E[Y ])T and where Σ is the covariance matrix:

Σ =

(
σ2
X σXY

σY X σ2
Y

)
. (3.2)

where σ2
X and σ2

Y are respectively the variance of X and Y . The variance of the
complex variable Z can also be defined as a function of σX and σY as:

σ2
Z ≜ E

[
|Z − E[Z]|2

]
= σ2

X + σ2
Y , (3.3)

The latter, however, does not bring information about the covariance:

σXY ≜ E [(X − E[X]) (Y − E[Y ])] , (3.4)
but this information can be retrieved thanks to the pseudo-variance [Ollila, 2008,
Picinbono, 1996]:

τZ ≜ E
[
(Z − E[Z])2

]
= σ2

X − σ2
Y + 2 i σXY . (3.5)

All σ2
X , σ2

Y and σXY can be retrieved from the variance (σ2
Z) and pseudo-variance

(τZ)

σ2
X =

σ2
Z +Re(τZ)

2
, (3.6)

σ2
Y =

σ2
Z − Re(τZ)

2
(3.7)

σXY =
Im(τZ)

2
, (3.8)

thus, the scalar complex random variable can be expressed as:

Z ∼ CN (E[Z], σ2
Z , τZ) .

For the bivariate Gaussian variable u to be circular, using the origin as the
rotation axis, the mean must be zero, there should be no correlation between the
real and imaginary part, and the variances of X and Y should be equal, or, in other
words, a circular Normal bivariate random variable is defined as u = N (0, σ2 I),
which, as it can be deduced from Equation 3.6, translated to a complex Normal
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random variable, of the form Z ∼ CN (0, σ2
Z , 0). Indeed, this means that a Normal

complex distribution is circular when τZ = 0.
The circularity quotient ϱZ ≡ circ(z) ∈ C is then defined as [Ollila, 2008]:

ϱZ = τZ/σ
2
Z . (3.9)

If Z has a vanishing pseudo-variance, τZ = 0, or equivalently, ϱZ = 0, it is said
to be second-order circular. Therefore, complex non-circular random datasets are
generated and classified with two non-exclusive possible sources of non-circularity:
X and Y have unequal variances, or X and Y are correlated [Duvaut, 1994,
Chapter 10]

The circularity quotient can be expressed in the polar form ϱZ = rZe
iθ, where

the circularity coefficient is defined as rZ = |ϱZ | ∈ [0; 1], in other words, the
circularity quotient lies on the unit disk, and θ = arg ϱZ is the circularity angle.
The circularity angle for a circular variable does not exist by definition. Indeed, a
circular variable would have ϱZ = 0, for what this property is contemplated in the
equation.

A non-circular complex Normal random variable would form an ellipse that can
be described using the circularity quotient ϱZ . The orientation of the ellipse (α)
would be given by the circularity angle as α = arg (ϱZ)/2 [Ollila, 2008]; meanwhile,
the closer ϱZ gets to the unit circle, the more elongated the ellipse would be. On
the contrary, the closer it gets to zero, the more it will look like a circle.

Finally, the correlation coefficient can be defined as

ρ =
σXY

σXσY
, (3.10)

with ρ ≤ 1 and ρ = 1 when Y is a linear function of X almost surely. Under the
assumption that ρ exists, it is possible to relate ρ with ϱZ as

ρ =
Im(ϱZ)√

1− Re2(ϱZ)
, (3.11)

=
rZ sin (θ)√

1− r2Z cos (θ)2
, (3.12)

as it was proved in Reference [Ollila, 2008]. Some important properties can be
obtained from previous equations,

• ϱZ = ±1 ∈ R ⇔ Y equals to zero (ϱZ = 1) or X equals to zero (ϱZ = −1).

• ρ = ±1 ⇔ X is a linear mapping of Y ,

• ϱZ = ±rZ ⇔ ρ = 0 ⇔ θ = 0 or θ = π for 0 < rZ < 1,

• ϱZ = ±irZ ⇔ θ = ±π/2 ⇔ σ2
Y = σ2

X ⇒ ρ = ±rZ for 0 < rZ < 1,
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• ρ ̸= 0 ⇒ ϱZ ̸= 0 and therefore Z is not circular.

And most importantly, a complex-valued Gaussian distribution Z is circular ⇔
ϱZ = 0 ⇐ τZ = 0 ⇒ ρ = 0.

In the vector case, we have X and Y vectors of size N with

ΓX = E
[
(X − E [X)]) (X − E [X])T

]
ΓY = E

[
(Y − E [Y )]) (Y − E [Y ])T

]
ΓXY = E

[
(X − E [X)]) (Y − E [Y ])T

]
ΓY X = ΓT

XY ,

(3.13)

and Z = X + iY so thatΓZ = E
[
(Z − E [Z)]) (Z − E [Z])T

]
ΣZ = ΓZ = E

[
(Z − E [Z)]) (Z − E [Z])H

]
,

(3.14)
where the operator H stands for complex conjugate transpose operation. With this
definitions, ΓZ = (ΓX + ΓY ) + i (ΓY X − ΓXY ).

In this case, Z ∼ CN (E [Z] ,ΣZ ,ΓZ). Z would be circular ⇔{
ΓX = ΓY

ΓXY = −ΓY X = −ΓT
XY .

(3.15)
The last equality holds if ΓXY is a skew-symmetric matrix. These inequalities
translate on the decorrelation of Z and Z so that

E
[
ZZ

H
]
= 0 , (3.16)

Finally, the pdf pZ of a centered Gaussian circular complex vector would be
[Duvaut, 1994]:

pZ(Z) =
1

πNdet (ΓZ)
exp

(
−ZHΣ−1

Z Z
)
. (3.17)

3.2 . Experimental Setup

3.2.1 . Model Architecture
Number of layers
Even though the tendency is to make the models as deep as possible for Convolu-
tional Neural Network (CNN), this is not the case for fully-connected feed-forward
neural networks, also known as MultiLayer Perceptron (MLP). For these models,
one hidden layer (1HL) is usually sufficient for the vast majority of problems [Hornik
et al., 1989, Stinchcombe and White, 1989]. Although some authors may argue
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that two hidden layers (2HL) may be better than one [Thomas et al., 2017] until
recently, most authors seemed to agree that

« there is currently no theoretical reason to use a MLP with more
than two hidden layers » - [Heaton, 2008, p. 158]

However, recent work rejects this idea for MLP as well [Montúfar et al., 2014].
Nevertheless, for computing speed, we will adhere to only one and two hidden
layers.

References [Heaton, 2008] and [Kulkarni and Joshi, 2015] recommend the
neurons of the hidden layer to be between the size of the input layer and the
output layer. Therefore, two models will be used as default in Section 3.3, one
with a single hidden layer of size 64 and one with two hidden layers of shape 100
and 40 for the first and second hidden layers respectively. In order to prevent the
models from overfitting, dropout regularization technique [Srivastava et al., 2014]
is used on one hidden layer and two hidden layers hidden layers. Both CVNN and
RVNN are trained with a dropout factor of 0.5.

Equivalent RVNN
To define an equivalent RVNN, the strategy used in [Hirose, 2012] is adopted,
separating the input z into two real values (x, y) where z = x + i y, giving the
network a double amount of inputs. The same is done for the number of neurons
in each hidden layer. Although this strategy keeps the same amount of features
in hidden layers, it provides a higher capacity for the RVNN with respect to the
number of real-valued training parameters [Mönning and Manandhar, 2018].

Loss function and optimizer
Mean square error and Cross-Entropy loss functions are mostly used for RVNN
to solve regression and classification problems, respectively. The loss remains the
same for CVNN since the training phase still requires the minimization over a real-
valued loss function. We currently limit our optimizer to the well-known standard
Stochastic Gradient Descent (SGD). The default learning rate used in this work is
0.01 as being Tensorflow ’s default (v2.1) for its SGD implementation.

Weights initialization
For weights initialization, Glorot uniform (also known as Xavier uniform) [Glorot
and Bengio, 2010] is used, and all biases start at zero as those are Tensorflow ’s
current (v2.1) default initialization methods for dense layers. Glorot initialization
generates weight values according to the uniform distribution in [Glorot and Bengio,
2010, eq.16] where its boundaries depend on both input and output sizes of the
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initialized layer. At this step, the authors were not yet acknowledged the complex-
valued initialization technique discussed in Section 2.6, and the initialization for the
complex case was done by initializing the real and imaginary parts separately and
analogous to a real-valued layer, therefore, CVNN might be penalized by starting
with a higher initial loss value before any training. This will only penalize the
CVNN results making the conclusions of this Chapter even more meaningful.

3.2.2 . Dataset setup
As mentioned previously, to respect the equivalence between RVNN and CVNN,

we use in the following input vectors of size 128 (resp. 256) for CVNNs (resp.
RVNN). Each element of the feature vector is independently generated according
to a non-circular Complex Normal distribution CN (0, σ2

Z , τZ). Two sources of
non-circularity could occur in practice: σX ̸= σY and/or ρ ̸= 0, or equivalently
τZ ̸= 0. Therefore, we propose to evaluate the classification performance of CVNN
and RVNN for three types of datasets presented in Table 3.1.

Data A Data B Data C
Class 1 2 1 2 1 2
ρ 0.3 −0.3 0 0 0.3 −0.3
σ2
X 1 1 1 2 1 2

σ2
Y 1 1 2 1 2 1

ϱZ 0.3 i −0.3 i −1

3

1

3

−0.6 + i

3

0.6− i

3

Table 3.1: Dataset characteristics.
Figure 3.1 shows an example of two vector samples from dataset A with a

feature size of 128. It is possible to see that most features coincide even if they
are from different classes, meaning that several points will yield no information or
even confuse the classification algorithm.

It is important to note that the distinction between classes is entirely contained
in the relationship between the real and imaginary parts. This means that removing,
for example, the imaginary part of the dataset will result in both classes being
statistically identical, and therefore, rendering the classification impossible.

To evaluate the difficulty of classifying this dataset, a Maximum Likelihood
Estimation of τZ was implemented with the prior knowledge of the underlying
Gaussian distributions used to generate the dataset. The data are then classified
using a threshold on the estimate of τZ . The accuracy of this classifier gives an
upper bound of the optimal accuracy. For a low correlation coefficient, for example,
ρ = 0.1, this parametric classifier only achieves around 85% accuracy.

3.3 . Experimental Results
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Figure 3.1: Dataset A example.
To ensure that the models do not fall short of data, 10000 samples of each class

were generated using 80% for the train set and the remaining 20% for validation.
Accuracy and loss of both CVNN and RVNN, defined previously in Section 3.2.1,
are statistically evaluated over 1000 Monte-Carlo trials. Each trial contained 150
epochs with a batch size of 100. This number was chosen by observing that after
150 epochs, the accuracy and loss presented almost no amelioration.

3.3.1 . Baseline results

Unless said otherwise, dataset A is used as the default dataset for the results
presented in this Section. Only the two hidden layers (2HL) case is illustrated in
Figure 3.2 as their results are more favorable to the RVNN model. CVNN loss
starts higher but decreases faster than RVNN. Both losses behave well without
significant indication of overfitting. Additionally, the validation accuracy of CVNN
trials stays above 95%. The validation accuracy of RVNN is lower than the CVNN
one and presents more outliers.

The Table 3.2 summarizes the validation accuracy at the last epoch of one
hidden layer (1HL) and two hidden layers models for all three different datasets.
The median error is computed as 1.57 IQR/

√
n [McGill et al., 1978], where IQR is

the Inter-Quartile Range, and n is the number of trials. According to [Chambers,
2018], using this error definition, if median values do not overlap, there is a 95%
confidence that their values differ.

The results are skewed, meaning there is a significant difference between mean
and median accuracy, as the mean is less robust to outliers. For this reason, the
median would be a better measure of central tendency in the present simulations.
For the complex-valued model, the outliers tend to be the bad cases, whereas, for
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Data A
CVNN RVNN

1HL
median 95.00± 0.03 75.58± 0.69mean 94.98± 0.02 76.71± 0.27IQR 94.73− 95.23 69.20− 82.93full range 93.60− 96.08 64.05− 93.15

2HL
median 97.03± 0.03 92.90± 0.08mean 96.98± 0.02 92.37± 0.07IQR 96.78− 97.23 92.02− 93.48full range 95.23− 98.05 68.78− 94.78Data B

CVNN RVNN

1HL
median 84.38± 0.05 58.73± 0.07mean 84.28± 0.03 58.89± 0.05IQR 83.83− 84.83 58.10− 59.48full range 76.15− 86.60 55.68− 59.48

2HL
median 69.90± 0.88 59.03± 0.33mean 69.48± 0.32 59.10± 0.14IQR 60.89− 78.43 55.80− 62.35full range 50.03− 87.08 49.98− 71.23Data C

CVNN RVNN

1HL
median 96.95± 0.02 82.90± 0.78mean 96.96± 0.01 82.76± 0.26IQR 96.78− 97.18 75.49− 91.08full range 96.00− 97.90 67.35− 95.88

2HL
median 98.43± 0.02 96.10± 0.04mean 98.41± 0.01 96.02± 0.01IQR 98.28− 98.58 95.75− 96.40full range 97.23− 99.03 90.38− 97.18

Table 3.2: Circularity validation accuracy results (%).
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Figure 3.2: Validation loss and accuracy on dataset A for two hiddenlayers CVNN and RVNN with a dropout of 50%.
the real model, they are the good cases. This can be verified by the mean that is
lower than the median for CVNN and higher than the median for RVNN.

For dataset B with two hidden layers, both models fail to achieve good results
on average. Despite these poor performances, CVNN still proves to be superior to
RVNN by far. For one hidden layer, CVNN achieves a high accuracy with a median
of over 84%. Dataset C presents almost the same results as dataset A with some
improvements for both architectures.

From these results, the merits of CVNNs are statistically justified by a higher
accuracy than RVNNs with less overfitting and smaller variance.

In general, RVNN performed much better with two hidden layers than with
one hidden layer. In the Sections that follow, two hidden layers results will be
prioritized, bearing in mind that one hidden layer cases were even more favorable
to CVNN.
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3.3.2 . Case without dropout
The simulations were re-done with no dropout to test the model’s tendency

to overfit. RVNN presented very high overfitting, as can be seen in Figure 3.3.
However, CVNN presented higher variance.
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Figure 3.3: Validation loss on dataset A for two hidden layers CVNN andRVNN without dropout.
The impact was so high that the validation accuracy of RVNN drop almost 7%

for two hidden layers, whereas for CVNN it dropped less than 4%. The totality
of the simulations mentioned in this report was also done without dropout. In
general, dropout had less impact on CVNNs performance and a huge ameliora-
tion for RVNN. However, it is worth mentioning that although on average CVNN
outperformed RVNN when no dropout was used, it presented many outliers with
very low accuracy. In conclusion, CVNN has less tendency to over-fit, whereas for
RVNN is decisive to use dropout or at least a regularization technique.

3.3.3 . Phase and amplitude
Since the phase information could be relevant for classifying these datasets,

polar-RVNN is defined where the inputs are the amplitude and phase of data. This
method is tested for datasets A and B with and without dropout.

Figure 3.4 shows the results for two hidden layers tested on dataset A with
dropout. It can be seen that polar-RVNN highly improves compared to the con-
ventional RVNN, showing higher mean accuracy but also much less variance, even
lower than for CVNN. However, CVNN still outperforms both real models by a
wide margin.

This higher performance of polar-RVNN against RVNN can be explained by the
fact that dataset type A presents more relevant information in the phase. However,
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Figure 3.4: Validation accuracy histogram on dataset A of two hiddenlayers CVNN, polar-RVNN and RVNN.
the opposite happens with dataset type B, for which case, polar-RVNN completely
fails to converge and achieves worst results than conventional RVNN for both one
hidden layer, and two hidden layers models, the reason why results were omitted.

3.3.4 . Parameter sensibility study
In this Section, a swipe through several model architectures and hyper-parameters

is done to assert that the results obtained are independent of specific parameters.
These simulations are done for both one hidden layer and two hidden layers net-
works.

Other sensibility studies were done but are not presented in this work. They
concern learning rate, activation function, dataset size, feature vector size, and
multi-classes for all combinations of one hidden layer and two hidden layers with
and without dropout and for all three types of datasets. In total, this works sum
up almost 100 different combinations of experiment parameters.

Correlation coefficient
Changing the correlation coefficient of Data A has been tested for one hidden layer
and two hidden layers models. Figure 3.5 shows the accuracy of two hidden layers
models, in which the correlation coefficient varies from 0.1 to 0.8. As expected,
for small ρ, both networks fail to distinguish between classes with accuracy values
barely above 50%. Note that both models cannot possibly achieve more than 85%

for a value of ρ = 0.1, as was explained in Section 3.2.2. As |ρ| rises, CVNN
merits become evident. When |ρ| is close to one, then the link between real and
imaginary parts is strengthened, which facilitates the classification of the data for
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both models. Results for one hidden layer are even more favorable for CVNN.
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Figure 3.5: Validation accuracy box plot for different values of correla-tion coefficient ρ for one hidden layer model with dropout.

Hidden layer size
We evaluated the accuracy of one hidden layer for 4 sizes of the hidden layer.
All these models were trained on dataset A. The median accuracy of CVNNs was
always higher than the one of RVNN, no matter the number of hidden neurons.
However, CVNN had low accuracy outliers for sizes 16 and 32, whereas RVNN
did not. This could be explained by RVNN having higher capacity, as explained
in Section 3.2.1. Fortunately, this behavior disappears when the hidden size is
well-dimensioned.

3.4 . Conclusion

In this Chapter, we showed that CVNNs stand as attractive networks to obtain
higher performances than conventional RVNNs on complex-valued datasets. The
latter point was illustrated by several examples of non-circular complex-valued
data, which cover a large amount of data types that can be encountered in signal
processing and radar fields.

More than 100 simulations were done, changing and trying a different set
of parameters, each one having 1000 trials of both CVNN and RVNN models.
All these results have proven that CVNN out-performs RVNN for all sources of
Gaussian non-circularity, which can be the correlation between real and imaginary
parts (data A), unequal variances between the real and imaginary parts (data
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Figure 3.6: Validation accuracy box plot for different one hidden layersize with dropout.
B), or the combination of both (data C). All statistical indicators showed that
CVNN clearly outperforms RVNN, presenting higher accuracy, faster convergence,
smaller variance, and less overfitting, regardless of the model architecture and
hyper-parameters. The larger overfitting obtained with RVNN can be partially
explained by the fact that this model has higher capacity [Mönning and Manandhar,
2018,Barrachina et al., 2021c,Barrachina et al., 2022d].

