

Nouveaux traitements radar robustes aux erreurs de modèle : le cas des cibles hors-grille

Soutenance de thèse de Pierre Develter

Sous la direction de Philippe Forster³ et Jean-Philippe Ovarlez^{1,2} Co-encadrement : Jonathan Bosse¹ et Olivier Babaste¹

¹ ONERA, MATS.² CentraleSupélec, SONDRA.³ Univ. Paris-Saclav, ENS Paris-Saclav, SATIE

1 Le problème des cibles hors-grille

- 2 Calcul de la *P_{FA}* du NMF hors-grille
- 3 Calcul de la *P_{FA}* du MF hors-grille
- 4 Aspects pratiques des GLRT hors-grille
- **5** Conclusion et Perspectives

1 Le problème des cibles hors-grille

2 Calcul de la P_{FA} du NMF hors-grille

3 Calcul de la *P_{FA}* du MF hors-grille

4 Aspects pratiques des GLRT hors-grille

5 Conclusion et Perspectives

Les systèmes radar

Formalisation : Le problème de détection

- Problème de détection

 $\begin{cases} H_0 : \mathbf{r} = \mathbf{n} & \text{bruit seul} \\ H_1 : \mathbf{r} = a \, \mathbf{s}(\boldsymbol{\xi}) + \mathbf{n} & \text{signal + bruit} \end{cases}$

- $\mathbf{r} \in \mathbb{C}^N$: observations, $a \in \mathbb{C}$: amplitude complexe du signal reçu,
- $n \in \mathbb{C}^N$: bruit gaussien ou Sphériquement Invariant, matrice de covariance R connue.
- $s(\xi) \in \mathbb{C}^N$: écho du signal pour une cible de paramètres ξ (distance, angle, Doppler, etc.).

Formalisation : Le problème de détection

- Problème de détection

 $\begin{cases} H_0 : \mathbf{r} = \mathbf{n} & \text{bruit seul} \\ H_1 : \mathbf{r} = a \, \mathbf{s}(\boldsymbol{\xi}) + \mathbf{n} & \text{signal + bruit} \end{cases}$

• $\mathbf{r} \in \mathbb{C}^N$: observations, $a \in \mathbb{C}$: amplitude complexe du signal reçu,

- $n \in \mathbb{C}^N$: bruit gaussien ou Sphériquement Invariant, matrice de covariance R connue.
- $s(\xi) \in \mathbb{C}^N$: écho du signal pour une cible de paramètres ξ (distance, angle, Doppler, etc.).

– Exemple de modèle de signal

$$\mathbf{s}(oldsymbol{\xi}) = rac{1}{\sqrt{N}} \left[1, e^{2i\pioldsymbol{\xi}}, \dots, e^{2i\pi(N-1)oldsymbol{\xi}}
ight]^{ au}$$
 , $oldsymbol{\xi} \in \left[0,1
ight]$.

- ξ : Doppler θ (*N* pulses) ou angle μ (*P* capteurs).
- $s_N(\theta) \otimes s_P(\mu)$: détection Doppler-Angle (STAP).

Le détecteur GLRT

– Définition (GLRT)

$$\Lambda(\mathbf{r}) = rac{\max_{\lambda_1} f_{H_1}(\mathbf{r})}{\max_{\lambda_0} f_{H_0}(\mathbf{r})} \mathop{\gtrless}\limits_{\mathsf{H}_0}^{\mathsf{H}_1} w^2 \, ,$$

 $f_{H_0}(\mathbf{r})$ et $f_{H_1}(\mathbf{r})$: densités de probabilité du signal \mathbf{r} sous les hypothèses H_0 et H_1 qui dépendent des paramètres inconnus λ_0 et λ_1 .

Le détecteur GLRT

Définition (GLRT)

$$\Lambda(\mathbf{r}) = rac{\max_{\lambda_1} f_{H_1}(\mathbf{r})}{\max_{\lambda_0} f_{H_0}(\mathbf{r})} \mathop{\gtrless}\limits_{\mathsf{H}_0}^{\mathsf{H}_1} w^2 \, ,$$

 $f_{H_0}(\mathbf{r})$ et $f_{H_1}(\mathbf{r})$: densités de probabilité du signal \mathbf{r} sous les hypothèses H_0 et H_1 qui dépendent des paramètres inconnus λ_0 et λ_1 .

Détecteur caractérisé par :

- probabilité de détection (P_D)
- probabilité de fausse alarme (P_{FA})

Réguler la P_{FA} via le seuil $w^2 \rightarrow$ crucial dans les applications radar.

Généralement, les paramètres de cible $\boldsymbol{\xi}$ (distance, Doppler, etc.) sont supposés connus.

Généralement, les paramètres de cible $\boldsymbol{\xi}$ (distance, Doppler, etc.) sont supposés connus.

• $\lambda_0 = \emptyset$ et $\lambda_1 = \{a\} \rightarrow \text{GLRT} \equiv \text{filtre adapté (MF)}$:

$$\Lambda_{\mathsf{MF}}(\boldsymbol{\xi}) = \frac{|\mathbf{s}(\boldsymbol{\xi})^{H} \mathbf{R}^{-1} \mathbf{r}|^{2}}{\mathbf{s}(\boldsymbol{\xi})^{H} \mathbf{R}^{-1} \mathbf{s}(\boldsymbol{\xi})} \underset{\mathsf{H}_{0}}{\overset{\mathsf{H}_{1}}{\approx}} w^{2}, \text{ avec } P_{FA} = \exp\left(-w^{2}\right).$$

Généralement, les paramètres de cible $\boldsymbol{\xi}$ (distance, Doppler, etc.) sont supposés connus.

•
$$\lambda_0 = \emptyset$$
 et $\lambda_1 = \{a\} \rightarrow \mathsf{GLRT} \equiv \mathsf{filtre} \ \mathsf{adapt\acute{e}} \ (\mathsf{MF})$:

$$\Lambda_{\mathsf{MF}}(\boldsymbol{\xi}) = \frac{|\mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \mathbf{r}|^2}{\mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \mathbf{s}(\boldsymbol{\xi})} \underset{\mathsf{H}_0}{\overset{\mathsf{H}_1}{\approx}} w^2 \,, \text{ avec } P_{\mathsf{F}\mathsf{A}} = \exp\left(-w^2\right).$$

•
$$\lambda_0 = \sigma^2$$
 et $\lambda_1 = \{a, \sigma^2\}$ (avec $\mathbf{R} = \sigma^2 \mathbf{\Gamma}$) \rightarrow GLRT \equiv filtre adapté normalisé (NMF) :

$$\Lambda_{\mathsf{NMF}}(\boldsymbol{\xi}) = \frac{\left|\mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \mathbf{r}\right|^{2}}{\left(\mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \mathbf{s}(\boldsymbol{\xi})\right) \ \left(\mathbf{r}^{H} \boldsymbol{\Gamma}^{-1} \mathbf{r}\right)} \overset{\mathsf{H}_{1}}{\underset{\mathsf{H}_{0}}{\overset{\mathsf{W}^{2}}{\underset{\mathsf{H}_{0}}{\overset{\mathsf{W}^{2}}{\underset{\mathsf{H}_{0}}{\overset{\mathsf{W}^{2}}{\underset{\mathsf{W}^{2}}{\underset{\mathsf{W}^{2}}{\underset{W}^{2}}{\underset{W}^{2}}{\underset{W}^{2}}{\underset{W}^{2}}{\underset{W}^{2}}{\underset{W}^{2}}{\underset{W}^$$

Généralement, les paramètres de cible $\boldsymbol{\xi}$ (distance, Doppler, etc.) sont supposés connus.

•
$$\lambda_0 = \emptyset$$
 et $\lambda_1 = \{a\} \rightarrow \mathsf{GLRT} \equiv \mathsf{filtre} \ \mathsf{adapt\acute{e}} \ (\mathsf{MF})$:

$$\Lambda_{\mathsf{MF}}(\boldsymbol{\xi}) = \frac{|\mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \mathbf{r}|^2}{\mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \mathbf{s}(\boldsymbol{\xi})} \underset{\mathsf{H}_0}{\overset{\mathsf{H}_1}{\approx}} w^2 \,, \text{ avec } P_{\mathsf{F}\mathsf{A}} = \exp\left(-w^2\right).$$

•
$$\lambda_0 = \sigma^2$$
 et $\lambda_1 = \{a, \sigma^2\}$ (avec $\mathbf{R} = \sigma^2 \mathbf{\Gamma}$) \rightarrow GLRT \equiv filtre adapté normalisé (NMF) :

$$\Lambda_{\mathsf{NMF}}(\boldsymbol{\xi}) = \frac{\left|\mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \mathbf{r}\right|^{2}}{\left(\mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \mathbf{s}(\boldsymbol{\xi})\right) \ \left(\mathbf{r}^{H} \boldsymbol{\Gamma}^{-1} \mathbf{r}\right)} \overset{\mathsf{H}_{1}}{\underset{\mathsf{H}_{0}}{\gtrsim}} w^{2} \text{, avec } P_{FA} = \left(1 - w^{2}\right)^{N-1}$$

Mais en pratique, les paramètres $\boldsymbol{\xi}$ ne sont pas connus!!

Le principe de grille

Comment sont effectués les tests?

• Les paramètres de cibles $\boldsymbol{\xi}$ sont supposés appartenir à une grille discrète fixe :

Le principe de grille

Comment sont effectués les tests?

• Les paramètres de cibles $\boldsymbol{\xi}$ sont supposés appartenir à une grille discrète fixe :

• En pratique $\xi \neq \xi_0 \rightarrow$ mismatch hors-grille \rightarrow perte en probabilité de détection.

Effet du mismatch hors-grille sur le MF

Réponse du MF à un signal hors-grille.

Effet du mismatch hors-grille sur le MF

Réponse du MF à un signal hors-grille.

SON

ONERA

THE FRENCH AEROSPACE LAB

PUBLICUE

MF, Détection Doppler, N = 10. Cibles distribuées uniformément dans une case.

Effet du mismatch hors-grille sur le NMF

Le NMF est un détecteur d'angle \rightarrow Cibles hors du cône jamais détectées.

Réponse du NMF à un signal hors-grille.

Effet du mismatch hors-grille sur le NMF

Le NMF est un détecteur d'angle \rightarrow Cibles hors du cône jamais détectées.

Réponse du NMF à un signal hors-grille.

NMF, Détection Doppler, N = 10. Cibles distribuées uniformément dans une case.

Etat de l'art

- Le problème hors-grille est traité en reconstruction parcimonieuse [Lasserre et al., 2015, Tang et al., 2013].
 - *P_{FA}* difficile à garantir, métriques peu adaptées.

Etat de l'art

- Le problème hors-grille est traité en reconstruction parcimonieuse [Lasserre et al., 2015, Tang et al., 2013].
 - *P_{FA}* difficile à garantir, métriques peu adaptées.
- En détection, les types de mismatchs traités sont souvent plus généraux :
 - Dans un cône, [De Maio, 2005, Besson et al., 2005, Besson, 2006]
 - Mismatch quadratique, [De Maio et al., 2010]
 - Trop général pour le mismatch hors-grille.

Etat de l'art

- Le problème hors-grille est traité en reconstruction parcimonieuse [Lasserre et al., 2015, Tang et al., 2013].
 - *P_{FA}* difficile à garantir, métriques peu adaptées.
- En détection, les types de mismatchs traités sont souvent plus généraux :
 - Dans un cône, [De Maio, 2005, Besson et al., 2005, Besson, 2006]
 - Mismatch quadratique, [De Maio et al., 2010]
 - Trop général pour le mismatch hors-grille.
- Solutions adaptées au mismatch hors-grille :
 - Modélisation des cellules en sous-espace (DPSS) [Rabaste et al., 2016, Bosse et al., 2020],
 - Approximation linéaire du signal [Aubry et al., 2020],
 - Solution pratique : suréchantillonnage du signal.
 - Performances de détection sous-optimales.