Conversely, the few cases where RVNN competes with CVNN occurred when
the dataset is small or the correlation coefficient |ρ| is close to zero, rendering the
discrimination from feature vectors nearly impossible. For these exceptions, neither
CVNN and RVNN were actually of any practical use.
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4 - Theory of Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is a remote sensing technique that uses Elec-
troMagnetic (EM) waves to generate a two-dimensional high-spatial-resolution im-
age of the sensed Earth’s surface in almost all weather conditions because

• It uses microwaves that can penetrate through clouds, and possibly foliage
and surface soil

• and not being a passive method but using its own waves to illuminate the
target, making it possible to take images during both day and night.

4.1 . History of SAR

Radar has been around for over one hundred years since the invention of the
Telemobile, a device that used a bell and a receiver to detect remote metallic
objects in the darkness, fog, and rain. In World War II, radar was essential for
detecting aircraft and missiles.

Carl Wiley (1918 – 1985), Figure 4.1a, was an eccentric engineer that had been
one of the first scientists to discuss solar sailing for space travel around the 1940s
but wisely published under a pseudonym to avoid critics from his peers. In 1950,
he came to Goodyear Aircraft Company (which later became Lockheed Martin) to
begin a new scientific project. In 1951, Carly Wiley, under the motivation to drive
a cruise missile (MASE) using an on-board radar, discovered the principle of SAR
imaging by investigating the Doppler spectrum of the received echos when using
a moving radar along a straight direction which he called Simultaneous Buildup
Doppler. He was issued a patent in 1954 (Figure 4.1b), generally recognized as the
SAR patent [Wiley, 1954]. Later, in 1955, the first SAR system called DOUSER
flew on a C-47 making history’s first SAR image with a resolution of around 150
meters [Sherwin et al., 1962].

Lockheed Martin continued to lead SAR development for decades to come.
Prior to 1960, Goodyear later began the program AN/APS-73, called Quick Check.
This program successfully proved that SAR images could be displayed live on an
aircraft, allowing pilots to establish their location at all times in most weather
conditions. This breakthrough

« Created an amazing amount of excitement for the future technology of all airplanes »

- Stephen Lasswell.

The SR-71, known as Blackbird, a secret supersonic spy plane, was given the
go-ahead in 1960 and took four years to build. The SAR system on board the plane
had a resolution of 10 meters. The classified SAR systems onboard the Blackbird
would be refined and improved over the 29-years life of the aircraft.
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(a) Carl A. Wiley, the inventor of SAR radar (b) Patent of SAR [Wiley, 1954]
Figure 4.1: SAR invention. Extracted from [Lasswell, 2005].

In the early 1970s, the first earth resources radar for geo-mapping was de-
veloped, called the Goodyear Earth Mapping System (GEMS). GEMS mapped
countries worldwide, particularly close to the equator, where the cloud belt and
extreme weather conditions made it impossible to map with optical images.

In 1978, the National Aeronautics and Space Administration (NASA), together
with the Jet Propulsion Laboratory (JPL), launched SEASAT, the first on-board
satellite SAR system with a mission duration of 110 days lifetime dedicated to re-
mote sensing of oceans and sea ice with wide ground swath [Kramer et al., 2002].
The SEASAT SAR operated at L-band (23.5 cm wavelength) with a single polar-
ization channel HH (horizontal transmit and receive). This mission demonstrated
SAR capability in general terrain discrimination and target detection leading to
many follow-up space-borne SAR missions during the 80s and the 90s, such as
NASAs SIR-A (1981) and SIR-B (1984), the European ERS-1 (1992) and ERS-2
(1995), the Japanese JERS-1 (1992) or the Canadian RADARSAT-1 (1995).

4.1.1 . Polarimetric

To navigate in the absence of sunshine, the Vikings used crystals to examine
the polarization of skylights during foggy circumstances. This discovery of the phe-
nomenon of polarized electromagnetic radiation dates back to around AD 1000.
However, it was not until 1669 that Erasmus Bartolinus (1625 – 1698) produced
the first quantitative study on light observation. He was succeeded by Christiaan
Huygens (1629 - 1695), who made the most fundamental contributions to the sub-
ject of optics by arguing that light is a wave and by finding polarized light (1677).
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Étienne-Louis Malus (1775 - 1812) established Newton’s hypotheses that polariza-
tion is a fundamental characteristic of light (1808). An electromagnetic wave such
as light consists of a coupled oscillating electric field and magnetic field, which
are always perpendicular to each other; the polarization of electromagnetic waves
refers to the direction of the electric field. In the interaction of electromagnetic
waves with material objects and the propagation medium, the complex direction
of the electric field vector (polarization) is crucial [Lee and Pottier, 2009]. This
polarization transformation behavior characterisation is known as polarimetry in
radar and SAR. Polarimetry SAR deals with the full vector nature of polarized
electromagnetic waves.

From the 1940s until the 1960s, early polarimetric radar imaging research
concentrated on employing polarized radar echoes to describe aircraft targets.
Substantial contributions on the topic were made by Huynen, Sinclair, and Ken-
naugh [Lee and Pottier, 2009]. Later, Ulaby and Fung showed the significance
of polarimetry in the estimate of geophysical parameters, while Valenzuela, Plant,
and Alpers illustrated the utility of multiple polarization SAR and scatterometers
in their investigations of ocean wave and current remote sensing. At the vanguard
of radar polarimetry research, Boerner improved the target decomposition work of
Kennaugh and Huynen and presented numerous polarization descriptors, including
polarization ratios. Boerner has been crucial, persistently promoting polarimetric
radar imaging around the world.

In 1985, JPL successfully implemented the first Polarimetric Synthetic Aperture
Radar (PolSAR) AIRSAR at L-Band (1.225 GHz). Creating backscattering power
and relative polarimetric phases of any polarization state combinations using quad-
polarizations (HH, HV, VH, VV). Later on, NASA-JPL built a PolSAR system that
flew on AIRSAR, which used three frequencies, P-, L-, and C-Band on the same
pass. Most open-source PolSAR images used for this work come from the AIRSAR
campaign that lasted 20 years.

Space-borne PolSAR era started in 1994 when the SIR-C/X-SAR was success-
fully launched. SIR-C acquired at C-band (5.4 cm in wavelength), L-band (23.5
cm) and single polarization X-band SAR simultaneously.

In the mid-2000, JPL suffered a steady decline in PolSAR-related research
and AIRSAR stopped its operations. This decline was compensated by Europe’s
increasing interest in PolSAR applications since the 1990s, mainly through the
European Space Agency (ESA). Indeed, we can see from Figure 4.3 that PolSAR
missions are on the rise on all frequency bands.

Indeed, ONERA, the French Aerospace Research Agency, quickly invested, in
1980, a powerful radar airborne platform called RAMSES. This device was known
for covering a large electromagnetic spectrum from P- to W-band for a total of
eight bands, six of which were fully polarimetric. In 2008, RAMSES reached
the end of its life; however, previewing this, ONERA acquired a new airborne
remote sensing system called SETHI, which performed its first test campaign in
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(a) RAMSES onboard Transall C160

(b) SETHI onboard Falcon 20
Figure 4.2: ONERAs airborne sensors extracted from [Baqué et al.,2019].
2007 [Dreuillet et al., 2006]. SETHI was developed to be a very flexible and multi-
function research airborne platform. SETHI made an effort to reduce the cabin
space and re-designing the pod due to the change in strategy for the antennas
implementation because of the inability to open the door in flight [Baqué et al.,
2019].

The first fully PolSAR satellite ALOS was launched in 2006 by the Japanese en-
terprise JAXA. BIOMASS would be the first P-band space-borne mission [Taillade,
2020].

« We have arrived at the door-step of the golden age of polarimetric
radar imaging » - [Lee and Pottier, 2009]

A more detailed list of recent PolSAR airborne and space-borne systems can
be found in Section 1.3 of Reference [Lee and Pottier, 2009].

4.2 . SAR background

Synthetic Aperture Radar (SAR) is an active radar system used for acquiring a
two-dimensional high spatial resolution image of the desired terrain in most weather
conditions.
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Figure 4.3: Past, current and future SAR missions extracted from [Tail-lade, 2020].
4.2.1 . Frequency Bands

The terrain is illuminated with coherent ElectroMagnetic (EM) microwave
pulses. Such an active operating mode makes this kind of sensor independent
of solar illumination and thus allows day and night imaging. The microwave oper-
ates in different spectral regions, usually between P-band and Ka-band, depending
on the desired properties of the image. For example, below the S-band (see Figure
4.4), one can avoid the effects of clouds, fog, rain, and other weather charac-
teristics, whereas S-, C-, and X-band are also used for cloud, and precipitation
imaging [Lee and Pottier, 2009].

Figure 4.4: Pertinent microwave section of the EM spectrum.

95



4.2.2 . Geometry
SAR is usually mounted on a moving platform such as an airplane, space

shuttle, or satellite that moves in the y direction (Figure 4.5), also known as the
azimuth direction. An antenna is oriented perpendicular to the flight direction
towards the ground at an angle of incidence θ0.

Figure 4.5: SAR imaging geometry in strip-map mode extracted from[Lee and Pottier, 2009].
The radial axis or radar-line-of-sight (RLOS) is known as the slant range. The

area covered by the antenna beam is called the antenna footprint, which is defined
from the antenna apertures θX , θY given by:

θX =
λ

LX
, and θY =

λ

LY
, (4.1)

where LX and LY correspond to the physical dimensions of the antenna and λ is
the wavelength corresponding to the carrier frequency of the transmitted signal.
The antenna footprint can then be defined using the range swath (∆X) and
azimuth swath (∆Y ) which are defined as

∆X ≈ R0θX
cos θ0

, and ∆Y ≈ R0θY
cos θ0

, (4.2)
where R0 is the distance between the radar and the antenna footprint center
(Figure 4.6). The area scanned by the antenna footprint is named radar swath.

4.2.3 . Spatial Resolution
One of the most essential characteristics of the SAR image is the spatial resolu-

tion, which indicates the ability to distinguish between two closely spaced scatters.
On the range distance, this is achieved by using the lower pulse duration possi-
ble [Lee and Pottier, 2009]. However, short pulses normally have lower energy,
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Figure 4.6: Broadside geometry domain.
causing a weak signal-to-noise ratio (SNR). The equipment needed to generate
such short, high-energy pulses is challenging to achieve. It is possible to achieve a
resolution comparable to those short pulses by using the pulse compression method,
which sweeps the frequency linearly through a band B, known as chirp. The re-
ceived signal is then processed with a matched filter that compresses the long pulse
into a short one with an effective duration equal to 1/B.

The range resolution is then defined as:

δx =
c

2B

1

sin θ0
, (4.3)

where c is the speed of light, note that the range resolution also depends on θ0,
which means that the ground range resolution varies non-linearly.

Normally on the azimuth axe, two scatters can be differentiated if their distance
is larger than the beam width. Therefore, the azimuth resolution would be:

δy =
R0λ

Ly
, (4.4)

for what large antennas will be needed to increase the azimuth resolution. The
solution behind synthetic aperture is based on the fabrication of a longer effective
antenna by shifting the antenna along the flight direction, providing a way to
obtain high resolution without using a large antenna. When a scattered signal is
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coherently integrated throughout the flight path at a given range R0, the azimuth
resolution is equal to

δy =
Ly

2
. (4.5)

It’s noteworthy that range and wavelength have no bearing on azimuth resolu-
tion, which is solely controlled by the synthetic antenna size of the radar system.

For an orbital SAR imaging system, when the platform altitude (H) becomes
comparable with the earth radius (RE), these variables must be taken into consid-
eration in the azimuth resolution expression (Equation 4.5) as follows

δy =
RE

RE +H

Ly

2
. (4.6)

Because the cross-talk dimension in SAR imaging is determined by a time
measurement associated with the distance r (slant range) from the radar to the
surface, SAR imaging presents an inherent resolution difference as the horizontal
(x) distance (or ground range) is different from the slant range distance.

4.2.4 . Speckle Noise
One of the main drawbacks that appear when working with SAR images is the

phenomenon known as Speckle Noise. This signal-dependent noise is generated by
the coherent nature of the reflected waves from many elementary scatters and its
interaction with the roughness of the terrain, causing a pixel-to-pixel variation in
intensities manifesting as a granular noise pattern [Goodman, 1976]. The presence
of this type of noise decreases the usefulness of these images for both human
interpretation and automatic interpretation, such as segmentation or classification
algorithms.

The statistical model for speckle noise often starts with the presumption that
the resolution cell contains a significant amount of scattered radiations with a
wavelength that is comparable to the degree of terrain roughness [Goodman, 1976].
Indeed, Reference [Dalsasso et al., 2022a, Goodman, 1976] describes the speckle
noise as a physical phenomenon that is caused by the coherent sum of the contri-
butions from different elementary scatterers within the same resolution cell, which
the radar cannot resolve. The phase differences induce fluctuations in the complex
summation and then in the observed amplitude, which produces in the observed
image a granular behavior.

The received signal can then be represented by the addition of N independent
scatters as

V =
N∑
k=1

Vk exp (iϕk) = Ve exp (iϕ) = VX + i VY . (4.7)
When N is sufficiently large, VX and VY will follow a Gaussian distribution due to
the Central Limit Theorem. It can be proven that they will have zero means and
will be uncorrelated [Mascarenhas, 1997]. It is also possible to conclude that Ve
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Figure 4.7: Addition of the phasor contributions of different scatters.

will have a Rayleigh distribution and ϕ will have a uniform distribution between 0

and 2π.

The most common technique to mitigate the speckle noise is to perform an
averaging filter. This filter replaces a center pixel with the average of itself and all
the neighboring pixels inside the boxcar filter of size 3×3 or larger. This method is
very effective in speckle noise reduction for homogeneous areas, it is also simple to
apply and preserves the mean value [Lee and Pottier, 2009]. However, this method
reduces the spatial resolution due to the averaging of pixels from heterogeneous
media. Other filter-based techniques are Lee filter [Lee, 1981], Frost filter [Frost
et al., 1982], Kuan filter [Kuan et al., 1987], scattering-based-model filter [Lee
et al., 2006], or Maximum a posteriori (MAP) estimation techniques [Walessa and
Datcu, 2000, Lopes et al., 1993]. In particular, Reference [Walessa and Datcu,
2000] proposed a Gauss Markov random field (GMRF) model for textured areas
and allows an adaptive neighborhood system for edge preservation between uniform
areas.

More sophisticated techniques have been developed based on Non-Local tech-
niques [Deledalle et al., 2009,Deledalle et al., 2011,Deledalle et al., 2010,Parrilli
et al., 2012] attempted to exploit self-similarities and contextual information, gener-
alizing on NL-SAR [Deledalle et al., 2015], a fully automatic algorithm that handles
any SAR single- or multi-look images, by performing several Non-Local estimations
to restore speckle-free data. Wavelet-based methods [Xie et al., 2002,Argenti and
Alparone, 2002] enabled multi-resolution analysis. Later a combination of the
Non-Local approach and wavelet domain shrinkage, such as SAR-block-matching
3D (SAR-BM3D) [Parrilli et al., 2012], or SAR-oriented version of BM3D [Dabov
et al., 2007] emerged.

A general speckle reduction technique called MuLoG (MUlti-channel LOga-
rithm with Gaussian denoising) is proposed by Reference [Deledalle et al., 2017]
to include Gaussian denoisers originally designed for additive Gaussian noise within
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an iterative speckle removal procedure for a multi-channel SAR.
Deep learning techniques make use of pairs of speckled / speckle-free images

to train on ground truth, leading to results of unprecedented quality in the field of
image restoration [Wang et al., 2017,Zhang et al., 2018,Lattari et al., 2019,Rasti
et al., 2022]. However, Speckle-free images do not exist, for what these meth-
ods resort to synthetic data generated from optical images. Reference [Chierchia
et al., 2017] propose averaging long time series of SAR images can reduce speckle
to obtain such images. However, the acquisition of multi-temporal data can be
challenging and is most of the time not available. The speckled versions of these
speckle-free images can be obtained by generating synthetic speckle according to
Goodman’s model [Goodman, 1976]. These simulations generally do not account
for the spatial correlations of speckle observed in actual SAR images, leading to
a domain shift between network training and the application to SAR images that
requires an additional image pre-processing to reduce the correlations. Without
adequate pre-processing, networks trained on white noise lead to strong artifacts
when applied to correlated speckle [Dalsasso et al., 2022a].

Therefore, self-supervised neural network models become of interest. SAR2SAR
despeckling technique [Dalsasso et al., 2021] uses a deep semi-supervised neural
network that learns to restore SAR images by only looking at noisy acquisitions
by extending the noise2noise [Lehtinen et al., 2018] in order to take into ac-
count the peculiarities of SAR data. Another example of self-supervised models
is Speckle2void [Molini et al., 2022], which uses a Bayesian despeckling method
inspired by Reference [Laine et al., 2019] and Noise2Void algorithm [Krull et al.,
2019].

Reference [Dalsasso et al., 2022b] proposes their algorithm MERLIN, which
proposes to train using only one SAR image. Using the real part as the input
to the network and the imaginary part as the ground truth. These three semi-
supervised neural networks are explained and compared in [Dalsasso et al., 2022a].

A good starting point to learn more about desplecking techniques could be
[Mascarenhas, 1997] or Chapter 5 of [Lee and Pottier, 2009].

4.3 . PolSAR data representation

Polarimetric Synthetic Aperture Radar (PolSAR) classification algorithms gen-
erally make use of signal coherence (or equivalently phase and local phase variance)
existing on a single look complex data channel vector S measured from two or-
thogonal polarimetric transmitted signals on two orthogonal polarimetric received
signals. Here we use the horizontal (H) and vertical (V) polarisation, and, as with
monostatic radar, the cross channels are equal; the useful received vector is:

S =
(
SHH ,

√
2SHV ,SV V

)T
. (4.8)

For each pixel of the PolSAR image, this backscattering vector is usually ex-
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pressed in the Pauli basis and reshaped onto one single complex vector ∈ C3:

k =
1√
2
(SHH + SV V ,SHH − SV V , 2SHV )

T . (4.9)
The Hermitian so-called coherency matrix is then formally built according to

T =
1

n

n∑
j

kj k
H
j , (4.10)

where the operator H stands for complex conjugate transpose operation and where
n is the number of pixels chosen in a boxcar located in each local area of the SAR
image.

Since T is Hermitian symmetric, its lower triangle, excluding the diagonal, is
usually discarded as it provides no additional information. As the diagonal is real-
valued, the data is extended to the complex plane by adding a zero imaginary part
which leads to a total of six complex values per pixel, or nine real values for the
RVNN architectures. Unless said otherwise, the coherency matrix T will be the
input representation for the Machine Learning models.