Problématique : Étude des GLRT dits "hors-grille"

Problématique : étude des GLRT "hors-grille" :

$$\begin{split} \widehat{\mathsf{Définition}} \\ & \Lambda_{\mathsf{MF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{|\mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \mathbf{r}|^2}{\mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \mathbf{s}(\boldsymbol{\xi})} \overset{H_1}{\underset{H_0}{\gtrless}} w^2 \,, \\ & \Lambda_{\mathsf{NMF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{|\mathbf{s}(\boldsymbol{\xi})^H \mathbf{\Gamma}^{-1} \mathbf{r}|^2}{(\mathbf{s}(\boldsymbol{\xi})^H \mathbf{\Gamma}^{-1} \mathbf{s}(\boldsymbol{\xi})) \ (\mathbf{r}^H \mathbf{\Gamma}^{-1} \mathbf{r})} \overset{H_1}{\underset{H_0}{\gtrless}} w^2 \,, \end{split}$$

Problématique : Étude des GLRT dits "hors-grille"

Problématique : étude des GLRT "hors-grille" :

$$\begin{split} \widehat{ \mathsf{Définition}} \\ & \Lambda_{\mathsf{MF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{\left| \mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \mathbf{r} \right|^2}{\mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \mathbf{s}(\boldsymbol{\xi})} \overset{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\otimes}} w^2 \,, \\ & \Lambda_{\mathsf{NMF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{\left| \mathbf{s}(\boldsymbol{\xi})^H \mathbf{\Gamma}^{-1} \mathbf{r} \right|^2}{\left(\mathbf{s}(\boldsymbol{\xi})^H \mathbf{\Gamma}^{-1} \mathbf{s}(\boldsymbol{\xi}) \right) \ \left(\mathbf{r}^H \mathbf{\Gamma}^{-1} \mathbf{r} \right)} \overset{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\otimes}} w^2 \,, \end{split}$$

ÉPUBLIQUE

Liberti Fgalitt

Etat de l'art avec bruit corrélé, σ^2 inconnu, N = 10.

Performances meilleures que l'état de l'art hors-grille (suréchantillonnage, détecteurs sous-espace).

Problématique : Étude des GLRT dits "hors-grille"

Problématique : étude des GLRT "hors-grille" :

$$\begin{split} \widehat{ \mathsf{Définition}} \\ & \Lambda_{\mathsf{MF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{\left| \mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \, \mathbf{r} \right|^2}{\mathbf{s}(\boldsymbol{\xi})^H \mathbf{R}^{-1} \, \mathbf{s}(\boldsymbol{\xi})} \stackrel{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\gtrsim}} w^2 \,, \\ & \Lambda_{\mathsf{NMF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{\left| \mathbf{s}(\boldsymbol{\xi})^H \mathbf{\Gamma}^{-1} \, \mathbf{r} \right|^2}{\left(\mathbf{s}(\boldsymbol{\xi})^H \mathbf{\Gamma}^{-1} \, \mathbf{s}(\boldsymbol{\xi}) \right) \, \left(\mathbf{r}^H \mathbf{\Gamma}^{-1} \, \mathbf{r} \right)} \stackrel{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\approx}} w^2 \,, \end{split}$$

- Difficultés à implémenter efficacement,
- Relations *P_{FA}*-seuil inconnues.

SON

ONERA

THE EPENCH AEPOSPACE LAP

PUBLICUE

Etat de l'art avec bruit corrélé, σ^2 inconnu, N = 10.

Performances meilleures que l'état de l'art hors-grille (suréchantillonnage, détecteurs sous-espace).

1 Le problème des cibles hors-grille

3 Calcul de la P_{FA} du MF hors-grille

4 Aspects pratiques des GLRT hors-grille

5 Conclusion et Perspectives

- Objectif

On veut calculer la relation PFA-seuil du détecteur :

$$\Lambda_{\text{NMF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{\left| \mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \, \mathbf{r} \right|^{2}}{\left(\mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \, \mathbf{s}(\boldsymbol{\xi}) \right) \, \left(\mathbf{r}^{H} \boldsymbol{\Gamma}^{-1} \, \mathbf{r} \right)} \overset{\text{H}_{1}}{\underset{\text{H}_{0}}{\gtrsim}} w^{2} \, ,$$

Objectif —

On veut calculer la relation P_{FA}-seuil du détecteur :

$$\Lambda_{\mathsf{NMF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{\left| \mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \, \mathbf{r} \right|^{2}}{\left(\mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \, \mathbf{s}(\boldsymbol{\xi}) \right) \, \left(\mathbf{r}^{H} \boldsymbol{\Gamma}^{-1} \, \mathbf{r} \right)} \overset{\mathsf{H}_{1}}{\underset{\mathsf{H}_{0}}{\bigotimes}} \, w^{2} \,,$$

Sous
$$H_0$$
, le signal reçu blanchi $\mathbf{u} = \frac{\mathbf{\Gamma}^{-1/2} \mathbf{r}}{\left\|\mathbf{\Gamma}^{-1/2} \mathbf{r}\right\|} \sim U(\mathbb{S}^{N-1}).$
 $P_{FA} = \frac{\text{volume de la zone d'acceptance}}{\text{volume de la sphère}}$

Objectif On veut calculer la relation P_{FA} -seuil du détecteur : $\Lambda_{\text{NMF-GLRT}} = \max_{\substack{\boldsymbol{\xi} \in \mathcal{D}}} \frac{\left| \mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \mathbf{r} \right|^{2}}{\left(\mathbf{s}(\boldsymbol{\xi})^{H} \boldsymbol{\Gamma}^{-1} \mathbf{s}(\boldsymbol{\xi}) \right) \left(\mathbf{r}^{H} \boldsymbol{\Gamma}^{-1} \mathbf{r} \right)} \overset{\text{H}_{1}}{\underset{\text{H}_{2}}{\overset{\text{H}_{1}}{\underset{\text{H}_{2}}{\overset{\text{H}_{2}}{\underset{\text{H}_{2}}{\underset{\text{H}_{2}}{\overset{\text{H}_{2}}{\underset{1}}{\underset{H}_{2}}{\underset{H}_{1}}{\underset{H}_{1$ Sous H_0 , le signal reçu blanchi $\mathbf{u} = \frac{\mathbf{\Gamma}^{-1/2} \mathbf{r}}{\|\mathbf{\Gamma}^{-1/2} \mathbf{r}\|} \sim U(\mathbb{S}^{N-1}).$ $P_{FA} = rac{\text{volume de la zone d'acceptance}}{\text{volume de la sphère}}$ Zone d'acceptance du NMF?

On veut calculer la relation
$$P_{FA}$$
-seuil du détecteur :

$$\Lambda_{\text{NMF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{|\mathbf{s}(\boldsymbol{\xi})^H \boldsymbol{\Gamma}^{-1} \mathbf{r}|^2}{(\mathbf{s}(\boldsymbol{\xi})^H \boldsymbol{\Gamma}^{-1} \mathbf{s}(\boldsymbol{\xi})) (\mathbf{r}^H \boldsymbol{\Gamma}^{-1} \mathbf{r})} \overset{\text{H}_1}{\underset{\text{H}_0}{\overset{\text{W}^2}}} w^2,$$

Objectif

Sous
$$H_0$$
, le signal reçu blanchi $\mathbf{u} = \frac{\mathbf{\Gamma}^{-1/2} \mathbf{r}}{\left\|\mathbf{\Gamma}^{-1/2} \mathbf{r}\right\|} \sim U(\mathbb{S}^{N-1}).$
 $P_{FA} = \frac{\text{volume de la zone d'acceptance}}{\text{volume de la sphère}}$

Zone d'acceptance du NMF hors-grille ? Union des calottes : Tube autour de la variété $\{s(\xi) : \xi \in D\}$.

On veut calculer la relation
$$P_{FA}$$
-seuil du détecteur :

$$\Lambda_{\text{NMF-GLRT}} = \max_{\boldsymbol{\xi} \in \mathcal{D}} \frac{|\mathbf{s}(\boldsymbol{\xi})^H \boldsymbol{\Gamma}^{-1} \mathbf{r}|^2}{(\mathbf{s}(\boldsymbol{\xi})^H \boldsymbol{\Gamma}^{-1} \mathbf{s}(\boldsymbol{\xi})) (\mathbf{r}^H \boldsymbol{\Gamma}^{-1} \mathbf{r})} \overset{\text{H}_1}{\underset{\text{H}_0}{\overset{\text{W}^2}}} w^2,$$

Objectif

Sous
$$H_0$$
, le signal reçu blanchi $\mathbf{u} = \frac{\mathbf{\Gamma}^{-1/2} \mathbf{r}}{\left\|\mathbf{\Gamma}^{-1/2} \mathbf{r}\right\|} \sim U(\mathbb{S}^{N-1}).$
 $P_{FA} = \frac{\text{volume de la zone d'acceptance}}{\text{volume de la sphère}}$

Zone d'acceptance du NMF hors-grille ? Union des calottes : Tube autour de la variété $\{s(\xi) : \xi \in D\}$.

Le cas 1D : Théorème d'Hotelling [Hotelling, 1939]

Problème de **géométrie différentielle** : calcul du volume d'un tube \mathcal{T} .

Tube T décomposé en sections droites CS.

Valable uniquement si \mathcal{T} ne se recouvre pas !

Modélisation de la variété

• Traduire notre problème complexe en réel \rightarrow introduction d'un nouveau paramètre α .

$$\max_{\boldsymbol{\xi}\in\mathcal{D}} |\mathbf{s}(\boldsymbol{\xi})^{H}\mathbf{u}| = \max_{\{\boldsymbol{\xi},\alpha\}\in\mathcal{D}\times[0,2\pi]} \operatorname{Re}\left(\mathbf{s}\left(\boldsymbol{\xi}\right)^{H}\mathbf{u}\exp\left(-i\alpha\right)\right)$$
$$= \max_{\{\boldsymbol{\xi},\alpha\}\in\mathcal{D}\times[0,2\pi]} \overbrace{\left(\boldsymbol{\gamma}_{1}(\boldsymbol{\xi})\cos\alpha+\boldsymbol{\gamma}_{2}(\boldsymbol{\xi})\sin\alpha\right)}^{\boldsymbol{\gamma}(\underline{\boldsymbol{\xi}},\alpha)} T\underline{\mathbf{u}},$$

où
$$\boldsymbol{\gamma}_1(\boldsymbol{\xi}) = \begin{bmatrix} \mathsf{Re}(\mathbf{s}\,(\boldsymbol{\xi})) \\ \mathrm{Im}(\mathbf{s}\,(\boldsymbol{\xi})) \end{bmatrix}$$
, $\boldsymbol{\gamma}_2(\boldsymbol{\xi}) = \begin{bmatrix} -\mathrm{Im}(\mathbf{s}\,(\boldsymbol{\xi})) \\ \mathsf{Re}(\mathbf{s}\,(\boldsymbol{\xi})) \end{bmatrix}$ et $\underline{\mathbf{u}} = \begin{bmatrix} \mathsf{Re}(\mathbf{u}) \\ \mathrm{Im}(\mathbf{u}) \end{bmatrix} \in \mathbb{R}^{2N} \sim U(\mathbb{S}^{2N-1})$ sous H_0 .

Modélisation de la variété

• Traduire notre problème complexe en réel \rightarrow introduction d'un nouveau paramètre α .

$$\max_{\boldsymbol{\xi}\in\mathcal{D}} |\mathbf{s}(\boldsymbol{\xi})^{H}\mathbf{u}| = \max_{\substack{\{\boldsymbol{\xi},\alpha\}\in\mathcal{D}\times[0,2\pi]}} \operatorname{Re}\left(\mathbf{s}\left(\boldsymbol{\xi}\right)^{H}\mathbf{u}\,\exp\left(-i\alpha\right)\right)$$
$$= \max_{\substack{\{\boldsymbol{\xi},\alpha\}\in\mathcal{D}\times[0,2\pi]}} \widetilde{\left(\boldsymbol{\gamma}_{1}(\boldsymbol{\xi})\cos\alpha+\boldsymbol{\gamma}_{2}(\boldsymbol{\xi})\sin\alpha\right)}^{T}\underline{\mathbf{u}}$$