4.4 . Available datasets and pre-processing

All the datasets used in this Chapter are summarized in Table 4.1, each will
be described in detail at the respective moment. All the images obtained were
presented in different file formats. PolSARPro [Pottier and Ferro-Famil, 2012] was
used to obtain a common file format for all datasets (.bin and .bin.hdr).

For all datasets (when possible), three different representations were generated
to be used if needed, these are the scattering vector S, the Pauli vector k and the
coherency matrix T , the later is computed at the pixel level with a boxcar of size
3 × 3. Since for a covariance matrix of size p × p, we need at least 2p samples
to compute a good estimate of this matrix. This property is also held to compute
a coherency matrix which explains the choice of 3 × 3 for the boxcar size. Some
datasets where found directly in the coherency matrix format with the same boxcar
filter as explained before. In these cases, retrieving the scattering vector S or the
Pauli vector k was not possible.

Deep learning methods require a large number of labeled training examples,
which even if there were enough images for training, these are normally not an-
notated, so they cannot be used for supervised training tasks. Images are nor-
mally manually labeled [Xia et al., 2018, Zhang et al., 2017], which is very time-
consuming and therefore costs a lot of human resources. Some work is being done
for automatic or semi-automatic annotation [Lienou et al., 2010, Huang et al.,
2021,Bratasanu et al., 2011, Inisan et al., 2022].

Furthermore, PolSAR images have several parameters that make images very
different from each other, causing a low degree of generalization across datasets,
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often known as the bias problem [Xia et al., 2018, Torralba and Efros, 2011].
Indeed, this causes extensive overfitting [Marmanis et al., 2016a]. Some methods,
such as transfer learning [Marmanis et al., 2016a], can be used to alleviate the
problem.

For all these reasons, more than one PolSAR image is rarely used in research
works. However, PolSAR images usually have a high resolution that allows the
generation of smaller image patches from which the training, validation and test
set can be obtained. These smaller image patches are generated using the sliding
window operation [Li et al., 2018b]. This method generates smaller image patches
by sliding a window through the image with a given stride. The same parameters
used in Reference [Cao et al., 2019] were used for the sliding window operation
method, generating images of size 12 × 12 for the MLP and CNN models and
128× 128 for the FCNN architecture.

These patches can be used for both segmentation and classification. CNN
and MLP model architectures are designed to perform classification tasks, whereas
FCNN is designed to perform segmentation task. In the first case, a prediction
of the whole image is made, e.g., which digit is in the image (MNIST) or if the
picture is of a cat or a dog but may find difficulties if both a cat and a dog are
present in the image. Segmentation tasks provide a pixel-wise classification, where
the distinction between dog and cat is done per pixel and can, therefore, predict
an image where both the cat and dog are present (see Figure 4.8 for a practical
example). Segmentation tasks provide an output of the same resolution as the input
image, where the class of each pixel is represented, whereas classification models
output only one global prediction class to characterize the whole image. Although
MLP or CNN are designed for classification tasks, it is possible to use such models
for SAR semantic segmentation problems by predicting each pixel separately with
MLP or CNN and re-constructing a pixel-wise classification prediction. Note that
only the central pixel is being predicted per image patch, so having several classes
within the image will not pose a problem in this case. Therefore, we consider
pixel-wise classification analogous to semantic segmentation tasks for which both
terms will be used interchangeably.

So for the segmentation model (FCNN), label patches were generated in the
same way that the input data, by using the sliding window operation and obtaining
ground truth maps of 128 × 128 × c where c is the total number of classes. For
the classification models (MLP or CNN), only the central pixel is used as the label
(see Figure 4.8 for a practical example).

For our classification models, the input image is smaller than for the segmen-
tation model (about 10 times smaller). These images are of size 12 × 12, which
generates a much larger amount of image patches. For these cases, there is no need
to use all the patches as it will greatly increase the computation time while not
increasing by much the final accuracy. References [Hänsch and Hellwich, 2009a]
and [Hänsch and Hellwich, 2010] used about 2% of the image pixels for training
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Figure 4.8: ImageClassification vs. Semantic Segmentation vs. InstanceSegmentation example image.
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whereas [Hou et al., 2016] and [Jiao and Liu, 2016] used 5%. In [Guo et al., 2015],
the authors adopted 10%. Finally, Reference [Zhang et al., 2017] tested different
sampling rates and proposed, based on the results, to use a 10% sampling rate for
both training and validation set together. We, therefore, adopt by default 8% for
training, 2% for validation and the remaining pixels for testing.
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5 - Comparing CVNN against RVNN for Pol-
SAR applications

In the previous Chapter 3, we showed the merits of using CVNN for non-circular
data. Knowing that SAR and, more specifically, PolSAR data is known to be non-
circular [El-Darymli et al., 2014,Vasile and Totir, 2012], we can know that there is a
potential interest in using these networks on PolSAR image classification. Indeed,
the common belief that the phase of the SAR image is random and therefore
bears no information no longer holds for typical high-resolution targets, previously
considered to be points, now provides phase information that can be exploited [El-
Darymli et al., 2015]. Indeed, in urban areas, a limited number of human-made
scatters with near-regular shapes and sub-meter size leads to correlated phase
patterns [Datcu et al., 2007]. Taking into account phase information can boost
detection accuracy, and recognition of targets [El-Darymli et al., 2013].

Nevertheless, the research is widely concentrated on using RVNN to tackle
this kind of task [Ben Hamida et al., 2018,Marmanis et al., 2018,Marmanis et al.,
2016b,Parikh et al., 2020,Konishi et al., 2021,Chen et al., 2016,Hou et al., 2016,
Zhou et al., 2016,Fix et al., 2021] as the motivation to use CVNN is not yet clear.

Although some research has been done to classify PolSAR images using CVNN,
the comparison to evaluate their gain over an equivalent RVNN has been limited on
PolSAR applications. The limitations of current work make it impossible to assert
with confidence that classification accuracy does improve when using a CVNN over
an equivalent-RVNN. For the existing publications, these limitations are at least
one of the following

• No comparison was made against a conventional real-valued neural network.

• CVNN and RVNN not being capacity equivalent as it will be explained in
Section 5.1.

• Intersecting or lacking mean or median confidence intervals.

In References [Hänsch and Hellwich, 2010] and [De et al., 2017], the authors
tested CV-MLP on a PolSAR database but did not provide a comparison with
RV-MLP. In [Hänsch and Hellwich, 2009a], a comparison was performed for both
types of networks but did not offer a confidence interval and used a different input
representation for each model. Although, in [Hänsch, 2010], the same authors
suggested giving the same amount of input representation to get a more precise
comparison between the models. Although [Cao et al., 2019] added some neurons
to the RV-MLP compared to the CV-MLP which made it an acceptable comparison,
they do not specify the criteria they used, and it was not yet enough to make it
equivalent to the complex network by neither of the two criteria to be analyzed
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in this Section, which are the equal number of real-valued trainable parameters
(tp) or real-valued neurons parameters (np). In [Cao et al., 2019], even though
CV-MLP performed better than RV-MLP, confidence intervals intersect, leaving
room for doubt about CV-MLP out-performance.

Works using complex Convolutional Neural Network (CNN) have been pub-
lished for PolSAR applications. Reference [Wilmanski et al., 2016] uses a CV-CNN
for Synthetic Aperture Radar (SAR) classification, but the real-valued network is
not only under-dimensioned by making both real and complex networks having the
same number of filters but also provides the RV-CNN with only the magnitude
information. Reference [Oyama and Hirose, 2018] uses a CV-CNN for Interfero-
metric Synthetic Aperture Radar (InSAR) classification but compares it against CV
Markov random field (CMRF) model and not a RV-CNN. References [Zhang et al.,
2017, Shang et al., 2019] compares a CV-CNN with a real-valued model close to
an equivalent definition as explored in the following subsections but lacking con-
fidence intervals. Other recent works [Sun et al., 2019, Zhao et al., 2019a, Zhao
et al., 2019b] use a CV-CNN for PolSAR applications but without comparing its
result with a real-valued model. In Reference [Cao et al., 2019], both a CV-CNN
and CV-FCNN are compared against a real-valued networks that contains the same
amount of kernels for each layer making it unfair for the real models as they will
have a lower capacity [Mönning and Manandhar, 2018].

In this Chapter, we propose a framework that enables the fair comparison of two
deep learning models (one real- and one complex-valued), and we run simulations
using that framework for classification and segmentation of PolSAR data.

5.1 . Real Equivalent Network

To assess whether a Complex-Valued Neural Network (CVNN) is actually of
interest, it is necessary to compare it with a Real-Valued equivalent network. How-
ever, the equivalence between both networks is not straightforward. Indeed, a cri-
terion to create Complex-Valued Neural Network (CVNN) and Real-Valued Neural
Network (RVNN) with equivalent capacities remains missing resulting in an un-
balanced comparison. The mapping between CVNN and its real equivalent is in
general not unique since there are too many degree of freedom in the network
architecture, e.g. number of layers and neurons, activation functions, training loss,
optimizers, etc. In our work, we only focus on real equivalent networks that have
a similar architecture with the CVNN meaning that both networks should have the
same number of layers, similar activation functions, training loss and optimizers.
Most parameters are naturally transformed into a complex plane. That is true, for
example, optimizers, or activation functions (please refer to Section 2). However,
if we keep the same amount of neurons (for fully-connected layers) or kernels (for
convolutional layers), it will result in the CVNN having higher capacity than their
opposed RVNN as we can consider that the complex plane C isomorphic to R2
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meaning that one complex-valued parameter (pC) is equivalent to two real-valued
parameters (pR) so that pC = 2 pR. The superscript C and R indicate whether it
corresponds to the CVNN or RVNN respectively.

In this Section, therefore, we develop a formal definition for capacity equivalent
CVNN and RVNN [Barrachina et al., 2021c, Barrachina et al., 2022d] providing
a framework under which both networks would be equivalent and therefore its
comparison can be made.

5.1.1 . Multilayer Perceptron
To preserve the same amount of real-valued neuron parameters (np) per layer

on MLP architectures, it will suffice to double the neurons of each hidden layer
within the RV-MLP with respect to CV-MLP [Hänsch and Hellwich, 2010,Hirose,
2012,Hirose, 2009]. However, as Reference [Mönning and Manandhar, 2018] points
out, this design leads to a bigger number of real-valued trainable parameters (tp)
for the RVNN. Indeed, ignoring the layer biases that are generally added at the
end, a CVNN with two consecutive hidden layers of size 10 each will result in
10 × 10 = 100 complex-valued weights for connecting them, which is equivalent
to a total of tpC ≜ 200 real-valued trainable parameters. Using the described
technique, an equivalent-RVNN will have two consecutive hidden layers of size 20
each, needing a total of 20× 20 = 400 real-valued weights to connect them and,
therefore, tpR ≜ 400. Leading to the latter potentially having a higher capacity if
this method is followed.

The global number of tp for a generic CV-MLP and RV-MLP with K hidden
layers is provided in [Mönning and Manandhar, 2018] through the formula:

tpC = 2NC
0 NC

1 + 2

K−1∑
i=1

NC
i NC

i+1 + 2NC
K NC

L ,

tpR = NR
0 NR

1 +
K−1∑
i=1

NR
i NR

i+1 +NR
K NR

L ,

(5.1)

where Ni is the number of neurons for layer i ∈ 1, ...,K. N0 corresponds to the
number of features or input size and NL to the output size.

The task to solve directly determines the input and output sizes of the real
network so that N0 = NR

0 = 2NC
0 and

NL = NR
L =

{
2NC

L , regression task
NC

L , classification task . (5.2)
Reference [Mönning and Manandhar, 2018] argues that a real-valued equivalent

model must have the same tp capacity as the complex one: tpC = tpR = tp. To
accomplish this, they propose to alternate between doubling or not the number of
neurons of the real-valued model hidden layers with respect to the complex-valued
model. However, this strategy only works when the number of hidden layers is
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even for classification tasks and an odd number for regressions tasks. To address
this problem, we propose designating one hidden layer as:

NR
i = 2

NC
i−1 +NC

i+1

NR
i−1 +NR

i+1

NC
i . (5.3)

Another proposition in [Mönning and Manandhar, 2018] is to make all layers
the same size. Nevertheless, this solution will not maintain the same aspect ratio
for both CVNN and RVNN models. As exemplified in Figures 5.1a and 5.1c,
performing classification with a CV-MLP with two hidden layers of sizes 10 and 5
will be converted to a RV-MLP where both hidden layer sizes are 10. This means
converting a network where the first hidden layer doubles the size of the second to
one where both hidden layers are the same size.

In this paper, we propose to maintain the same aspect ratio for each hidden
layer, i.e., the number of hidden layer neurons of RVNN is proportional to the one
of RVNN, which leads to the following equation:

NR
i = r NC

i , ∀i ∈ 1, . . . ,K , (5.4)
with r a positive constant real value. Replacing (5.4) in (5.1) we obtain the following
second-order polynomial equation in the variable r:

tp =

(
K−1∑
i=1

NC
i NC

i+1

)
r2 +

(
N0N

C
1 +NC

K NL

)
r. (5.5)

Since r should be positive as well as all parameters tp, NR
i , NL and N0, the only

possible solution to our problem is therefore:

r =
−b+

√
b2 − 4 a (−tp)

2 a
, (5.6)

where a =
K−1∑
i=1

NC
i NC

i+1, b = N0N
C
1 +NC

k NL.

In conclusion, there are two possible definitions for an equivalent-RV-MLP.
Either by setting the same real-valued trainable parameters (tp) or by its real-
valued neuron parameters (np) per hidden layer (Figure 5.1b). The former can be
done by creating a RV-MLP where each hidden layer size is given by Equation 5.4
with r being defined by (5.6); this will result in an equivalent-RV-MLP in terms of
the real-valued training parameters that maintain the same aspect ratio that the
CVNN hidden layers (Figure 5.1d).

If 0 < r < 1,

a r2 + b r − tp = 0 < r a+ r b− tp ,

⇒ 0 < r a+ r b− 2 a− β ≤ a (r − 2) + b (r − 1) , (5.7)
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(a) Original complex model (b) np-equivalent model

(c) tp-equivalent modelproposed by [Mönning and Manand-har, 2018] (d) Proposed tp-equivalentmodel [Barrachina et al., 2021c]
Figure 5.1: Real equivalent MLP models example. Figures generatedusing alexlenail.
where tp = 2 a+ β with b ≤ β = 2NC

0 NC
1 + 2NC

k NC
L < 2 b (Equation 5.1). As

both a and b are positive, Equation 5.7 is absurd, which is expected as it implies
that real-valued models will never have fewer neurons than the complex-valued
models. On the other hand, for r ≥ 1:

a r2 + b r − tp = 0 ≥ r a+ r b− tp ,

⇒ 0 ≥ a (r − 2) + b r − β > a (r − 2) + b (r − 2) . (5.8)
Again, as a and b are positive, Equation 5.8 is absurd if r ≥ 2. Because of inequal-
ities (5.7) and (5.8), we conclude that 1 ≤ r < 2, meaning that the equivalent-
RVNN should have at least the same dimension as CVNN and at most double. In
particular, r = 2 corresponds to the case for the same value of np. Proving that
it is not possible to reach both conditions simultaneously and one must choose
between setting an equal value for np or tp.

For single hidden layer models, a = 0 and therefore, r will be:

r =
β

b
= 2

NC
0 +NC

L

N0 +NL
. (5.9)

As it can be derived from (5.9), r = 1 for regressions tasks while for classifications
tasks, 1 < r < 2 depending on the relationship between N0 and NL. Finally, as
the number of hidden neurons gets bigger with respect to the input and output,
or in other words, a ≫ b, it will tend r →

√
2.

Note that, the extra terms 2
K∑
i=1

NC
i and

K∑
i=1

NR
i should be added to Equation

111

https://alexlenail.me/NN-SVG/


(5.1) in order to take into account the bias. This extra term will lead to a slight
variation of r by changing the value of b but does not change its boundary 1 ≤
r < 2. Naturally, when multiplying r by NC

i to obtain the size of each real-valued
layer (5.4), it will most likely not yield an integer. In these cases, the value was
rounded up to make sure the real-equivalent network never has lower capacity than
their complex-valued counterpart.

5.1.2 . Convolutional Neural Networks
For convolutional layers, the equation of the real-valued trainable parameters

is defined by:

tpC = 2
K∑
i=1

CC
i WC

i H
C
i F

C
i ,

tpR =
K∑
i=1

CR
i WR

i H
R
i F

R
i ,

(5.10)

with {Ci}C,R the channels presented on the input of the convolutional layer,
{Wi}C,R and {Hi}C,R the filter width and height respectively and {Fi}C,R the
amount of filters or kernels of the layer i.

For convolutional layers, there are a few options on how to maintain the same
amount of real-valued trainable parameters, either by extending the kernel sizes
or increasing the number of kernels. The second method may seem more logical
as the transformation from the complex to the real plane does not change the
resolution of the image and we maintain the same size of the receptive field for
both networks. By adopting the second method then HC

i = HR
i and WC

i = WR
i .

By definition, Ci = Fi−1 with F0 the input image channel dimension. Without
further restrictions, the solution would become evident with r =

√
2 as shown

in Figure 5.2. However, as before, the mapping of the complex data into the
real domain will result in the real-valued input having twice as channels as the
complex case so that FR

0 = 2FC
0 . In order to have the same real-valued trainable

parameters, we need to solve Equation 5.11 for r ∈ R in order to have FR
i = r FC

i ,
∀i ≥ 1.

tp = 2
K∑
i=1

FC
i−1WiHi F

C
i = 2rFC

0 W1H1 F
C
1 + r2

K∑
i=2

FC
i−1WiHi F

C
i . (5.11)

From the above equation, the solution for r is:

r =
−b

2 a
+

√
2 +

b

a
+

b2

4 a2
, (5.12)

with b = 2FC
0 W1H1 F

C
1 and a =

K∑
i=2

FC
i−1WiHi F

C
i . The extreme case of a

single convolutional layer makes r = 1. Similarly as for MLP, when a >> b, that
happens for example with deep the convolutional neural networks, r →

√
2.
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If taking into account the bias, Equation 5.10 changes to:

tpC = 2
K∑
i=1

(
CC
i WC

i HC
i + 1

)
FC
i ,

tpR =

K∑
i=1

(
CR
i WR

i HR
i + 1

)
FR
i .

(5.13)

With this changes, Equation 5.12 changes to

r =
−b

2 a
+

√√√√√
2 +

b

a
+

b2

4 a2
+

∑
i=1

Fi

a
, (5.14)

where a is as before but b changes to b = 2FC
0 W1H1 F

C
1 +

∑
i=1

Fi.