où
$$\boldsymbol{\gamma}_1(\boldsymbol{\xi}) = \begin{bmatrix} \mathsf{Re}(\boldsymbol{s}\left(\boldsymbol{\xi}\right)) \\ \mathrm{Im}(\boldsymbol{s}\left(\boldsymbol{\xi}\right)) \end{bmatrix}$$
, $\boldsymbol{\gamma}_2(\boldsymbol{\xi}) = \begin{bmatrix} -\mathrm{Im}(\boldsymbol{s}\left(\boldsymbol{\xi}\right)) \\ \mathsf{Re}(\boldsymbol{s}\left(\boldsymbol{\xi}\right)) \end{bmatrix}$ et $\underline{\mathbf{u}} = \begin{bmatrix} \mathsf{Re}(\mathbf{u}) \\ \mathrm{Im}(\mathbf{u}) \end{bmatrix} \in \mathbb{R}^{2N} \sim U(\mathbb{S}^{2N-1})$ sous H_0 .

- Détection à un paramètre inconnu \rightarrow variété 2D,
- Détection à deux paramètres inconnus \rightarrow variété 3D.

Le théorème d'Hotelling ne s'applique plus...

Le théorème de Weyl [Weyl, 1939]

Weyl généralise le théorème d'Hotelling en plusieurs dimensions :

Théorème de Weyl $V = \int_{\gamma} \left\{ \int \dots \int_{t_1^2 + \dots + t_{\nu}^2 \leq \tan^2 \phi} \frac{\det \left(\delta_j^i + \sum_{p=1}^{\nu} t_p G_j^j(p) \right)_{1 \leq i,j \leq M}}{\left(1 + t_1^2 + \dots + t_{\nu}^2 \right)^{n/2}} dt_1 \dots dt_{\nu} \right\} ds,$ • $d\mathbf{s} = \sqrt{\det g_{ii}} d\xi_1 \dots d\xi_M$ est l'élément de volume de $\boldsymbol{\gamma}$, • $g_{ij} = \left(\frac{\partial \gamma^T}{\partial \xi_i} \frac{\partial \gamma}{\partial \xi_j}\right)_{1 \le i,j \le M}$ est la première forme fondamentale de γ , • $G_{ij}(p) = \left(-\frac{\partial^2 \gamma^T}{\partial \xi_i \partial \xi_i} \mathbf{n}_p\right)_{1 \le i \le M}$ est la *deuxième forme fondamentale* de γ pour la normale \mathbf{n}_p ,

Définition

S'il existe une paramétrisation $\boldsymbol{\xi}$ telle que $g_{ij} = (\mathbf{I})_{i,j}$, on dit que $\boldsymbol{\gamma}$ est *euclidienne*.

Dans le cas où γ est euclidienne et fermée, on montre que le volume de \mathcal{T} s'exprime sous la forme :

 $Volume(\mathcal{T}) = volume(\boldsymbol{\gamma}) \times volume des sections droites.$

Définition

S'il existe une paramétrisation $\boldsymbol{\xi}$ telle que $g_{ij} = (\mathbf{I})_{i,j}$, on dit que $\boldsymbol{\gamma}$ est *euclidienne*.

Dans le cas où γ est euclidienne et fermée, on montre que le volume de \mathcal{T} s'exprime sous la forme :

Volume(\mathcal{T}) = volume(γ) × volume des sections droites.

- 1 paramètre inconnu : γ est euclidienne si Γ est centrosymétrique.
- 2 paramètres inconnus : γ est euclidienne sous bruit blanc.

Dans ces cas, on obtient la P_{FA} avec le théorème de Weyl.

Application à la détection 1D

En exploitant [Knowles and Siegmund, 1989], on trouve :

- Corollaire [Develter et al., 2022a] Dans la zone de non-recouvrement (faibles P_{FA}), avec s de taille N :

$$P_{FA} = \underbrace{(1 - w^2)^{N-1}}_{+ \frac{\Gamma(N) w (1 - w^2)^{N-\frac{3}{2}}}{\pi^{1/2} \Gamma(N - \frac{1}{2})}} \int_{\xi_1}^{\xi_2} \left\| \mathbf{P}_{\gamma_2(\xi)}^{\perp} \dot{\gamma}_1(\xi) \right\| d\xi.$$

Sous bruit blanc ($\mathbf{\Gamma} = \sigma^2 \mathbf{I}$),

ONERA

THE EPENCH AEPOSPACE IA

UBLIOUF

$$\begin{split} P_{FA} &= \left(1 - w^2\right)^{N-1} \\ &+ \sqrt{\frac{\pi}{3}} \, \frac{\Gamma(N) \, w \, (1 - w^2)^{N-\frac{3}{2}}}{\Gamma\left(N - \frac{1}{2}\right)} \, \sqrt{(N^2 - 1)} \, \left(\xi_2 - \xi_1\right). \end{split}$$

SON

▲ On remarque que le test n'est CFAR ni par rapport à **Γ**, ni par rapport à 𝔅.

Application à la détection 2D, cas $\mathcal{D} = [0, 1]^2$

• $\mathcal{D} = [0, 1]^2 \rightarrow$ tester sur tout l'espace de paramètres.

- Corollaire

Sous bruit blanc, dans le régime de non-recouvrement, quand $\mathcal{D} = [0, 1]^2$, avec s de taille $N \times P$:

$$PFA = rac{\pi}{6} \left(1 - w^2
ight)^{NP-2} \left(\left(2NP - 1
ight) w^2 - 1
ight) \sqrt{N^2 - 1} \sqrt{P^2 - 1}$$

Application à la détection 2D, cas $\mathcal{D} = [0, 1]^2$

• $\mathcal{D} = [0, 1]^2 \rightarrow$ tester sur tout l'espace de paramètres.