8@64x648@64x64

(a) Original complexmodel

16@64x6416@64x64

(b) np-equivalentmodel

11@64x6411@64x64

(c) tp-equivalentmodel
Figure 5.2: Real equivalent convolution example of a middle hiddenlayer. Figures generated using alexlenail.

5.2 . Neural Network architectures used for the experiments

MLP [Hänsch and Hellwich, 2009a], CNN [Zhang et al., 2017] and FCNN [Cao
et al., 2019] model architectures are used throughout this Chapter, both on the
complex and real domain respecting the equivalence definitions discussed on Sec-
tion 5.1. In this Section, we will give a detailed description of those models. Some
small modifications were made compared to the model’s respective References with
state-of-the-art parameters not popular or known at the time of those publications.
References [Hänsch and Hellwich, 2009a] and [Zhang et al., 2017] use Stochastic
Gradient Descent (SGD) as an optimizer whereas Reference [Cao et al., 2019] use
a more modern optimizer known as Adam [Kingma and Ba, 2014] which might
allow models to find a lower optimal minimum. Adam was, therefore, used as
the optimizer for all models. Learning rate and momentum were tweaked for each
model independently according to the results. As well as the number of epochs.

Although [Hänsch and Hellwich, 2009a] use tanh activation function for the
MLP model, we decided in this work to use Rectified Linear Unit (ReLU). Indeed,
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both activation functions were tested for the MLP architecture showing an inter-
esting increase in performance when using Rectified Linear Unit (ReLU). This small
optimization, plus using the Adam optimizer, made the MLP architecture go from
a median average accuracy per class (based on 15 iterations) of 83.75± 0.13% to
85.25± 0.05% for the complex model and from 83.31± 0.11% to 84.38± 0.16%

for the real model. For the output layer, the softmax activation function [Good-
fellow et al., 2016] has been used. For the complex-valued hidden layers, acti-
vation functions are separately applied to both real and imaginary parts so that
CReLU(z) = ReLU(Re(z))+ iReLU(Im(z)) . These type of activation functions
are known as complex Type A activation function according to [Barrachina et al.,
2021b,Kuroe et al., 2003] (also explained in Section 2.3).

A Normal weight initialization by K. He in [He et al., 2015] was used, and
the bias was initialized as zero. The adaptation for complex-valued weights initial-
ization is described in Section 2.6 and [Trabelsi et al., 2017, p. 6], which has to
be done with care to keep the benefits of the K. He initialization on the complex
domain.

A categorical cross-entropy loss function was used for all models. For complex
models, the loss is computed twice, using first the real part and then the imaginary
part as the prediction result. An average of the two error values is then calculated
to be optimized. This loss function is known as complex average categorical cross-
entropy (LACE) and was explained in Section 2.4.

Both Complex- and Real-Valued MLP architectures had two hidden layers.
For the CV-MLP, 96 and 180 neurons were used for the first and second hidden
layers, respectively, as presented in [Cao et al., 2019]. The hidden layers sizes of
the RV-MLP were dimensioned to have the same amount of real-valued training
parameters with the same aspect ratio as explained in Section 5.1 (Figure 5.1d).
The MLP models presented some overfitting for what dropout with 50% rate was
used, which ameliorated the performance.

Throughout literature, CV-CNNs are the most popular CVNN architecture used
for PolSAR. All References [Zhang et al., 2017, Sun et al., 2019, Zhao et al.,
2019a, Zhao et al., 2019b, Qin et al., 2021] identically dimensioned the model
with the same amount of layers and kernels. Therefore, we decided to use the
same architecture, which presents two convolutional layers, with 6 and 12 kernels,
respectively, for the complex model. Again, for the real model, their size was
dimensioned as explained in Section 5.1. All kernels were of size 3 × 3. The
real model was dimensioned as explained in Section 5.1. Conventional arithmetic
average pooling was used between both convolutional layers, whose extension to
the complex domain is explained in Section 2.1.1. The model presents a fully
connected layer at the end to perform the classification.

Finally, CV-FCNN (Figure 5.3) was implemented as described on [Cao et al.,
2019]. which is composed of the downsampling or feature extraction part and the
upsampling part. The downsampling part presents several blocks (B1, B2, B3, B4,
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Figure 5.3: Complex-Valued Fully Convolutional Neural Network (CV-FCNN) diagram.

B5, and B6). Each block has two sub-modules that are represented in Figure 5.3
in green and red colors. The upsampling part presents blocks B7, B8, B9, B10,
and B11, which, in terms, are a combination of the other two sub-modules, the
second one being the same green sub-module present in the downsampling section.
The first sub-module (yellow) is a max-unpooling [Zafar et al., 2018] module as
explained in Section 2.1.2.

The green sub-module is a combination of a convolution layer, a Batch Normal-
ization (BN) (explained in Section 2.5) and Complex-Rectified Linear Unit (ReLU).
Reference [Cao et al., 2019] mentions using dropout but does not indicate at which
points nor their rate. Different dropout rates were tested at several stages, such as
the downsampling or upsampling part, without any appreciable amelioration (and
sometimes the opposite). For this reason, no Dropout was used for this model.
This can be explained as BN also acts as a regularizer, in some cases eliminating
the need for Dropout [Srivastava et al., 2014]. The convolutional filter present on
each layer was of size 3× 3, and the number used for each layer is represented in
Figure 5.3 for the complex model. As usual, the definition in Section 5.1 was used
to dimension the real-valued model.

The red sub-module is a max pooling layer whose main objective is to shrink the
image into smaller ones by keeping only the maximum value within a small window,
in our case, of size 2× 2. For the complex case, the absolute value of the complex
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number is used for comparison as proposed in [Zhang et al., 2017]. This layer
complements the max-unpooling sub-module (yellow), which receives the locations
where the maximum value was found. The max-unpooling layer (explained in
Section 2.1.1) enlarges the input image by placing their pixels according to the
maxed locations received from the corresponding max-pooling layer [Zafar et al.,
2018].

The last blocks of the downsampling and upsampling parts (B6 and B11) have
some differences with respect to the other blocks. B6 removes the max-pooling
layer (red) completely. B11, on the other hand, replaces the ReLU activation
function with a softmax activation function to be used for the output layer.

Each model was evaluated over 50 Monte-Carlo trials to be able to extract
statistical analysis.

5.3 . Experiments and results

Throughout this and all following Sections of the Chapter, the median error
was computed as in [McGill et al., 1978]; if median intervals do not overlap, there
is a 95% confidence that their values differ [Chambers, 2018]. The confidence
interval of the mean is calculated for a confidence level of 99%.

This Section implements several CVNN models, all of them described in the
previous Section, with the coherency matrix as input representation, providing a
thorough analysis that involves several independent trials for each network in order
to infer appropriate errors and statistics. The dataset format used for each model
was described in detail in Section 4.4. We also implement all the equivalent-
RVNN [Barrachina et al., 2021c,Barrachina et al., 2022d] as described in Section
3.2.1. This definition asserts the same quantity of real-valued trainable parameters
for both complex- and real-valued models maintaining the aspect ratio for each
hidden layer.

We then show which model architecture is best suited for PolSAR applications
and prove that using a Complex-Valued model is desirable regardless of the chosen
architecture for two PolSAR datasets.

5.3.1 . Oberpfaffenhofen dataset
E-SAR is an airborne experimental synthetic aperture radar system that is op-

erated by the Microwaves and Radar Institute in cooperation with the German
Aerospace Center (DLR) flight facilities. E-SAR delivered its first images in 1988
in its basic system configuration. Since then, the system has been continuously
upgraded to become what it is today: a versatile and reliable workhorse in air-
borne Earth observation with applications worldwide [German Aerospace Center
(DLR), 1988b]. The measurement modes include single-channel operation with
either one wavelength and polarisation at a time or SAR Interferometry and SAR
Polarimetry. The system is polarimetrically calibrated in L- and P-band. Single-
pass SAR Interferometry is operational in X-band (along or cross-track), whereas
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(a) Oberpfaffenhofen image (b) Ground Truth
Figure 5.4: Oberpfaffenhofen image and ground truth. A Built-upArea; B Woodland; C Open Area.

repeat Pass SAR Interferometry works in L- and P-band, especially in combination
with polarimetry [German Aerospace Center (DLR), 1988a].

Figure 5.4a shows the Oberpfaffenhofen, Germany database taken by E-SAR
at L-band. The dataset can be downloaded at the European Space Agency (ESA)
website. It can be seen in Figure 5.4b the ground truth for 3 different classes,
built-up areas (25.01%), woodland (18.81%) and open areas (56.18%) for a total
of 1,311,618 labeled pixels. These labels were obtained from [Zhang et al., 2017]
as with the Flevoland ground truth.

Experiments were done with all np, alternate-tp and ratio-tp real equivalent
models, analogously as those shown in Figure 5.1. The MLP architecture was used
for the Oberpfaffenhofen dataset pixel-wise classification. Figure 5.5 shows the
first 500 epochs for the validation loss value of these simulations. It can be seen
that both the np and alternate-tp models presented overfitting. In contrast, this
was not present (or to a very limited extent) in the ratio-tp and complex models.
Therefore, we can conclude that using the proposed ratio-tp technique works best
for this case of study, giving proof that our method might be the one to be favored
in these cases for which we will only use this equivalent network definition for the
rest of our simulations.

Simulations were done using the Oberpfaffenhofen dataset for the three main
neural networks mentioned in Section 5.2. Both complex- and real-valued model
architectures were implemented for each of them. Each model was evaluated over
50 Monte-Carlo trials to be able to extract statistics analysis.

Statistical indicators of both the OA and AA are summarized in Table 5.1 for
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Figure 5.5: Real-Valued Equivalent-MLP comparison.

the 6 experimental models. From Table 5.1, it is evident that FCNN outperforms
CNN which, at the same time, outperforms MLP. For all three model architectures,
CVNN outperforms their real-valued equivalent model in both OA and AA metrics.
The highest achieved accuracy was achieved by the CV-FCNN architecture with
an OA of 98.55% and an AA of 98.14%. Achieving the highest mean or median
does not guarantee the most performing trained model. Indeed, we can argue that
the maximum obtained value may be more important than the average accuracy
as, in most cases, they will only use the most performing model for their end-user
application. In this case, CV-FCNN was also the model that obtained both the
upper 75% of cases and the maximum highest accuracy.

Unfortunately, the dataset is highly imbalanced, having much more occurrences
of class C (Open Areas) than the other classes. In particular, class C always
obtained a significantly higher accuracy than class B (Woodland) as it can be
appreciated in Figure 5.6 which caused the OA to be higher than the AA. Because
of application purposes, it is normally desired that a model performs better on
classifying classes equally without any preference due to frequent occurrences for
what we decided to favor AA over OA.

Figure 5.7 shows the median model prediction per model1. The performance
difference between FCNN, CNN and MLP remains clear based on the predicted
image. However, the better generalization gained when using a complex model is
much harder to visualize, although the difference can be seen in particular sections
of the image.

5.3.2 . Flevoland dataset
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(a) CV-FCNN (b) CV-CNN (c) CV-MLP
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Figure 5.7: Median Overall Accuracymodel predictions of Oberpfaffen-hofen dataset. A Built-up Area; B Wood Land; C Open Area.
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Overall Accuracy (OA)
median mean IQR range

FCNN CV 98.55± 0.21 98.42± 0.09 97.99− 98.94 99.91− 99.44RV 98.23± 0.15 98.30± 0.08 98.02− 98.69 96.83− 99.28

CNN CV 96.45± 0.04 96.45± 0.02 96.36− 96.52 96.21− 96.68RV 96.32± 0.04 96.32± 0.02 96.24− 96.44 95.89− 96.65

MLP CV 88.87± 0.03 88.86± 0.02 87.78− 88.93 88.61− 89.13RV 88.03± 0.13 87.94± 0.06 87.64− 88.24 86.90− 88.91

Average Accuracy (AA)
median mean IQR range

FCNN CV 98.14± 0.28 97.68± 0.23 97.38− 98.68 90.97− 99.41RV 97.79± 0.30 97.38± 0.22 96.93− 98.31 91.54− 99.00

CNN CV 95.69± 0.05 95.68± 0.02 95.57− 95.81 95.27− 96.00RV 95.50± 0.06 95.47± 0.03 95.34− 95.63 94.82− 95.93

MLP CV 85.25± 0.05 85.24± 0.04 85.13− 85.38 84.60− 86.03RV 84.38± 0.16 84.25± 0.08 83.92− 84.62 82.59− 85.42

Table 5.1: Test accuracy results (%) on Oberpfaffenhofen dataset.
Flevoland dataset is a subset of an L-band PolSAR agriculture area of the

Netherlands acquired by NASA/JPL (Jet Propulsion Laboratory) AIRSAR in 1989
during the MAESTRO-1 Campaign (Figure 5.8). This dataset contains 157,296
labeled pixels distributed among the following 15 classes Steambeans (3.88%),
Peas (5.79%), Forest (9.50%), Lucerne (6.02%), Wheat (10.99%), Beet (6.39%),
Potatoes (9.72%), Bare Soil (1.96%), Grass (3.99%), Rapeseed (8.07%), Barley
(4.55%), Wheat 2 (6.73%), Wheat 3 (13.54%), Water (8.57%) and Buildings
(0.30%). Labels were from Reference [Zhang et al., 2017].

Simulations on both CV-FCNN and RV-FCNN architectures, are performed on
the Flevoland dataset. The simulations were repeated 50 times each in order to
infer proper statistical analysis of the results. On each trial, the train, validation,
and test sets are randomly sampled, so no two simulations have the same dataset
split. Each training includes 1000 epochs.

1Note that is a single prediction given by themedianOAmodel and not an averageof all simulations
120



(a) Flevoland image (b) Ground truth
Figure 5.8: Flevoland image and ground truth. A Steambeans; BPeas; C Forest; D Lucerne; E Wheat; F Beet; G Potatoes; H BareSoil; I Grass; J Rapeseed; K Barley; L Wheat 2; M Wheat 3; N Wa-
ter; O Buildings.

Statistical indicators of both the Overall Accuracy (OA), which is the ratio of
the number of correctly predicted pixels with respect to the total pixels, and the
Average Accuracy (AA), which is an average of the accuracy for each class indepen-
dently, are summarized in Table 5.2 for the test set. Although high accuracy makes
the performance difference between the models seem small, confidence intervals
remain far apart, which allows concluding that CV-FCNN generalizes better than
RV-FCNN. 75% of CV-FCNN simulations achieve more than 99.74% OA whereas
only 25% of RV-FCNN iterations achieve it.

CV-FCNN RV-FCNN
OA median 99.80± 0.02 99.67± 0.03mean 99.79± 0.01 99.66± 0.02IQR 99.74− 99.84 99.58− 99.74full range 99.58− 99.91 99.38− 99.88

AA median 98.55± 0.38 98.25± 0.44mean 98.35± 0.19 97.87± 0.23IQR 97.84− 99.52 97.08− 99.10full range 94.20− 99.87 93.07− 99.75

Table 5.2: FCNN test accuracy results (%) on Flevoland dataset.
The validation accuracy progression over epochs is shown in Figure 5.9; only

the first 300 epochs are depicted, as the graph does not change much after that.
It can be appreciated that complex-valued models converge quicker and with less
variance than real-valued ones.
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Figure 5.9: Validation evolution per epoch on the Flevoland dataset.
Figure 5.10 shows the box plot for both OA and AA. These plots allow a better

appreciation of the outliers, which is not possible to appreciate in Table 5.2. Finally,
Figure 5.11 shows the median2 OA models prediction. Those correctly predicted
pixels are depicted in white, and the wrong predictions are in red.
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Figure 5.10: Flevoland test accuracy box plot.

5.4 . Studies on input representation

To our best knowledge, all the work mentioned above used the coherency matrix
as their network input representation regardless of the PolSAR application. Even

2Note that is a single prediction given by themedianOAmodel and not an averageof all simulations
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(a) CV-FCNN (b) RV-FCNN
Figure 5.11: Median Overall Accuracy model predictions of Flevolanddataset.

though the coherency matrix is a well-known attribute in unsupervised PolSAR
image classification used for e.g. H-α, Wishart classifier, etc., it might not be
adapted to the supervised learning framework for pixel-wise segmentation tasks.
The averaging operation performed on Equation 4.9, whose main objective is to
reduce noise at the expense of losing resolution, mixes values of adjacent pixels,
which is not favorable for pixel-wise classification. The averaging algorithm can
be viewed as a non-trainable convolution operation on k kH with identical kernel

weights
1

n
. Letting these kernels be trainable could enhance the performance of

classification and segmentation.
Additionally, the diagonal elements of the coherency matrix are real-valued,

which is a desirable property in certain cases, but that has no interest when using
CVNNs as they can deal with complex-valued data naturally. Therefore, we propose
to use Pauli vector k as CVNN input whenever this data format is available.

5.4.1 . Analysis on San Francisco dataset

To validate our statement, we propose to evaluate the performance of both
complex- and real-valued FCNN networks. Unfortunately, both the Flevoland and
Oberpfaffenhofen dataset used in Chapter 5 are in the form of the coherency
matrix, the Pauli vector is not retrievable from the coherency matrix due to the
boxcar averaging, and we were not able to find the Pauli vector or any prior format
of the data online. Therefore, we decided to run our simulations on the San
Francisco AIRSAR dataset for which the Sinclair values SHH , SHV , SV V and SV H

are available.
The Airborne Synthetic Aperture Radar (AIRSAR) was designed and built by

the Jet Propulsion Laboratory (JPL), which also manages the AIRSAR project [Jet
Propulsion Laboratory (JPL), 2008]. AIRSAR served as a NASA radar technology
for demonstrating new radar technology and acquiring data for the development
of radar processing techniques and applications. As part of NASA’s Earth Science
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(a) SF-AIRSAR image (b) Ground truth
Figure 5.12: San Francisco image and ground truth. A Mountain; BWater; C Urban; D Vegetation; E Bare Soil.
Enterprise, AIRSAR first flew in 1988 and flew its last mission in 2004. Two images
from this mission were used in this work.

San Francisco AIRSAR (Airborne Synthetic Aperture Radar) L-band dataset
(Figure 5.12a) taken on august 1989. With a spatial resolution of 10m. The ground
truth was obtained from [Liu et al., 2019]. The dataset presents 802,302 labeled
pixels with five classes with different occurrences, which are Mountain (7.81%),
Water (41.08%), Urban (42.73%), Vegetation (6.67%), and Bare soil (1.71%), as
it can be seen on Figure 5.12b.