- Corollaire

Sous bruit blanc, dans le régime de non-recouvrement, quand $\mathcal{D} = [0, 1]^2$, avec s de taille $N \times P$:

$$PFA = \frac{\pi}{6} \left(1 - w^2 \right)^{NP-2} \left((2NP-1) w^2 - 1 \right) \sqrt{N^2 - 1} \sqrt{P^2 - 1}$$

Avec $\mathbf{\Gamma} \neq \sigma^2 \mathbf{I}$ centrosymétrique, on obtient :

$$P_{FA} \,=\, rac{\pi}{2} \left(1-w^2
ight)^{NP-2} \left(\left(2NP-1
ight)w^2-1
ight) \,\int_{m{\zeta}\in\mathcal{D}'} \sqrt{\det g'_{ij}} \,dm{\zeta}\,,$$

 $\pmb{\zeta}$: reparamétrisation dans $\mathcal{D}',$ avec :

$$g_{ij}^{\prime} = rac{\partial \mathbf{s}(oldsymbol{\zeta})^{H}}{\partial \zeta_{i}} rac{\partial \mathbf{s}(oldsymbol{\zeta})}{\partial \zeta_{j}} \,.$$

Le cas d'une case de résolution

On traite le cas $\mathcal{D} \neq [0, 1]^2$ de la manière suivante :

Volume(T) = Volume des sections droites

- + Volume des sections droites autour de la frontière $\partial \gamma$
- + Volume des "coins" (*P_{FA}* sur grille)

Schéma de l'heuristique.

Sous bruit blanc, dans le régime de non-recouvrement, avec $\mathcal{D}=[heta_1, heta_2] imes[\mu_1,\mu_2]$:

$$\begin{split} P_{FA} &= \frac{\pi}{6} \left(1 - w^2 \right)^{NP-2} \left((2NP-1) \, w^2 - 1 \right) \, \sqrt{N^2 - 1} \, \sqrt{P^2 - 1} \left(\theta_2 - \theta_1 \right) \left(\mu_2 - \mu_1 \right) \\ &+ \, \left((\theta_2 - \theta_1) \sqrt{N^2 - 1} + (\mu_2 - \mu_1) \sqrt{P^2 - 1} \right) \sqrt{\frac{\pi}{3}} \, \frac{\Gamma(NP) \, w \, (1 - w^2)^{NP - \frac{3}{2}}}{\Gamma \left(NP - \frac{1}{2} \right)} + (1 - w^2)^{NP-1} \, . \end{split}$$

Le problème de recouvrement

On distingue deux types de recouvrement :

Recouvrement local

Recouvrement non-local

En présence de recouvrement :

 $P_{FA} < P_{FA}$ formule des tubes

Sans recouvrement :

 $P_{FA} = P_{FA}$ formule des tubes

Le problème de recouvrement

On distingue deux types de recouvrement :

Recouvrement local

Recouvrement non-local

- Résultat [Develter et al., 2023b]

Sous bruit blanc, le seuil limite est donné par :

$$w_{\text{lim}}^2 = \cos^2\left(\tan^{-1}\left(rac{\sqrt{5-C_N}}{2}
ight)
ight)$$
, avec $C_N = rac{3}{5}rac{3N^2-7}{(N-1)^2}$.

Simulations 1D (Doppler inconnu), $N = 10, D = D_0$

• $\mathcal{D}_0 = [-1/2N, 1/2N]$: pire case pour la détection sous bruit coloré.

Relation théorique valable en pratique bien avant le seuil limite de non recouvrement w_{lim}.

1 Le problème des cibles hors-grille

2 Calcul de la P_{FA} du NMF hors-grille

3 Calcul de la P_{FA} du MF hors-grille

4 Aspects pratiques des GLRT hors-grille

5 Conclusion et Perspectives

- Objectif

Calculer de la relation P_{FA}-seuil du détecteur :

$$\Lambda_{\mathsf{MF} ext{-}\mathsf{GLRT}} = \max_{\substack{\boldsymbol{\xi}\in\mathcal{D}}} rac{\left|\mathbf{s}(\boldsymbol{\xi})^{H}\mathbf{R}^{-1}\,\mathbf{r}
ight|^{2}}{\mathbf{s}(\boldsymbol{\xi})^{H}\mathbf{R}^{-1}\,\mathbf{s}(\boldsymbol{\xi})} \stackrel{\mathsf{H}_{1}}{\underset{\mathsf{H}_{0}}{\gtrsim}} w^{2}$$
 ,

- Objectif

Calculer de la relation P_{FA}-seuil du détecteur :

$$\Lambda_{\mathsf{MF}\text{-}\mathsf{GLRT}} = \max_{\substack{\boldsymbol{\xi} \in \mathcal{D}}} \frac{\left| \mathbf{s}(\boldsymbol{\xi})^{H} \mathbf{R}^{-1} \, \mathbf{r} \right|^{2}}{\mathbf{s}(\boldsymbol{\xi})^{H} \mathbf{R}^{-1} \, \mathbf{s}(\boldsymbol{\xi})} \overset{\mathsf{H}_{1}}{\underset{\mathsf{H}_{0}}{\gtrsim}} w^{2} \,,$$

• r non normalisé \rightarrow plus sur la sphère.

- Objectif

Calculer de la relation P_{FA}-seuil du détecteur :

$$\Lambda_{\text{MF-GLRT}} = \max_{\substack{\boldsymbol{\xi} \in \mathcal{D} \\ \boldsymbol{s}(\boldsymbol{\xi})^{H} \mathbf{R}^{-1} \mathbf{s}(\boldsymbol{\xi})}} \left| \begin{smallmatrix} \mathsf{H}_{1} \\ \mathsf{H}_{2} \\ \mathsf{H}_{0} \end{smallmatrix} \right| w^{2},$$

• r non normalisé \rightarrow plus sur la sphère.

• On réécrit notre problème :
$$\begin{split} & \left| \max_{\boldsymbol{\xi} \in \mathcal{D}} |\mathbf{s}(\boldsymbol{\xi})^H \mathbf{r} \right| = \max_{\{\boldsymbol{\xi}, \alpha\} \in \mathcal{D} \times [0, 2\pi]} X(\alpha, \boldsymbol{\xi}) \\ & \text{où } X(\alpha, \boldsymbol{\xi}) = \boldsymbol{\gamma}(\alpha, \boldsymbol{\xi})^T \underline{\mathbf{r}} \text{ champ aléatoire gaussien, } \underline{\mathbf{r}} = \begin{bmatrix} \mathbf{r}_r \\ \mathbf{r}_i \end{bmatrix} \in \mathbb{R}^{2N} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \text{ sous } H_0. \end{split}$$

- Objectif

ONERA

THE FRENCH AEROSPACE LAB

ÉPUBLIQUE

PANCAISE

Calculer de la relation P_{FA}-seuil du détecteur :

$$\Lambda_{\mathsf{MF} ext{-}\mathsf{GLRT}} = \max_{\substack{\boldsymbol{\xi}\in\mathcal{D}}} rac{\left|\mathbf{s}(\boldsymbol{\xi})^{H}\mathbf{R}^{-1}\,\mathbf{r}
ight|^{2}}{\mathbf{s}(\boldsymbol{\xi})^{H}\mathbf{R}^{-1}\,\mathbf{s}(\boldsymbol{\xi})} \stackrel{\mathsf{H}_{1}}{\gtrsim} w^{2}$$
 ,

• r non normalisé \rightarrow plus sur la sphère.

SON

• On réécrit notre problème :
$$\begin{aligned} \max_{\boldsymbol{\xi}\in\mathcal{D}} |\mathbf{s}(\boldsymbol{\xi})^{H}\mathbf{r}| &= \max_{\{\boldsymbol{\xi},\alpha\}\in\mathcal{D}\times[0,2\pi]} X(\alpha,\boldsymbol{\xi}) \end{aligned}$$
où $X(\alpha,\boldsymbol{\xi}) &= \boldsymbol{\gamma}(\alpha,\boldsymbol{\xi})^{T}\underline{\mathbf{r}}$ champ aléatoire gaussien, $\underline{\mathbf{r}} = \begin{bmatrix} \mathbf{r}_{r} \\ \mathbf{r}_{i} \end{bmatrix} \in \mathbb{R}^{2N} \sim \mathcal{N}(\mathbf{0},\sigma^{2}\mathbf{I})$ sous H_{0} .
• $P_{FA} = \mathbb{P}\left(\max_{\alpha,\boldsymbol{\xi}\in[0,2\pi]\times\mathcal{D}} X(\alpha,\boldsymbol{\xi}) > w\right)$.

Théorie des dépassements de seuil [Rice, 1944, Adler, 2000] pour w >> 1.

Ensemble d'excursions

- Définition

Ensemble d'excursion de X :

$$A_w(X) riangleq \{(lpha, oldsymbol{\xi}), X(lpha, oldsymbol{\xi}) > w\}$$
 .

Ensemble d'excursions

- Définition

Ensemble d'excursion de X :

$$A_w(X) riangleq \left\{ (lpha,oldsymbol{\xi})$$
 , $X(lpha,oldsymbol{\xi})>w
ight\}$.

 w → ∞ : X(α, ξ) parabole autour de ses maxima locaux au dessus de w.

Ensemble d'excursions

Définition

Ensemble d'excursion de X :

```
A_w(X) 	riangleq \{(lpha, oldsymbol{\xi}) , X(lpha, oldsymbol{\xi}) > w\} .
```

- w → ∞ : X(α, ξ) parabole autour de ses maxima locaux au dessus de w.
- *P_{FA}* ≈ 𝔼(nombre de maxima locaux) ≈ 𝔅(nombre de composantes).

Caractéristique d'Euler $\varphi(.)$: nombre de composantes de $A_w(X)$ [Adler et al., 2007].

 $|P_{FA} - \mathbb{E}(arphi(\mathcal{A}_w(X)))| < O\left(\exp\left(-c \ w^2
ight)
ight)$, avec c > 1.

Détection à un paramètre inconnu

- Pour $\mathbf{R} = \sigma^2 \mathbf{I}$, on arrive à calculer $E(\varphi(A_w(X)))$.
- Elle dépend de la géométrie de l'espace de paramètres *T*. Pour un champ 2D :

$$P_{FA} \approx |T| \rho_2(w) + \frac{|\partial T|}{2} \rho_1(w) + \varphi(T) \Psi\left(\frac{w}{\sigma}\right),$$

 $|\mathcal{T}|$: volume de \mathcal{T} , $\partial \mathcal{T}$: volume de la bordure, $\varphi(\mathcal{T})$: caractéristique d'Euler, ρ_2 , ρ_1 , Ψ : fonctions connues.

Espace de paramètres T : $|T| = 2\pi\Delta\theta$, $|\partial T| = 4\pi$ and $\varphi(T) = 0$.

- Résultat [Develter et al., 2023a] $P_{FA}(w) = \sqrt{\frac{\pi(N^2 - 1)}{3}} w \Delta \theta \exp(-w^2) + \exp(-w^2) + O\left(\exp(-c w^2)\right).$

Détection à deux paramètres inconnus

• Pour un espace de paramètres 3*D* (détection Distance-Doppler ou STAP) :

$$P_{FA} \approx |T| \rho_3(w) + \frac{|\partial T|}{2} \rho_2(w) + \frac{H(\partial T)}{\pi} \rho_1(w) + \varphi(T) \Psi\left(\frac{w}{\sigma}\right),$$

Those faces are stuck together

Résultats numériques, $\mathcal{D} = \mathcal{D}_0$

Les relations P_{FA} -seuil asymptotiques correspondent pour $P_{FA} < 10^{-1}$.

1 Le problème des cibles hors-grille

- 2 Calcul de la P_{FA} du NMF hors-grille
- 3 Calcul de la *P_{FA}* du MF hors-grille
- 4 Aspects pratiques des GLRT hors-grille
- **5** Conclusion et Perspectives

Approximation du GLRT hors-grille

- Problématique

Comment implémenter les détecteurs GLRT hors grille?

Suréchantillonnage \rightarrow coût de calcul élevé pour le NMF hors grille.

Approximation du GLRT hors-grille

- Problématique

ÉPUBLIQUE

Liberti Fgalitti Frateraisi Comment implémenter les détecteurs GLRT hors grille?

Suréchantillonnage \rightarrow coût de calcul élevé pour le NMF hors grille.

30/43

Approximation du GLRT hors-grille

- Problématique

RÉPUBLIQUE

Liberti Fgaliti Frateraia Comment implémenter les détecteurs GLRT hors grille?