5.4.2 . Experiments and results
Four simulations were done using both CV-FCNN and RV-FCNN architectures,

discussed in Section 5.2, with the two discussed input representations. These four
simulations were performed 50 times each in order to be able to infer statistical
analysis over the results. On each trial, the train, validation and test sets were
randomly sampled, so no two simulations have the same dataset split. For each
training, 400 epochs were made.
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Figure 5.13 shows the validation accuracy evolution over 250 epochs, after
which the difference in performance can no longer be appreciated on that graph.
It can be seen that the complex-valued models converge faster than the real-
valued models. However, the final achieved accuracy at epoch 400 can be better
appreciated on the box plot in Figure 5.14. Note that the use of the Pauli vector
representation increases the accuracy and achieves a lower variance than using the
coherency matrix input for both real and complex architectures.
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Figure 5.13: Validation Overall Accuracy evolution per epoch on the SanFrancisco dataset.
Table 5.3 depicts the results obtained with the test set. The high accuracy

obtained mainly for OA makes it harder to discern between the model accuracies,
although confidence intervals remain far apart. When comparing the AA, however,
the median accuracy between the input representation methods presents more than
a 1% difference which, above 95%, is highly significant.

Both using a complex-valued architecture and Pauli vector input representation
clearly increase accuracy. However, although using a complex-valued architecture
may seem to be slightly more significant, the confidence intervals do not allow us
to assert such conclusions.

There was a significant difference between the OA and AA. This was due to
a highly different classification accuracy per class, as can be appreciated in Figure
5.15. The Figure also makes evident that using CVNN achieves a significant
amelioration over using RVNN. Finally, Figure 5.16 shows the median predicted
image for all models and input representations tested.

5.5 . SAR image splitting
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Figure 5.14: Validation Overall Accuracy box plot [Williamson et al.,1989]

PolSAR classification or segmentation tasks must use the same image for train,
validation and testing. This is because not only is it hard to find open-source
PolSAR images but from the existing cases, the radar properties such as frequency,
spatial resolution or aperture. Even in the unlikely case that there are at least two
images with the same parameters, they are usually not labeled, and if they are,
labels might be different. For example, in the two images explored in Chapter 5,
one had three classes, one of them Open Fields, whereas the second image has 15
classes which can all be grouped under the Open Fields label as they are all cases
of different crops.

Most existing works, end even ourselves in previous Sections of this Chapter,
obtain different image patches through the sliding window operation [Li et al.,
2018b]. This method generates smaller image patches by sliding a window through
the image with a given stride. In particular, if the stride is smaller than the window
size, as happened with Reference [Cao et al., 2019], the generated image patches
will share pixels and ground truth. Several of the mentioned articles divide training
and test sets randomly from the generated images. The major drawback is that
this overlap will be present between the train and test set. Even if the stride is
bigger than the window size, a test set image can be spatially next to a training
set image for what there might be some overfitting happening without notice.

Current state-of-the-art PolSAR classification methods obtain an accuracy over
95%, making it harder to compare new models, but this high accuracy might be
the result of this unfortunate dataset generation.

To prevent this issue and evaluate its impact on the test set accuracy, we pro-
pose to first divide the image vertically into three sub-images for training, validation
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Figure 5.16: Median Overall Accuracy model predictions using bothPauli and coherency matrix representation.

and test, respectively, before applying the sliding window operation to extract the
smaller image patches. Using this method, the subsets will be farther apart, and
a small stride can be used to have more image patches without the risk of overlap
between the different subsets. Preferably, the image should be split in the azimuth
direction as pixels in a different swath value would have different range resolution,
as it was explained in Equation 4.3.

The problem with this method is twofold, it requires the split direction (prefer-
ably the azimuth) to have some minimum length for the dataset to be large enough.
This is normally not an issue as the azimuth direction is normally the larger axis
for being the direction the airborne moves to capture the image. However, the real
limitation is that all classes should be present in all three sub-images.

5.5.1 . Bretigny dataset
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(a) Bretigny image

(b) Ground truth
Figure 5.17: Bretigny image and ground truth. A Built-up Area; BWood Land; C Open Area; D Runway

None of the previously used datasets could be easily divided into three sub-
images that presented all classes. For this reason, we decided to use ONERA’s
proprietary PolSAR image, which presented these features.

The Electromagnetic and Radar Science Department (DEMR) of ONERA,
the French Aerospace Research Agency developed the RAMSES (Radar Aéroporté
Multi-spectral d’Etude des Signatures) PolSAR system in 2002 with funding from
the DGA (Direction Générale de l’Armement) and CNES (Centre National d’Études
Spatiales). RAMSES was developed mainly as a test bench for new technologies
and to provide specific data for TDRI (Target Detection, Recognition, and Iden-
tification) algorithm evaluation. It is flown on a Transall C160 platform operated
by the CEV (Centre d’Essais en Vol).

RAMSES can be configured with three bands picked among P-(430 MHz),
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L-(1.3 GHz), S-(3.2 GHz), C-(5.3 GHz), X-(9.5 GHz), Ku-(14.3 GHz), Ka-(35
GHz), and W-(95 GHz) bands totaling for eight different bands. From those
eight, six (all but Ka and W) operate in fully polarimetric mode. The associated
bandwidth and waveforms can be adjusted to meet the data acquisition objectives,
and the incidence angles can be set from 30◦ to 85◦. The X-band and the Ku-
band systems are interferometric and can collect PolInSAR mode imagery in multi-
baseline configurations either along-track, cross-track, or both. [Dubois-Fernandez
et al., 2002].

Figure 5.18: Ground truth of different crops of Bretigny area.
ONERA’s proprietary PolSAR image of Bretigny, France [Formont et al., 2010]

whose area is shown in Figure 5.17a. This image was measured with RAMSES
at X-band with a resolution of 1.3m. The image has a spatial resolution of 2m,
an incidence angle of 30◦, and an X frequency band. 2,871,080 labeled pixels
of four classes, which are Open Area (73.20%), Wood Land (5.76%), Built-up
Area (14.43%), and Runway (6.61%), were manually labeled. However, although
there was a single class for the fields (Open Area), there are different types of
crops, as shown in Figure 5.18, this can impact the prediction accuracy negatively.
Indeed, using k-means to group classes automatically performs poorly when applied
directly on the coherency matrix representation, for example clustering some open
field crops with the forest. On the other hand, the algorithm performs better when
eight classes are provided, so the class of the Open Field is divided into more
sub-classes [Inisan et al., 2022].
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The dataset was split as shown in Figure 5.19. 70% of the image was used as
a training set, and 15% was used for both validation and test set. Note that the
four classes are present in each sub-image as shown in Figure 5.19. The sliding
window operation is then applied to each sub-image to generate train, validation,
and test sets separately. We used a stride of 25 for the sliding window and an input
image size of 128 × 128. This method not only avoids the ground-truth overlap
but also prevents training and validation patches from being spatially next to each
other, reducing correlation between datasets.

(a) train (b) val (c) test
Figure 5.19: Split of Bretigny dataset; 70% as the training set, 15% asthe validation set, and 15% as the test set. A Built-up Area; B WoodLand; C Open Area; D Runway.

5.5.2 . Experiments and results

Five semantic segmentation Monte Carlo trials, using CV-FCNN and RV-FCNN
models, were performed for the following results, each involving 150 epochs and a
batch size of 30. As results in Section 5.4 show that it is better to use the Pauli
vector for the FCNN model architecture, we employ that as the input representa-
tion.

In Figure 5.20, we can see the accuracy and loss curves for both the training
and validation sets. A solid line represents the mean value, whereas the colored
area is the interquartile range. In this Figure, it is possible to appreciate that
CV-FCNN generalized better during the ensemble of the training.

Validation loss was used to select the best model checkpoint for each trial.
The final performance was then computed using the test set whose results are
displayed in Table 5.4 with their associated confidence interval. According to the
values shown in Table 5.4, the number of iterations was enough to assert that
CV-FCNN merits are statistically justified as confidence intervals for both mean
and median do not overlap. Even more, these simulations where the first case of
results not overlapping in any moment, which means the higher obtained accuracy
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Figure 5.20: CV-FCNN vs RV-FCNN accuracy and loss evolution perepoch
of RV-FCNN remained under the lowest obtained accuracy of the CV-FCNN model
as it can be better appreciated on Figure 5.21. This indicates that CVNN merits
might be higher than expected and that the close performance might be an issue
of a saturated problem where accuracy is already very high.

By running the simulation analogous to previous simulations (without the
dataset split), CV-FCNN architecture obtained 99.83% Overall Accuracy and RV-
FCNN had 99.69%. These results make clear the impact of the dataset splitting
and at which point the task was saturated.

CV-FCNN RV-FCNN
median 92.76± 0.36 89.86± 0.96mean 92.77± 0.46 89.92± 1.23full range 93.17− 92.37 91.02− 88.89

Table 5.4: FCNN test Accuracy results (%) on Bretigny dataset.
Figure 5.22 shows the predicted image of a randomly chosen CV-FCNN (5.22a)

and RV-FCNN (5.22b) models. The Figure allows appreciate the effect of the
dataset split method detailed in Section 5.5 as we see how both models achieve a
better representation on the left of the image (training set) and lower performance
on the right (validation and test set). On the other hand, it is possible to appreciate
that CV-FCNN does better work predicting the ground truth.
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Figure 5.21: Bretigny split method test Average Accuracy box plot.
5.6 . Conclusion

Until recently, the limitations of existing work could not clear doubts about
CVNN out-performance against RVNN for PolSAR classification. In this Chap-
ter, we cleared the doubts by performing semantic segmentation on two different
PolSAR images.

The experiments were done for three structurally different models indicating
that using complex-valued architectures improves the performance of a conven-
tional neural network regardless of the chosen base model.

We make sure that the comparison was fair by dimensioning both the CVNN
and RVNN to be capacity equivalent in terms of trainable parameters that maintain
the same aspect ratio.

We performed an exhaustive comparison between CVNN and RVNN architec-
tures for PolSAR semantic segmentation for both Flevoland and Oberpfaffenhofen
images. We showed that CVNN outperforms RVNN for all types of model ar-
chitectures. We also proved that Fully Convolutional Neural Network generalizes
better than Convolutional Neural Network and MultiLayer Perceptron models for
this application.

In this Chapter, we demonstrated on well-known San Francisco AIRSAR Pol-
SAR database that the CV-FCNN architecture, implemented using our open-source
toolbox [Barrachina, 2021], achieves a better performance than their equivalent-
RV-FCNN for segmentation application.

We also showed that using the Pauli vector as input features increases the
segmentation performance for both complex-valued and real-valued architectures.
We, therefore, encourage the community to favor this form of input representation
instead of the widely popular coherency matrix.

Furthermore, it is worth mentioning that the models used in the experiment
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(a) CVNN prediction

(b) RVNN prediction
Figure 5.22: Median Overall Accuracy model predictions of Bretignydataset.
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were dimensioned for a coherency matrix dataset meaning there might be room
for improvement in the Pauli vector representation. Yet, it is this last one that
performed better. Furthermore, since k is a three-dimensional vector, in contrast,
with the coherency matrix T which leads to a 6th-dimensional vector, the dataset
would take less memory space when using the Pauli vector representation.

We later performed a statistical comparison of a CVNN against an equivalent
RVNN on a new PolSAR dataset. We proposed splitting the dataset to reduce
the overfitting of the test set for what the task was less saturated. Furthermore,
this method allowed to use of a smaller stride for generating more training image
patches. Results were lower than when using previous methods for dataset splitting,
confirming this dataset split method generates a less saturated task. This showed
a higher accuracy difference between CVNN and RVNN, obtaining non-overlapping
results making clear the out-performance of CVNN over RVNN with both higher
accuracy and lower variance. In comparison with the other results from this work
and even the existing bibliography, this last method allowed showing a higher
difference between the models and made CVNN more evident.

The next step of this simulation will be to obtain different PolSAR images for
all the sub-sets. This would allow asserting the true merits of these segmentation
methods and the possibility of adding a live predictor on board.
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6 - Conclusion

With this work, we hope to motivate further work on CVNN by providing the
means to implement them in practice with our published toolbox. We implemented
complex layers, activation functions, losses and initialization techniques. For the
latter, we propose and perform an experiment that proves the importance of the
correct extension of the algorithms to the complex domain for better performance
of the network.

Although the model design must be revised to make CVNN and RVNN equiv-
alent, we compared that CVNN might even achieve higher results on real-valued
data when using the Hilbert transform to cast the values to the complex domain.

We showed the potential interest of CVNN for data that presents a non-circular
property. The wide extension of the experiments showed that CVNN performs
better with less overfitting and variance regardless of the data properties, input
representation and model dimension. This breakthrough on the potential fields of
application for CVNN was the most upvoted paper of week 116 by the machine
learning subreddit community, which accounts for two and a half million people.

In particular, we performed a thorough statistical analysis on PolSAR dataset.
This study presented a framework for dimension and design models that are equiva-
lent to be certain the comparison is fair. We tested three base models (MLP, CNN
and FCNN) on four PolSAR images (Flevoland, Oberpfaffenhofen, San-Francisco
and Bretigny). In all cases, CVNN presented higher accuracy and, in general, less
variance and less overfitting. With this we hope to prove CVNN merits in practice
for PolSAR classification and segmentation tasks.

We showed that using the Pauli vector as input representation to a FCNN ar-
chitecture performs better than using the coherency matrix, the most popular input
representation across research works. This is regardless if the model is complex-
or real-valued, although, as usual, CV-FCNN out-performs RV-FCNN. Using the
Pauli vector as input representation has the added value of needing less memory.

Particular attention was given to the SAR image splitting process, which might
introduce a correlation between training, validation and test set if it is not done
correctly. Notably, the validation and the test score can be too optimistic in
single PolSAR image segmentation tasks We have proposed to split a PolSAR in
a way to reduce this correlation and obtain lower accuracy that allows for a better
appreciation between the difference of CVNN and RVNN performance with no
intersection of results with CV-FCNN model less performing results from a total of
50 trials achieving 92.37% accuracy while highest achieved accuracy for RV-FCNN
of 91.02%.

6.1 . Perspectives

137



The next natural step of this research will be to analyze the generalization
potential of CVNN algorithms for PolSAR semantic segmentation tasks using dif-
ferent PolSAR images taken at different dates and/or different places but with the
same classes. This will evaluate the actual accuracy of performing segmentation
on newly acquired data in real-time.

The results on the temporal signal show even a potential interest where CVNN
might even outperform RVNN for experimental data if a pertinent transformation
is applied, like in our case, the Hilbert transform. This matter should be revised,
and if proven to be true, it will open an endless field of application of CVNN.

CVNN opens the possibilities of many complex-valued activation functions,
one of the most challenging parts when designing the network [Lee et al., 2022].
Although most of these alternatives were implemented in the published toolbox,
the simulations to prove and compare their merits were left mostly unexplored in
this work [Scardapane et al., 2018], limited to the functions described in Refer-
ence [Kuroe et al., 2003]. These types of activation functions are known as spit
activation functions; however, fully complex activation functions may be more fa-
vorable to represent both magnitude and phase components [Lee et al., 2022]. It
was not discussed in this work the possibility of using complex-valued learning rates
as discussed in [Zhang and Mandic, 2016]. Even a complex-valued loss function
could have numerical convergence when using Wirtinger calculus.

We argued that the main advantage of the coherency matrix representation
is that, generally, an averaging filter is used to reduce speckling noise. Deep
enough convolutional networks can easily learn to perform this despeckling tech-
nique themselves so that this averaging is indeed not necessary and indeed results
in lower performance due to the loss of information involved when averaging the
neighboring pixels. However, we do not test the impact of several more advanced
despeckling techniques, which might have a much higher impact on the perfor-
mance and potentially increase it to new state-of-the-art results.

In this thesis, we faced the problem of not having enough data to exploit
in algorithms that are usually known as data hungry [Castro, 2020]. Generative
Adversarial Network (GAN)s are often employed for data augmentation, also known
as Data Augmentation GAN (DAGAN) [Antoniou et al., 2017]. This has even been
explored for PolSAR datasets [Bargsten and Schlaefer, 2020]. However, using a
complex-valued GAN model can play an important role when generating complex-
valued data such as PolSAR images [Li et al., 2020].

Other PolSAR application tasks can be explored using CVNN such as super-
resolution, change detection, object and target detection, style transfer, complex-
valued autoencoder.

Apart from PolSAR, there are many other potential radar applications of
CVNN, such as drone classification, where the input for the deep learning technique
can be the complex spectrum of the micro-Doppler signal [Gérard et al., 2021].
Reference [Gérard et al., 2021] tries several input representations of the dataset
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to assert which mode would be better for drone classification. These experiments
could be re-done for a CVNN by casting the real-valued representation by means
of, for example, the Hilbert transform.
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A - Synthèse en français

Dans la communauté de l’apprentissage profond, la plupart des réseaux neu-
rones sont entrainés pour inférer sur des données à valeurs réelles (signaux vocaux,
images RVB, vidéos, etc.). Or, la communauté du traitement du signal a souvent
besoin des théories basant sur l’analyse complexe des signaux. En effet, les signaux
à valeurs complexes sont très présents dans une grande variété d’applications telles
que les données biomédicales, issues de la physique, des communications et des
radars. Toutes les données susmentionnées nécessitent les outils du traitement du
signal [Schreier and Scharf, 2010], qui sont pour la plupart basés sur des représen-
tations et des opérations à valeurs complexes telles que les transformées de Fourier
et d’ondelettes, les filtres de Wiener et les filtres adaptés, etc

Ainsi, les Complex-Valued Neural Networks (CVNNs) apparaissent comme un
choix naturel pour traiter et apprendre de ces caractéristiques à valeurs complexes
puisque l’opération effectuée à chaque couche des CVNNs peut être interprétée
comme un filtrage ou des multiplications complexes. Notamment, les CVNNs sont
plus adaptés que les RVNNs pour extraire les informations de phase [Hirose and
Yoshida, 2012]. Pour cette raison, plusieurs domaines d’étude du traitement du
signal utilisent déjà les CVNNs pour leurs expériences, comme le traitement du
signal radiofréquence dans les communications sans fil [Gong et al., 2017, Zhang
and Wu, 2017, Liu et al., 2017,Ding and Hirose, 2014,Marseet and Sahin, 2017],
traitement d’images dans le domaine de la vision par ordinateur, telles que les
tâches de classification et de segmentation [Akramifard et al., 2012,Hafiz et al.,
2015,Popa, 2017,Amilia et al., 2015, Liu et al., 2014,Olanrewaju et al., 2011,Gu
and Ding, 2018, Matlacz and Sarwas, 2018, Popa, 2018], traitement du signal
audio [Al-Nuaimi et al., 2012,Kinouchi and Hagiwara, 1996,Kataoka et al., 1998,
Hayakawa et al., 2018, Tsuzuki et al., 2013, Tsuzuki et al., 2013], prévision des
vents [Sepasi et al., 2017,Çevik et al., 2018,Mandic et al., 2009], transformateurs
de puissance [Chistyakov et al., 2011, Minin et al., 2012], contrôle des signaux
de trafic [Nishikawa et al., 2005,Nishikawa et al., 2006], cryptographie [Dong and
Huang, 2019], détection de spam [Hu et al., 2008], mémoire associative [Jankowski
et al., 1996], applications médicales telles que le diagnostic de l’épilepsie [Peker
et al., 2015] ou le traitement du signal IRM [Virtue et al., 2017] et en particulier
les applications radar (notre domaine d’étude).

Au début des années 90, des travaux sur la rétropropagation complex pour
les réseaux CVNNs ont été publiés [Hirose, 1992, Georgiou and Koutsougeras,
1992,Benvenuto and Piazza, 1992,Leung and Haykin, 1991], laissant le champ libre
à sa mise en œuvre. Depuis, les travaux sur CVNN ont commencé à augmenter au
milieu des années 1990 et 2000 ; [Jankowski et al., 1996,Kim and Adali, 2001b,Kim
and Adali, 2001a,Kim and Adali, 2002,Miyauchi and Seki, 1992,Miyauchi et al.,
1993, Jianping et al., 2002,Cha and Kassam, 1995] et en 2003, Akira Hirose, très
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probablement le précurseur de CVNN a publié un premier livre sur le sujet en
2003 : [Hirose, 2003] et deux autres par la suite : [Hirose, 2013, Hirose, 2012].
La référence [Nitta, 2004] explique le potentiel d’un neurone à valeur complexe
pour le concept de frontière orthogonale où l’intersection de deux hyper-surfaces
peut diviser la frontière de décision en quatre régions, révélant ainsi la puissance
de calcul potentielle des CVNNs par rapport aux RVNN. A. Hirose a expliqué que
les mérites des CVNN résident principalement dans les propriétés de la multiplica-
tion complexe qui peut être vue comme une rotation de phase, et une modulation
d’amplitude préconisant une réduction de liberté avantageuse : [Hirose, 2013,Hi-
rose, 1992]. Des références [Hirose, 2009,Hirose, 2011,Hirose, 2010] ont discuté
des mérites de CVNN en mettant en relation les expressions mathématiques des
nombres complexes avec le domaine du traitement du signal. Deux études récentes
ont été publiées récemment sur CVNN état de l’art des avancées [Bassey et al.,
2021, Lee et al., 2022]. Ces deux travaux mentionnent la motivation biologique
des CVNN qui représentent mieux leur comportement.

Récemment, nous avons montré que les CVNN sont plus performants dans la
classification des données gaussiennes non circulaires que leur équivalents réelles,
ce qui signifie que les CVNNs sont plus sensibles à l’extraction des informations
contenue dans la phase que les RVNNs. Pour ce faire, nous comparons des vecteurs
de données non circulaires aléatoires et montrons que les CVNN peuvent profiter
de cette caractéristique et en extraire tout le potentiel en obtenant une précision
plus élevée, moins de sur apprentissage et une variance plus faible que les RVNN.
Nos résultats ont également été cités par la référence [Ko et al., 2022] pour justifier
certaines propriétés de leurs résultats obtenus qui observaient des carectéristiques
similaires aux nôtres.

Les techniques d’apprentissage profond sont de plus en plus populaires et se
sont étendues à la classification d’images radar et PolSAR [Fix et al., 2021,Mar-
manis et al., 2018, Marmanis et al., 2016b, Parikh et al., 2020, Konishi et al.,
2021,Chen et al., 2016,Hou et al., 2016,Zhou et al., 2016]. Habituellement, ces
réseaux sont alimentés par les informations d’amplitude de l’image PolSAR sans
utiliser les données de phase.

Récemment, certaines publications ont commencé à utiliser les CVNNs comme
alternative aux Real-Valued Neural Network (RVNN) conventionnels pour les ap-
plications radars [Hirose, 2013, Bassey et al., 2021] puisque les données radars
sont généralement à valeurs complexes. Sachant que les données Synthetic Aper-
ture Radar (SAR) sont non circulaires [El-Darymli et al., 2014, Vasile and Totir,
2012] et que par conséquent les informations de phase jouent un rôle crucial dans
leur représentation [Datcu et al., 2007, El-Darymli et al., 2013, El-Darymli et al.,
2015], il n’est pas étonnant que les Complex-Valued Neural Network soient de plus
en plus utilisés pour les applications SAR, PolSAR ou InSAR [Wilmanski et al.,
2016,Oyama and Hirose, 2018,Gleich and Sipos, 2018].

La référence [Hänsch and Hellwich, 2009a], a été l’une des premières à mettre

142



en œuvre un Complex-Valued MultiLayer Perceptron (CV-MLP) pour les applica-
tions PolSAR en 2009. Bien qu’une comparaison ait été faite avec le Real-Valued
MultiLayer Perceptron (RV-MLP), aucun intervalle de confiance n’a été donné,
ce qui empêche d’affirmer les mérites du CV-MLP. De plus, une représentation
d’entrée différente a été utilisée pour chaque modèle, ce qui en fait une comparai-
son non pertinente. Plus tard, les mêmes auteurs ont suggéré de donner la même
représentation d’entrée pour obtenir une comparaison plus précise entre les mod-
èles sur [Hänsch, 2010]. Les références [Hänsch and Hellwich, 2010] et [De et al.,
2017] ont également utilisé les CV-MLP sur une base de données PolSAR mais
n’ont pas fourni de comparaison avec RV-MLP. La référence [Cao et al., 2019] a
comparé CV-MLP à une RV-MLP mais même si CV-MLP a obtenu de meilleures
performances que RV-MLP, les intervalles de confiance se croisent, ce qui laisse
planer un doute sur la surperformance de CV-MLP.

Des travaux utilisant Complex-Valued Convolutional Neural Network (CV-CNN)
ont été publiés pour des applications PolSAR. La référence [Zhang et al., 2017]
compare un CV-CNN avec des RV-CNNs mais manque d’intervalles de confiance.
D’autres travaux récents [Sun et al., 2019,Zhao et al., 2019a,Zhao et al., 2019b,Qin
et al., 2021,Dong et al., 2020] utilisent un CV-CNN pour les applications PolSAR
mais sans comparer son résultat avec un RV-CNN.

Les références [Xie et al., 2020] et [Shang et al., 2019] ont ajouté de la com-
plexité à l’architecture CNN en utilisant un Complex-Valued Convolutional Neural
Network récurrent et un Complex-Valued Convolutional AutoEncoder (CV-CAE)
pour obtenir des résultats plus précis. Récemment, des références [Cao et al.,
2019,Li et al., 2018a] ont atteint des performances state-of-the-art en utilisant une
architecture de modèle Complex-Valued Fully Convolutional Neural Network (CV-
FCNN). Tous les travaux précédemment cités d’applications CVNN sur PolSAR
effectuent une tâche de classification par pixel, qui peut être considérée comme
une tâche de segmentation sémantique. Il n’est donc pas surprenant qu’un mod-
èle FCNN atteigne une précision supérieure puisqu’il effectue une segmentation
sémantique par conception.

Dans tous les cas cités ici, les dimensions du modèle RVNN ne sont pas justifiées
car le modèle RVNN a une capacité d’apprentissage généralement inférieure à celle
du modèle CVNN ; [Mönning and Manandhar, 2018, Barrachina et al., 2021c,
Barrachina et al., 2022d]. Pour cette raison, les mérites de CVNN par rapport à
RVNN pour la classification PolSAR et la segmentation sémantique sont souvent
biaisées.

Dans ce travail, nous avons fourni une méthode rigoureuse pour concevoir et
dimensionner correctement un RVNN afin qu’il soit équivalent au réseau CVNN
avec lequel nous voulons le comparer. Dans ce cadre, nous effectuons des tâches
de classification sur deux ensembles de données PolSAR pour trois architectures
différentes et leurs réseaux équivalents réels correspondants et nous montrons que
pour la même tâche et la même architecture de modèle, les réseaux complexes sont
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statistiquement plus performants.
La plupart des travaux cités ci-dessus utilisent la matrice de cohérence pour

les données SAR polarimétrique comme la représentation d’entrée des réseaux.
Cependant, la représentation du vecteur de Pauli est en général plus riche mais
aussi plus bruité principalement à cause du spekle. Nous avons donc comparer
les résultats des réseaux de neurones en utilisant soit le vecteur de Pauli ou la
matrice de cohérence en entrée du réseau. Et nous montrons que les deux réseaux
Complex-Valued Fully Convolutional Neural Network (CV-FCNN) et son modèle
équivalent réel sont plus performants lorsqu’ils utilisent le vecteur de Pauli comme
représentation d’entrée.

Les études PolSAR présentent une difficulté supplémentaire qui est la rareté
des images SARs annotées. Pour cette raison, les ensembles d’apprentissage, de
validation et de test sont souvent extraits de la même image bien qu’elle peut être
volumineuse (10 1000 millions de pixels). Ceci peut induire trop de similitudes
qui biaise l’erreur de généralisation et donne des résultats de test apparents plus
élevés que ceux obtenus avec des vraies nouvelles données. Nous proposons donc
une nouvelle méthode pour diviser l’ensemble de données afin de réduire cet effet
et d’évaluer son impact.

Les difficultés d’implementation des modèles CVNN dans la pratique ont ralenti
le développement du domaine [Mönning and Manandhar, 2018]. Pour combler ce
lacune, nous avons mis en place une librairie Python permettant la mise en œu-
vre rapide de CVNN. Cette dernière est mise en ligne et bien documentée afin
que la communauté puisse s’en servir. En effet, le besoin de la communauté
pour cette librairie a fait l’objet du succès de ce code qui peut être vu par les
métriques de GitHub, téléchargements, et citations. Additionnellement, nous réal-
isons une expérience qui justifie l’adaptation de l’initialisation pour les couches
complexes définie par la référence [Trabelsi et al., 2017], et nous parvenons à
montrer l’importance d’utiliser correctement cette adaptation.

Le chapitre 1 introduit la théorie des réseaux neurones classiques. Il présente
l’histoire et le développement des réseaux de neurones jusqu’aux percées actuelles
des algorithmes de pointe. Nous expliquons ensuite le fonctionnement de base
d’un réseau de neurones et la phase de formation. Enfin, nous expliquons en détail
chaque partie de l’algorithme du réseau de neurones et ses variantes. Les réseaux
de neurones étant un domaine très vaste, nous limitons le chapitre aux avancées
et théories pertinentes pour notre travail.

Le chapitre 2 explique l’adaptation de ces réseaux réels conventionnels au do-
maine complexe et introduit les bases de l’implémentation Complex-Valued Neural
Network (CVNN). Nous proposons deux expériences qui prouvent l’importance de
l’adaptation correcte de la technique d’initialisation au domaine complexe. En par-
allèle, nous décrivons la librarie publiée qui permet l’implémentation de CVNN en
utilisant Tensorflow comme back-end. Nous terminons le chapitre par une expéri-
ence qui montre que les signaux temporels à valeurs réelles peuvent bénéficier d’un
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CVNN lors de l’utilisation de la transformée de Hilbert pour obtenir de meilleures
performances que lors de l’utilisation d’un modèle conventionnel à valeurs réelles.

Le chapitre 3 justifie les mérites de CVNN par rapport à RVNN des ensembles
de données gaussiennes à valeurs complexes non circulaires, caractérisées par une
corrélation entre les parties réelle et imaginaire ou une variance non égale pour
la partie réelle et la partie imaginaire. Pour ce faire, nous générons aléatoire-
ment plusieurs classes de vecteurs de données non circulaires qui ont la propriété
de changer leur distribution si nous faisons tourner le générateur aléatoire, con-
trairement aux données circulaires, qui sont invariantes à la rotation. Classez-les
en utilisant à la fois CVNN et RVNN, en effectuant plusieurs fois la simulation
pour en déduire des résultats statistiques. Cette expérience a été réalisée dans
différentes variantes, telles que différentes sources de non-circularité, différentes
représentations d’entrée, différentes architectures de modèle, hyperparamètres et
dimensions, etc., montrant que CVNN surpasse statistiquement RVNN en général
et non pour un cas particulier seulement.

Le chapitre 4 explique la théorie de Synthetic Aperture Radar (SAR) afin de
préparer le terrain pour le chapitre suivant, qui traite de ces images radar comme un
ensemble de données d’entrée pour les tâches de classification et de segmentation
sémantique.

Le chapitre 5 détaille les expériences et les résultats obtenus sur la classifi-
cation et la segmentation PolSAR. Nous proposons d’abord un cadre permettant
d’affirmer que la comparaison entre CVNN et RVNN est équitable et prouvons
que CVNN est plus performant pour trois architectures de modèles différentes et
deux images PolSAR. Nous soutenons ensuite que la représentation d’entrée util-
isée dans la plupart des tâches de classification PolSAR peut être non optimale
dans tous les cas et que les couches convolutives peuvent être plus performantes
en utilisant une autre représentation. Nous étayons notre argument en effectuant
les simulations correspondantes. Deuxièmement, nous montrons que la classifica-
tion d’images PolSAR est un cas saturé et que cela est principalement dû à une
corrélation entre les ensembles d’entraînement, de validation et de test, et nous
proposons une méthode pour réduire cette corrélation et diminuer la saturation des
applications state-of-the-art.

Nous clôturons ce rapport de thèse avec les conclusions du chapitre 6, et nous
discutons des perspectives de travaux futurs.
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B - Mathematical Background

For further reading and properties of complex numbers, see Reference [Haykin,
2005].

B.1 . Complex Identities

Definition B.1.1 (Hermitian transpose). Given A ∈ Cn×m,m, n ∈ N+. The
Hermitian transpose of a matrix is defined as:

AH = AT . (B.1)
The upper line on A refers to the conjugate value of a complex number, that

is, a number with an equally real part and an imaginary part equal in magnitude
but opposite in sign.

Definition B.1.2 (differential rule).
∂f =

∂f

∂z
∂z +

∂f

∂z
∂z . (B.2)

Definition B.1.3 (conjugation rule).(
∂f

∂z

)
=

∂f

∂z
,(

∂f

∂z

)
=

∂f

∂z
.

(B.3)

When f : C −→ R the expression can be simplified as:(
∂f

∂z

)
=

∂f

∂z(
∂f

∂z

)
=

∂f

∂z
.

(B.4)

Theorem B.1.1. Given f(z) : C −→ C, z = x + i y ⇒ ∃u, v : R2 −→ R such
that f(z) = u(x, y) + i v(x, y)

B.1.1 . Complex differentiation rules
Given f, g : C −→ C and c ∈ C:

(f + g)′(z0) = f ′(z0) + g′(z0) ,

(f g)′(z0) = f ′(z0) g(z0) + f(z0) g
′(z0) ,(

f

g

)′
(z0) =

f ′(z0) g(z0)− f(z0) g
′(z0)

g2(z0)
, g(z0) ̸= 0 ,

(c f)′(z0) = c f ′(z0) .

(B.5)
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B.1.2 . Properties of the conjugate
Given z, w ∈ C:

z ± w = z ± w ,

z w = z w ,( z

w

)
=

z

w
,

zn = zn, ∀n ∈ C ,

|z|2 = z z ,

z z = z z ,

z = z (involution) ,

z = z ⇔ z ∈ R ,

z−1 =
z

|z|2 , ∀z ̸= 0 .

(B.6)

B.2 . Holomorphic Function

An holomorphic function is a complex-valued function of one or more complex
variables that is, at every point of its domain, complex differentiable in a neigh-
borhood of the point. This condition implies an holomorphic function is Class C∞

(analytic).

Definition B.2.1. Given a complex function f : C −→ C at a point z0 of anopen subset Ω ⊂ C is complex-differentiable if exists a limit such as:
f ′(z0) = lim

z→z0

f(z)− f(z0)

z − z0
. (B.7)

As stated before, if a function is complex-differentiable at all points of Ω it
is called holomorphic [Mönning and Manandhar, 2018]. The relationship between
real differentiability and complex differentiability is stated on the Cauchy-Riemann
equations

Theorem B.2.1 (Cauchy-Riemann equations). Given f(x + i y) = u(x, y) +

i v(x, y) where u, v : R2 −→ R real-differentiable functions, f is complex-
differentiable if satisfies:

∂u

∂x
=

∂v

∂y
,

−∂u

∂y
=

∂v

∂x
.

(B.8)

Proof. Given f : C −→ C:
f(x+ iy) = u(x, y) + i v(x, y) , (B.9)
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with u, v : R −→ R real-differentiable functions.
For f to be complex-differentiable, then:
f ′(z) = lim

∆x→0

f(z +∆x)− f(z)

∆x
= lim

i∆y→0

f(z + i∆y)− f(z)

i∆y
. (B.10)

Replacing (B.10) with (B.9) and doing some algebra:
f ′(z) =

∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
. (B.11)

By comparing real and imaginary parts from the latest function, the
Cauchy-Riemann equations are evident.

B.3 . Chain Rule

Theorem B.3.1 (real multivariate chain rule with complex variable). Given f :

R2 −→ R, z ∈ C and x(z), y(z) : C −→ R
∂f

∂z
=

∂f

∂x

∂x

∂z
+

∂f

∂y

∂y

∂z
. (B.12)

This chain rule is analogous to that of the multivariate chain rule with real
values. The need for stating this case arises from a demonstration that will
be done for Theorem B.17.
Theorem B.3.2 (complex chain rule over real and imaginary part). Given f :

C −→ C, z ∈ C and x(z), y(z) : C −→ R
∂f

∂z
=

∂f

∂x

∂x

∂z
+

∂f

∂y

∂y

∂z
. (B.13)

Proof. By using theorem B.1.1, we can write f = u+ i v so that:
∂f

∂z
=

∂u

∂z
+ i

∂v

∂z
. (B.14)

Using theorem B.3.1 we can apply the chain rule with u and v:
∂f

∂z
=

[
∂u

∂x

∂x

∂z
+

∂u

∂y

∂y

∂z

]
+ i

[
∂v

∂x

∂x

∂z
+

∂v

∂y

∂y

∂z

]
. (B.15)

Rearranging the terms leads to:
∂f

∂z
=

[
∂u

∂x

∂x

∂z
+ i

∂v

∂x

∂x

∂z

]
+

[
∂u

∂y

∂y

∂z
+ i

∂v

∂y

∂y

∂z

]
,

=

[
∂u

∂x
+ i

∂v

∂x

]
∂x

∂z
+

[
∂u

∂y
+ i

∂v

∂y

]
∂y

∂z
,

=

[
∂u+ i ∂v

∂x

]
∂x

∂z
+

[
∂u+ i ∂v

∂y

]
∂y

∂z
,

=

[
∂(u+ i v)

∂x

]
∂x

∂z
+

[
∂(u+ i v)

∂y

]
∂y

∂z
,

=
∂f

∂x

∂x

∂z
+

∂f

∂y

∂y

∂z
.

(B.16)
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Corollary B.3.2.1. See that the proof of Theorem B.3.1 is indistinct weather
z ∈ C or z ∈ R, so that both (B.3.1) and (B.3.2) are also valid for z ∈ R

Definition B.3.1 (complex chain rule). Given h, g : C −→ C, z ∈ C. The chain
rule in complex numbers is now given by:

∂h(g)

∂z
=

∂h

∂g

∂g

∂z
+

∂h

∂g

∂g

∂z

∂h(g)

∂z
=

∂h

∂g

∂g

∂z
+

∂h

∂g

∂g

∂z
.

(B.17)

Proof. As we make no assumption of h or g being holomorphic, we will use
Wirtinger calculus (B.33) (having in mind that holomorphic functions are spe-
cial cases of the later):

∂ (f ◦ g)
∂z

=
1

2

(
∂ (f ◦ g)
∂zRe

− i
∂ (f ◦ g)
∂zIm

)
. (B.18)

Using (B.3.2.1):
∂ (f ◦ g)

∂z
=

1

2

((
∂f

∂gRe

∂gRe

∂zRe
+

∂f

∂gIm

∂gIm
∂zRe

)
− i

(
∂f

∂gRe

∂gRe

∂zIm
+

∂f

∂gIm

∂gIm
∂zIm

))
,

(B.19)
=

1

4

(
∂f

∂gRe

∂(g + g)

∂zRe
− i

∂f

∂gIm

∂(g − g)

∂zRe

)
− i

1

4

(
∂f

∂gRe

∂(g + g)

∂zIm
− i

∂f

∂gIm

∂(g − g)

∂zIm

) (B.20)

=
1

4

∂f

∂gRe

(
∂(g + g)

∂zRe
− i

∂(g + g)

∂zIm

)
− 1

4

∂f

∂gIm

(
i
∂(g − g)

∂zRe
+

∂(g − g)

∂zIm

)
.

(B.21)

Using Wirtinger calculus definition again (Equation B.33):
∂ (f ◦ g)

∂z
=

1

2

(
∂f

∂gRe

∂(g + g)

∂z
− i

∂f

∂gIm

∂(g − g)

∂z

)
. (B.22)
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Using (B.5.1.1):
∂ (f ◦ g)

∂z
=

1

2

((
∂f

∂g
+

∂f

∂g

)
∂(g + g)

∂z
+

(
∂f

∂g
− ∂f

∂g

)
∂(g − g)

∂z

)
,

=
1

2

(
∂f

∂g

(
∂(g + g)

∂z
+

∂(g − g)

∂z

)
+

∂f

∂g

(
∂(g + g)

∂z
− ∂(g − g)

∂z

))
,

=
1

2

(
∂f

∂g

(
∂(g + g) + ∂(g − g)

∂z

)
+

∂f

∂g

(
∂(g + g)− ∂(g − g)

∂z

))
,

=
1

2

(
∂f

∂g

(
∂(g + g + g − g)

∂z

)
+

∂f

∂g

(
∂(g + g − g + g)

∂z

))
,

=

(
∂f

∂g

∂g

∂z
+

∂f

∂g

∂g

∂z

)
.

(B.23)

B.4 . Liouville Theorem

Liouville graduated from the École Polytechnique in 1827. After some years
as an assistant at various institutions including the École Centrale Paris, he was
appointed as a professor at the École Polytechnique in 1838.

Definition B.4.1. In complex analysis, an entire function, also called an integral
function, is a complex-valued function that is holomorphic at all finite points
over the whole complex plane.
Definition B.4.2. Given a function f , the function is bounded if ∃M ∈ R+ :

|f(z)| < M .
Theorem B.4.1 (Cauchy integral theorem). Given f analytic through regionD, then the contour integral of f(z) along any close path C inside region D is
zero: ∮

C
f(z)dz = 0 . (B.24)

Theorem B.4.2 (Cauchy integral formula). Given f analytic on the boundary
C with z0 any point inside C , then:

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz , (B.25)

where the contour integration is taken in the counterclockwise direction.
Corollary B.4.2.1.

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz . (B.26)

151



In complex analysis, Liouville’s theorem states that every bounded entire func-
tion must be constant. That is:

Theorem B.4.3 (Liouville’s Theorem).
f : C −→ C holomorphic /∃M ∈ R+ : |f(z)| < M, ∀z ∈ C ⇒ f = c, c ∈ C .

(B.27)
Equivalently, non-constant holomorphic functions on C have unbounded im-

ages.

Proof. Because every holomorphic function is analytic (Class C∞), that is, it
can be represented as a Taylor series, we can therefore write it as:

f(z) =
∞∑
k=0

ak z
k . (B.28)

As f is holomorphic in the open region enclosed by the path and continu-
ous on its closure. Because of B.4.2.1 we have:

ak =
f (k)(0)

k!
=

1

2πi

∮
Cr

f(z)

zk+1dz
, (B.29)

where Cr is a circle of radius r > 0. Because f is bounded:
|ak| ⩽

1

2π

∮
Cr

|f(z)|
|z|k+1

|dz| ⩽ 1

2π

∮
Cr

M

rk+1
|dz| = M

2πrk+1

∮
Cr

|dz| , (B.30)
=

M

2πrk+1
2π , (B.31)

=
M

rk
. (B.32)

The latest derivation is also known as Cauchy’s inequality.
As r is any positive real number, by taking the r → ∞ then ak → 0 for all

k ̸= 0. Therefore from Equation B.28 we have that f(z) = a0.
Liouville’s theorem implications were considered to be a big problem around

1990 as some researchers believed indifferentiability should lead to the impossibility
to obtain and/or analyze the dynamics of the CVNNs [Hirose, 2013].

B.5 . Wirtinger Calculus

Wirtinger calculus, named after Wilhelm Wirtinger (1927) [Wirtinger, 1927],
generalizes the notion of complex derivative, and the holomorphic functions be-
come a special case only. Further reading on Wirtinger calculus can be found
in [Kreutz-Delgado, 2009,Fischer, 2005].
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Theorem B.5.1 (Wirtinger Calculus). Given a complex function f(z) of a com-
plex variable z = x+ i y ∈ C, x, y ∈ R.

The partial derivatives with respect to z and z respectively are defined as:
∂f

∂z
≜

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z
≜

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

(B.33)

These derivatives are called R-derivative and conjugate R-derivative, respec-
tively. As said before, the holomorphic case is only a special case where the
function can be considered as f(z, z), z = 0. Wirtinger calculus enables to work
with non-holomorphic functions, providing an alternative method for computing
the gradient that also improves the stability of the training process.

Proof. Defining z = x + i y one can also define x(z, z), y(z, z) : C −→ R as
follows:

x =
1

2
(z + z) ,

y =
1

2 i
(z − z) .

(B.34)

Using (B.3.2):
∂f

∂z
=

∂f

∂x

∂x

∂z
+

∂f

∂y

∂y

∂z
,

=
∂f

∂x

1

2
+

∂f

∂y

(−i

2

)
,

=
1

2

(
∂f

∂x
− i

∂f

∂y

)
.

(B.35)

Corollary B.5.1.1.
∂f

∂g
+

∂f

∂g
=

1

2

(
∂f

∂gRe
− i

∂f

∂gIm

)
+

1

2

(
∂f

∂gRe
+ i

∂f

∂gIm

)
,

=
∂f

∂gRe

i

(
∂f

∂g
− ∂f

∂g

)
=

i

2

(
∂f

∂gRe
− i

∂f

∂gIm

)
− i

2

(
∂f

∂gRe
+ i

∂f

∂gIm

)
,

=
i

2

(
−2i

∂f

∂gIm

)
,

=
∂f

∂gIm
,

(B.36)

where gRe and gIm are the real and imaginary part of g respectively.
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Theorem B.5.2. Given f : C −→ C holomorphic with f(x + iy) = u(x, y) +

iv(x, y) where u, v : R −→ R real-differentiable functions. Then
∂f

∂z
= 0 .

Proof. Using Wirtinger calculus (Section B.5).
∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (B.37)

By definition, then:
∂f

∂.
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
,

=
1

2

((
∂u

∂x
+ i

∂v

∂x

)
+ i

(
∂u

∂y
+ i

∂v

∂y

))
,

=
1

2

((
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+

∂u

∂y

))
.

(B.38)

Because f is holomorphic then the Cauchy-Riemann equations (Theorem
B.2.1) applies making Equation B.38 equal to zero.

Even though so far we have always talked about general chain rule definitions.
Here we will demonstrate a particularly interesting chain rule used when working
with neural networks. For this optimization technique, the cost function to optimize
is always real, even if its variables are not. Therefore, the following chain rule will
have an application interest.

Theorem B.5.3 (complex chain rule with real output). Given f : C → R, g :

C → C with g(z) = r(z) + i s(z), z = x+ i y ∈ C:
∂f

∂z
=

∂f

∂r

∂r

∂z
+

∂f

∂s

∂s

∂z
. (B.39)

Proof. For this proof, we will assume we are already working with Wirtinger
Calculus for the partial derivative definition.

∂f

∂z
=

∂f

∂g

∂g

∂z
+

∂f

∂g

∂g

∂z
,

=
1

4

(
∂f

∂r
− i

∂f

∂s

)(
∂g

∂x
− i

∂g

∂y

)
+

1

4

(
∂f

∂r
+ i

∂f

∂s

)(
∂g

∂x
+ i

∂g

∂y

)
,

=
1

4

(
∂f

∂r
− i

∂f

∂s

)[(
∂r

∂x
+ i

∂s

∂x

)
− i

(
∂r

∂y
+ i

∂s

∂y

)]
+ · · ·

· · ·+ 1

4

(
∂f

∂r
+ i

∂f

∂s

)[(
∂r

∂x
+ i

∂s

∂x

)
+ i

(
∂r

∂y
+ i

∂s

∂y

)]
.

(B.40)
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B.6 . Neural Network-applied Chain Rule

B.6.1 . Real Valued Backpropagation

To learn how to optimize the weight of ω(l)
ij , it is necessary to find the partial

derivative of the loss function for a given weight. We will use the chain rule as
follows:

∂L
∂ω

(l)
ij

=

NL∑
n=1

∂en

∂X
(L)
n

∂X
(L)
n

∂V
(L)
n

∂V
(L)
n

∂ω
(l)
ij

. (B.41)

Given these three terms inside the addition, we could find the value we are
looking for. The first two partial derivatives are trivial as ∂en(dn, yn)/∂yn exists
and is no zero and ∂X

(L)
n /∂V

(L)
n is the derivate of σ.

With regard to ∂V
(L)
n /∂ω

(l)
ij , when the layer is the same for both values (l = L),

the definition is trivial and the following result is obtained:

∂V
(l)
i

∂ω
(l)
ij

=

∂

∑
j

ω
(l)
ij X

(l−1)
j


∂ω

(l)
ij

=
∑
j

∂
(
ω
(l)
ij X

(l−1)
j

)
∂ω

(l)
ij

,

=

{
0 j ̸= j

X
(l−1)
j j = j

,

= X
(l−1)
j .

(B.42)

Note the subtle difference between j and j. We will now define the cases where
the weight and Vn are not from the same layer.

For given h, l ∈ [0, L], with h ≤ l − 2 we can define the derivative as follows:

∂V
(l)
n

∂ω
(h)
jk

=

∂

(∑
i

ω
(l)
niX

(l−1)
i

)
∂ω

(h)
jk

,

=

Nl−1∑
i

ω
(l)
ni

∂X
(l−1)
i

∂ω
(h)
jk

,

=

Nl−1∑
i

ω
(l)
ni

∂X
(l−1)
i

∂V
(l−1)
i

∂V
(l−1)
i

∂ω
(h)
jk

.

(B.43)

Using Equations B.42 and B.43, we have all cases except for h = l − 1 which
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will be:

∂V
(l)
n

∂ω
(l−1)
jk

=

∂

∑
j

ω
(l)
nj X

(l−1)
j


∂ω

(l−1)
jk

,

=

Nl−1∑
j

ω
(l)
nj

∂X
(l−1)
j

∂ω
(l−1)
jk

,

= ω
(l)
nj

∂X
(l−1)
j

∂V
(l−1)
j

∂V
(l−1)
j

∂ω
(l−1)
jk

.

(B.44)

Using the result from (B.42) we can get a final result for (B.44). To sum up,
the derivative can be written as follows:

∂V
(l)
n

∂ω
(h)
jk

=



X
(l−1)
j h = l ,

ω
(l)
nj

∂X
(l−1)
j

∂V
(l−1)
j

∂V
(l−1)
j

∂ω
(l−1)
jk

h = l − 1 ,

Nl−1∑
i

ω
(l)
ni

∂X
(l−1)
i

∂V
(l−1)
i

∂V
(l−1)
i

∂ω
(h)
jk

h ≤ l − 2 .

(B.45)

Equation B.41 can then be solved applying (B.45) iteratively to reduce the
exponent L to the desired value l. Note that l ≤ L and L > 0.

Benvenuto and Piazza definition
In Reference [Benvenuto and Piazza, 1992], another recursive definition for the
backpropagation algorithm is defined:

e(l)n =


en l = L ,
Nl+1∑
q=1

ω(l+1)
qn δ(l+1)

q l < L ,
(B.46)

with δ
(l)
n = e

(l)
n σ′(V

(l)
n ). Then the derivation is defined recursively as:

∂L
∂ω

(l)
ij

=

NL∑
n

δ(l)n X(l−1)
m . (B.47)

It can be proven that (B.41) and (B.47) are equivalent.

B.6.2 . Complex-Valued Backpropagation
The analysis in the complex case is analogous to that made in the real-valued

backpropagation (Section B.6.1). The only change is that now σ : C −→ C,
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en : C −→ R and ω
(l)
ij , X

(l)
n , V

(l)
n , e

(l)
n ∈ C.

Now, the chain rule is changed using (B.17) so Equation (B.41) changes to:

∂e

∂ω
=

∂e

∂X

∂X

∂V

∂V

∂ω
+

∂e

∂X

∂X

∂V

∂V

∂ω
+

∂e

∂X

∂X

∂V

∂V

∂ω
+

∂e

∂X

X

∂V

∂V

∂ω
. (B.48)

Note that we have used the upper line to denote the conjugate for clarity. All
subindexes have been removed for clarity but they stand the same as in Equation
B.41.

As en : C −→ R then using the conjugation rule (Definition B.1.3):

∂e

∂X
=

(
∂e

∂X

)
,

∂X

∂V
=

(
∂X

∂V

)
,

∂X

∂V
=

(
∂X

∂V

)
,

(B.49)

so that not all the partial derivatives must be calculated.
Focusing our attention on the derivative ∂V/∂ω, a differentiation between layer

difference of V and ω will be made in this approach. The simplest is the one where
the layer from V

(l)
n is the same as the weight. Regardless of the complex domain,

V
(l)
n is still equal to

Nl−1∑
i

ω
(l)
niX

(l−1)
i for what the value of the derivative remains

unchanged. For the wights (ω) of the previous layer, the derivative is as follows:

∂V
(l)
n

∂ω
(l−1)
jk

=

∂

Nl−1∑
i

ω
(l)
nj X

(l−1)
j


∂ω

(l−1)
jk

,

= ω
(l)
nj

∂X
(l−1)
j

∂ω
(l−1)
jk

,

= ω
(l)
nj

∂X(l−1)
j

∂V
(l−1)
j

∂V
(l−1)
j

∂ω
(l−1)
jk

+
∂X

(l−1)
j

∂V
(l−1)
j

∂V
(l−1)
j

∂ω
(l−1)
jk

 .

(B.50)

Now by definition, V (l)
n is analytic because of being a polynomial series and

therefore is holomorphic as well. Using Theorem B.5.2, ∂V
(l−1)
j /∂ω

(l−1)
jk = 0.

The second term could be removed. Therefore the equation is simplified to the
following:

∂V
(l)
n

∂ω
(l−1)
jk

= ω
(l)
nj

∂X
(l−1)
j

∂V
(l−1)
j

∂V
(l−1)
j

∂ω
(l−1)
jk

= ω
(l)
nj

∂X
(l−1)
j

∂V
(l−1)
j

X
(l−2)
k . (B.51)

157



For the rest of the cases where the layers are farther apart, the equation is as
follows:

∂V
(l)
n

∂ω
(h)
jk

=

∂

Nl−1∑
i

ω
(l)
niX

(l−1)
i


∂ω

(l−1)
jk

,

=

Nl−1∑
i

ω
(l)
nj

∂X(l−1)
i

∂V
(l−1)
i

∂V
(l−1)
i

∂ω
(h)
jk

+
∂X

(l−1)
i

∂V
(l−1)
i

∂V
(l−1)
i

∂ω
(h)
jk

 ,

(B.52)

where h ≤ l− 2. Therefore, based on Equations B.52 and B.51, the final equation
remains as follows:

∂V
(l)
n

∂ω
(h)
jk

=



X
(l−1)
j h = l ,

ω
(l)
nj

∂X
(l−1)
j

∂V
(l−1)
j

∂V
(l−1)
j

∂ω
(l−1)
jk

h = l − 1 ,

Nl−1∑
i

ω
(l)
nj

∂X(l−1)
i

∂V
(l−1)
i

∂V
(l−1)
i

∂ω
(h)
jk

+
∂X

(l−1)
i

∂V
(l−1)
i

∂V
(l−1)
i

∂ω
(h)
jk

 h ≤ l − 2 .

(B.53)
Using the property that ∂V /∂ω = (∂V/∂ω) and the distributed properties of

the conjugate, the following equation can be derived:

∂V
(l)
n

∂ω
(h)
jk

=



0 h = l ,

ω
(l)
nj

∂X
(l−1)
j

∂V
(l−1)
j

∂V
(l−1)
j

∂ω
(l−1)
jk

h = l − 1 ,

Nl−1∑
i

ω
(l)
nj

∂X(l−1)
i

∂V
(l−1)
i

∂V
(l−1)
i

∂ω
(h)
jk

+
∂X

(l−1)
i

∂V
(l−1)
i

∂V
(l−1)
i

∂ω
(h)
jk

 h ≤ l − 2 .

(B.54)
Using Equations B.53 and B.54, we can calculate all possible values of ∂V/∂ω

and ∂V /∂ω. Once defined the loss and the activation function, using Equation
B.48, backpropagation can be made also in the complex plane.

Hänsch and Hellwich definition
Ronny Hänsch and Olaf Helllwich [Hänsch and Hellwich, 2009b] made a similar
approach for the general equations of complex neural networks by using the complex
chain rule. Using (B.48), they define X and V from the same layer as the weight
instead of e.

By doing so, and using the fact that ∂V
(l−1)
j /∂ω

(l−1)
jk = 0, two terms are

deleted. In conjunction with the complex equivalent of Equation B.42, Equation
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B.48 is simplified to:

∂en

∂ω
(l)
ji

=
∂en

∂X
(l)
i

∂X
(l)
i

∂V
(l)
i

∂V
(l)
i

∂ω
(l)
ji

+
∂en

∂X
(l)
i

∂X
(l)
i

∂V
(l)
i

∂V
(l)
i

∂ω
(l)
ji

,

=
∂en

∂X
(l)
i

∂X
(l)
i

∂V
(l)
i

X
(l−1)
j +

∂en

∂X
(l)
i

∂X
(l)
i

∂V
(l)
i

X
(l−1)
j .

(B.55)

Now instead of making the analysis for ∂V/∂ω, the equivalent analysis will be
made for ∂e/∂X. The case with l = L is the trivial one when its value depends
on the chosen error function. For l = L− 1, the following equality applies:

∂en

∂X
(L−1)
i

=
∂en
∂V L

n

∂V L
n

∂X
(L−1)
i

+
∂en

∂V
L
n

∂V
L
n

∂X
(L−1)
i

. (B.56)

However, as V
(L)
n =

∑
i

ω
(L)
ni X

(L−1)
i , its derivatives are:

∂V
(l+1)
n

∂X
(l)
i

= ω
(l+1)
ni ,

∂V
(l+1)
n

∂X
(l)
i

= 0 .

(B.57)

For that reason, the second term of Equation B.56 is deleted, and using the
chain rule again we have:

∂en

∂X
(L−1)
i

=
∂en

∂V
(L)
n

∂V
(L)
n

∂X
(L−1)
i

,

=
∂en

∂X
(L)
n

∂X
(L)
n

∂V
(L)
n

∂V
(L)
n

∂X
(L−1)
i

+
∂en

∂X
L
n

∂X
(L)
n

∂V
(L)
n

∂V
(L)
n

∂X
(L−1)
i

,

=
∂en

∂X
(L)
n

∂X
(L)
n

∂V
(L)
n

ω
(L)
in +

∂en

∂X
(L)
n

∂X
(L)
n

∂V
(L)
n

ω
(L)
in ,

(B.58)

where the partial derivatives depend on the definition of the loss and activation
function.
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For the general case of l ≤ L− 2 the derivation is similar to the previous one:

∂en

∂X
(l)
i

=
∑
k

∂en

∂V l+1
k

∂V l+1
k

∂X
(l)
i

+
∂en

∂V
l+1
k

∂V
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k

∂X
(l)
i

,

=
∑
k

∂en

∂V l+1
k

∂V l+1
k

∂X
(l)
i

,

=
∑
k

∂en

∂V l+1
k

ω
(l+1)
ik ,

=
∑
k

∂en

∂X
(l+1)
k

∂X
(l+1)
k

∂V
(l+1)
k

ω
(l+1)
ik +

∂en

∂X
(l+1)
k

∂X
(l+1)
k

∂V
(l+1)
k

ω
(l+1)
ik .

(B.59)

Therefore, ∂e/∂X can be defined as:

∂en

∂X
(l)
i

=



∂en

∂X
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n

, l = L ,

∂en

∂X
(L)
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(l+1)
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(l+1)
k

ω
(l+1)
ik +

∂en

∂X
(l+1)
k

∂X
(l+1)
k

∂V
(l+1)
k

ω
(l+1)
ik
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,

l ≤ L− 2 . (B.60)
As en : C −→ R, then applying (B.1.3):

∂en

∂X
(l)
i

=

(
∂en

∂X
(l)
i

)
. (B.61)

Using this latest equality with Equations B.55 and B.60, the backpropagation
algorithms are fully defined.
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C - Automatic Differentiation

This topic is also very well covered in Appendix D of [Géron, 2019]. The
appendix also covers manual differentiation, symbolic differentiation, and numerical
differentiation. In this Section, we will jump directly to forward-mode automatic
differentiation (autodiff) and reverse-mode autodiff.

There many approaches to explain automatic differentiation (autodiff) [Hoff-
mann, 2016]. Most cases tend to assume the derivative at a given point exists which
is a logical assumption having in mind the algorithm is computing the derivative
itself. However, we have seen that for our case we can soften this definition and
only ask for the Wirtinger calculus to exist. Furthermore, the requirement that
the derivative at a point exists is a very strong condition that is to be avoided to
compute complex number backpropagation. Even in the real domain, there are
examples like Rectified Linear Unit (ReLU) that are widely used for deep neural
networks that have no derivative at x = 0, and yet the backpropagation is applied
without a problem.

• [Rall, 1986] explains autodiff it in a very clear and concise manner by
defining the dual number (to be explained later in this Chapter) arithmetic
directly but assumes that the derivative in the point exists.

• [Hall, 2003] is one of the few that actually talks about complex number
autodiff but assumes that Cauchy-Riemann equations are valid.

• [Pearlmutter and Siskind, 2007] presents Taylor series as the main idea
behind forward-mode autodiff. However, Taylor series assumes that the
function is infinitely derivable at the desired point.

• [Rall, 1983] assumes the function is differentiable.

C.1 . Forward-mode automatic differentiation

In this Section, we will demonstrate the theory behind forward-mode autodiff
in a general way, and we will not ask for f to be infinitely derivable at a point
furthermore, we will not even require it to have a first derivative. We will later
extend this definition to the complex domain. To the author’s knowledge, this
demonstration is not present in any other Reference, although the high quantity of
bibliography on this subject may suggest otherwise. After defining forward-mode
autodiff we will proceed to explain reverse-mode autodiff.

The definition of the derivative of function f is given by:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (C.1)
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We will generalize this equation for only a one-sided limit. The choice of right-
or left-sided limit will be indifferent to the demonstration:

Df(x) = lim
h→0±

f(x+ h)− f(x)

h
, (C.2)

where Df stands for this "soften" derivative definition and ± stands for either left
(−) or right (+) sided limit.

In Equation C.2, we have "soften" the condition needed for the derivative. In
cases where the derivative of f exists, we will not need to worry because (C.2) will
converge to (C.1) hence being equivalent. However, in cases where the derivative
does not exist, because the left side limit does not converge to the left side limit
(like ReLU at x = 0), this definition will render a result.

Using the first order Taylor expansion, we have that

f(x+ ϵ) = f(x) +Df(x) ϵ . (C.3)
With, ϵ will be an infinitesimally small number such as −0.00..001 or 0.00..02.

Note that the last digit of ϵ can be anything; it can even be more than one digit
as long as it is preceded by an "infinite" number of zeros.

Given a number x = a+bϵ, forward-mode automatic differentiation writes this
number a tuple of two numbers in the form of x = (a, b) called dual numbers.
Dual numbers are represented in memory as a pair of floats. An arithmetic for this
newly defined dual numbers are described in detail in [Rall, 1986]. We can think
of dual numbers as a transformation Tϵ[x] : R → R2/Tϵ[a+ b ϵ] = (a, b) [Kedem,
1980]. The real number system maps isomorphically into this new space by the
mapping x 7→ (x, 0), x ∈ R. To use the same notation as [Rall, 1986], we will
call the dual number space D. Operations in this space can be easily defined, for
example:

λ(a, b) = (λ a, λ b) , (C.4)
(a, b) + (c, d) = (a+ b, c+ d) , (C.5)

(a, b) (c, d) = (a c, (a d+ b c) + b d ϵ) = (a c, a d+ b c) . (C.6)
See that in Equation C.6, we have approximated (a c, (a d + b c) + b d ϵ) =

(a c, a d+b c). This is evident because the second term of the dual number is stored
in memory as a float. Being b d a product of two bounded scalar values and being
ϵ, by definition, an infinitesimal number, the value yielded by the term b d ϵ will
tend to zero and fall under the machine epsilon (machine precision). The existence
of the additive inverse (or negative) and the identity element for addition can be
easily defined. So is the case for multiplication. The multiplication and addition are
commutative and associative. Basically, the space D is well defined [Rall, 1986].

The choice of ϵ will only affect how the transformation Tϵ is applied but will
not affect this demonstration nor the basic operations of the space D.
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If we rewrite Equation C.3 in dual number notation we have:

f ((a, b)) = (f(a), bDf(a)[ϵ]) . (C.7)

Equation C.7 means that if we find a way to compute the function we want to
derivative using dual number notation, the result will yield a dual number whose
first number is the result of the function at point a and the second number will be
the derivative (provided b = 1) at that same point. Note that the above equation
has widened the "soft" derivative definition to Df(x)[ϵ] which means the derivative
of f at point x on the ϵ direction, as the sign chosen of epsilon will define if we
are computing either the left (−) or right (+) sided limit (C.2)).

The strength of forward-mode automatic differentiation is that this result is
exact [Hall, 2003, Hoffmann, 2016]. This is, the only inaccuracies which occur
are those which appear due to rounding errors in floating-point arithmetic or due
to imprecise evaluations of elementary functions. If we had infinite float number
precision and we could define the exact value of f on the dual number base, we
will have the exact value of the derivative.

Another virtue of forward-mode autodiff is that f can be any coded function
whose symbolic equation is unknown. Forward-mode autodiff can then compute
any number of nested functions as long as the basic operations are well defined
in dual number form. Then if f does many calls to these basic operations inside
loops or any conditional call (making it difficult to derive the symbolic equation),
it will still be possible for forward-mode autodiff to compute its derivative without
any difficulty.

Examples

With the goal of helping the reader to better understand forward-mode autodiff,
we will see the example used in [Géron, 2019], we define f(x, y) = x2y+y+2. For
it we compute f(x+ ϵ, y) = 42+24 ϵ following the logic of Figure C.1. Therefore,

we conclude that
∂f

∂x
(3, 4) = 24.
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Figure C.1: Forward-mode autodiff block diagram example
Rectified Linear Unit (ReLU)
In another example, a very well-known function called Rectified Linear Unit

(ReLU), is one of the most used activation functions in machine learning models.
We can write ReLU as f(x) = max(0, x) for what it’s derivative will be defined
as:

f ′(x) =

{
1 x > 0

0 x < 0 .
(C.8)

This is the example where:

lim
h→0+

f(x+ h)− f(x)

h
= 1 ̸= lim

h→0−

f(x+ h)− f(x)

h
= 0 . (C.9)

Therefore, its derivative is not defined at x = 0. The theory of why this case
doesn’t pose any problem for reaching an optimal point when doing backpropaga-
tion is outside the scope of this text. However, we will see what the forward-mode
automatic differentiation gives as a result. For it, we should first define, as usual,
f in the dual number space:

f ((a, b)) =


(a, b) a > 0

(0, b) a = 0

(0, 0) a < 0 .

(C.10)

This definition is logical if we have chosen lim
h+→0

= ϵ and must be changed if

the left-sided limit is chosen. We therefore compute the value of f(0, 1) to see the
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value of the derivative at point x = 0:

f(x+ ϵ) = max(0, 0.00...01) = 0.00...01 = (0, 1) = (f(0), f ′(0)) ,

f ((0, 1)) = (0, 1) .
(C.11)

We can see in Equation C.11 that the forward-mode autodiff algorithm will
yield the result of Df(0)[ϵ] = 1 which is an acceptable result for this case.

C.1.1 . Complex forward-mode automatic differentiation
With the generalization to the complex case, ϵ now becomes complex, in the

real case, we arbitrarily chose either the left or right-sided limit. Now, limitless
directions are possible (phase), affecting, of course, the result of the derivative.
Table C.1 shows the derivative that is calculated when different values of ϵ are
chosen.

Definition One possibility for ϵ
lim
x→0

f(z + x)− f(z)

x
0.00...01

lim
y→0

f(z + i y)− f(z)

y
0.00...01 i

lim
x→0,y→0

f(z + x− i y)− f(z)

x+ y
0.00...01 (1− i)

lim
x→0,y→0

f(z + x+ i y)− f(z)

x+ y
0.00...01 (1 + i)

Table C.1: Directional derivatives with respect to ϵ.
The Table can be generalized to the following equation:

∇ϵf = lim
h→0

f(z + h ϵ)− f(z)

h ϵ
. (C.12)

It is important to note that the module of ϵ is unimportant as long as it is
small enough so that the analysis made in the last Section (Section C.1) stands.

For functions where the complex derivative exists, all possibilities will converge
to the same value.

The first and second terms on Table C.1 are used in the computation of
Wirtinger Calculus, and it is not necessarily equal to the third term of the Ta-
ble.

C.2 . Reverse-mode automatic differentiation

Forward-mode automatic differentiation has many useful properties. First of
all, as we have seen, the condition for the derivative to exist is not necessarily
required for the method to yield a result that can be helpful when dealing with, in
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our case, non-holomorphic functions. Also, it allows finding a derivative value for
any coded function, even containing loops or conditionals, as long as the primitives
are defined. It is also natural for the algorithm to deal with the chain rule.

However, by taking a look at the example of Figure C.1, if we now want to

compute
∂f

∂y
(3, 4) we will need to compute f(x, y + ϵ), meaning that in order to

know both
∂f

∂x
(3, 4) and

∂f

∂y
(3, 4) we will need to compute the algorithm twice.

This can be exponentially costly for neural networks where there are sometimes
even millions of trainable parameters from which we need to compute the partial
derivative. Here is where reverse-mode automatic differentiation comes to the
rescue enabling us to compute all partial derivatives at once.

Examples
In here we will show how reverse-mode autodiff can compute the previous both
∂f

∂x
(3, 4) and

∂f

∂y
(3, 4) of the previous example for forward-mode autodiff running

the code once.
The first step is to compute f(3, 4), whose intermediate values are shown

on the bottom right of each node. Each node was labeled as ni for clarity with
i ∈ [1, 7]. The output of f(3, 4) = n7 = 42 as expected.

Figure C.2: Reverse-mode autodiff block diagram example
Now all the partial derivatives

∂f

∂ni
are computed starting with n7. Since n7
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is the output node,
∂f

∂n7
= 1. The chain rule is then used to compute the rest of

the nodes by going down the graph. For example, to compute
∂f

∂n5
we use

∂f

∂n5
=

∂f

∂n7

∂n7

∂n5
, (C.13)

and as we previously calculated
∂f

∂n7
, we just need to compute the second

term. This methodology will be repeated until all nodes’ partial derivatives are
computed. Here is the full list of the partial derivatives:

• ∂f

∂n7
= 1,

• ∂f

∂n6
=

∂f

∂n7

∂n7

∂n6
= 1,

• ∂f

∂n5
=

∂f

∂n7

∂n7

∂n5
= 1,

• ∂f

∂n4
=

∂f

∂n5

∂n5

∂n4
= n2 = 4,

• ∂f

∂y
=

∂f

∂n2
=

∂f

∂n5

∂n5

∂n2
+

∂f

∂n6

∂n6

∂n2
= n4 + 1 = 10

• ∂f

∂x
=

∂f

∂n1
=

∂f

∂n5

∂n5

∂n1
+

∂f

∂n5

∂n5

∂n1
= n1 · n4 + n1 · n4 = 3 · 4 + 3 · 4 = 24.

This code has the advantage that all partial derivatives are computed at once
which allows computing the values for a very high number of trainable parameters
with less computational cost.

C.2.1 . Complex reverse-mode automatic differentiation

Complex Example
In the following complex example, we will compute the reverse automatic dif-
ferentiation on a complex multiplication operation f = |(a + i b)(c + i d)| =

a c − b d + a d + b c, we know by definition that the derivative, using Wirtinger
Calculus, is:

∂f

∂(a+ i b)
=

∂f

∂a
+ i

∂f

∂b
= (c+ d) + i (c− d) , (C.14)

∂f

∂(c+ i d)
=

∂f

∂c
+ i

∂f

∂d
= (a+ b) + i (a− b) . (C.15)

The following Figure C.3 shows the block diagram of f .

167



Figure C.3: Complex reverse-mode autodiff block diagram example
Using the block diagram of Figure C.3 we can compute the nodes as follows:

• n1 = a,

• n2 = b,

• n3 = c,

• n4 = d,

• n5 = n1 · n3 = a · c,

• n6 = n2 · n4 = b · d,

• n7 = n1 · n4 = a · d,

• n8 = n2 · n3 = b · c,

• n9 = n5 − n6 = a c− b d,

• n10 = n7 + n8 = a d+ b c,

• f = n11 = n10 + n9 = a c− b d+ a d+ b c.

168



We now perform the reverse-mode backpropagation starting from the last node
(n11) and go back using the previously computed values to extract the partial
derivative of f = n11 with respect to every node.

• ∂f

∂n11
=

∂n11

∂n11
= 1,

• ∂n11

∂n10
= 1,

• ∂n11

∂n9
= 1,

• ∂n11

∂n8
=

∂n11

∂n10

∂n10

∂n8
= 1,

• ∂n11

∂n7
=

∂n11

∂n10

∂n10

∂n7
= 1,

• ∂n11

∂n6
=

∂n11

∂n9

∂n9

∂n6
= −1,

• ∂n11

∂n5
=

∂n11

∂n9

∂n9

∂n5
= 1,

• ∂f

∂d
=

∂n11

∂n4
=

∂n11

∂n7

∂n7

∂n4
+

∂n11

∂n6

∂n6

∂n4
= n1 − n2 = a− b,

• ∂f

∂c
=

∂n11

∂n3
=

∂n11

∂n8

∂n8

∂n3
+

∂n11

∂n5

∂n5

∂n3
= n2 + n1 = b+ a,

• ∂f

∂b
=

∂n11

∂n2
=

∂n11

∂n6

∂n6

∂n2
+

∂n11

∂n8

∂n8

∂n2
= n3 − n4 = c− d,

• ∂f

∂a
=

∂n11

∂n1
=

∂n11

∂n5

∂n5

∂n1
+

∂n7

∂n1

∂n7

∂n1
= n3 + n4 = c+ d.

Now, if we consider ∂f/∂(a+ i b) = ∂f/∂a+ i ∂f/∂b and replace the values
we obtained in the previous list, we get the same result as in Equation C.14.
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