Suréchantillonnage \rightarrow coût de calcul élevé pour le NMF hors grille.

30/43

Idée : Fusionner les étapes de détection et estimation dans la chaîne de traitement radar pour obtenir un détecteur performant et à faible coût de calcul.

Démarche

- Calculer une série de tests sur grille Λ (s(θ_i)), $\theta_i \in \mathcal{G}$,
- Estimer le mismatch δ_i dans chaque cellule avec peu de calculs,

• Effectuer des tests $\Lambda\left(\mathbf{s}\left(\theta_{i}+\hat{\delta}_{i}\right)\right)$ aux positions corrigées.

Estimateur monopulse [Develter et al., 2021]

$$\Lambda_{\text{mono}}(\theta) = \frac{\left| \mathbf{s} \left(\theta + \hat{\delta}_{\text{mono}} \right)^{H} \mathbf{\Gamma}^{-1} \mathbf{r} \right|^{2}}{\left(\mathbf{s} \left(\theta + \hat{\delta}_{\text{mono}} \right)^{H} \mathbf{\Gamma}^{-1} \mathbf{s} \left(\theta + \hat{\delta}_{\text{mono}} \right) \right) \ \left(\mathbf{r}^{H} \mathbf{\Gamma}^{-1} \mathbf{r} \right)}$$

• Vecteurs de Fourier non blanchis.

Approximation des relation *P*_{*FA*}**-seuil**

Relations P_{FA} -seuil correctement approximées par la relation théorique proposée pour de basses P_{FA} .

Analyse de la P_D

Sous bruit fortement corrélé

Bonnes performances, proches du GLRT, même en bruit corrélé.

18 décembre 2023 Pierre Develter Soutenance de thèse 34/43

Analyse sur cibles expérimentales

Mise en œuvre des détecteurs sur des données du radar HYCAM de l'ONERA.

Radar HYCAM.

Caractéristiques :

- N = 10 impulsions,
- Résolution distance : 75m,
- Résolution Doppler : 25m.s⁻¹.

Position du Radar HYCAM.

Remerciements à l'équipe RMES et à Milan Rozel.

18 décembre 2023 Pierre Develter Soutenance de thèse 35/43

Test de la relation *P_{FA}*-seuil

Liberti Fgaliti Frateraia

RÉPUBLIQUE

FRANCAISE

ONERA

THE FRENCH AEROSPACE LAB

Scène ne contenant que du bruit.

RA

SON

 La relation P_{FA}-seuil théorique établie correspond à celle des données réelles de bruit.

Implémentation des détecteurs

Analyse Doppler, N = 10. Chaque point correspond à une position de cible avec SNR et taux de détection estimés sur 15 acquisitions. $P_{FA} = 10^{-6}$.

- A très fort SNR → certaines positions de cibles ne sont jamais détectées par le NMF sur grille,
- Ces cibles sont toujours détectées par $\Lambda_{mono}.$
- Λ_{mono} offre de meilleures performances de détection que le suréchantillonnage d'un facteur 2.

1 Le problème des cibles hors-grille

- 2 Calcul de la P_{FA} du NMF hors-grille
- 3 Calcul de la *P_{FA}* du MF hors-grille
- 4 Aspects pratiques des GLRT hors-grille

5 Conclusion et Perspectives

- Nouvelles relations P_{FA}-seuil pour le Filtre Adapté Normalisé hors grille [Develter et al., 2022a, Develter et al., 2023b]
 - Utilisation de méthodes issues de la géométrie différentielle,
 - Établissement du domaine de validité via étude du non-recouvrement.

- Nouvelles relations P_{FA}-seuil pour le Filtre Adapté Normalisé hors grille [Develter et al., 2022a, Develter et al., 2023b]
 - Utilisation de méthodes issues de la géométrie différentielle,
 - Établissement du domaine de validité via étude du non-recouvrement.
- Nouvelles relations P_{FA}-seuil asymptotiques pour le Filtre Adapté hors grille [Develter et al., 2023a]
 - Utilisation des espérances de caractéristiques d'Euler d'ensembles d'excursion.

- Nouvelles relations P_{FA}-seuil pour le Filtre Adapté Normalisé hors grille [Develter et al., 2022a, Develter et al., 2023b]
 - Utilisation de méthodes issues de la géométrie différentielle,
 - Établissement du domaine de validité via étude du non-recouvrement.
- Nouvelles relations P_{FA}-seuil asymptotiques pour le Filtre Adapté hors grille [Develter et al., 2023a]
 - Utilisation des espérances de caractéristiques d'Euler d'ensembles d'excursion.
- Utilisation de la détection et estimation jointes pour approximer le GLRT hors-grille [Develter et al., 2021]

- Nouvelles relations P_{FA}-seuil pour le Filtre Adapté Normalisé hors grille [Develter et al., 2022a, Develter et al., 2023b]
 - Utilisation de méthodes issues de la géométrie différentielle,
 - Établissement du domaine de validité via étude du non-recouvrement.
- Nouvelles relations P_{FA}-seuil asymptotiques pour le Filtre Adapté hors grille [Develter et al., 2023a]
 - Utilisation des espérances de caractéristiques d'Euler d'ensembles d'excursion.
- Utilisation de la détection et estimation jointes pour approximer le GLRT hors-grille [Develter et al., 2021]
- Tests des relations et détecteurs sur cibles réelles.

• Rendre les détecteurs hors-grille CFAR par rapport à \mathcal{D} ,

- Rendre les détecteurs hors-grille CFAR par rapport à \mathcal{D} ,
- Extension des relations PFA-seuil au cas adaptatif,

- Rendre les détecteurs hors-grille CFAR par rapport à \mathcal{D} ,
- Extension des relations PFA-seuil au cas adaptatif,
- Calcul des relations PFA-seuil pour les détecteurs suréchantillonnés,

- Rendre les détecteurs hors-grille CFAR par rapport à \mathcal{D} ,
- Extension des relations PFA-seuil au cas adaptatif,
- Calcul des relations PFA-seuil pour les détecteurs suréchantillonnés,
- Calcul de la probabilité de détection.

Publications

Journaux

 P. Develter, J. Bosse, O. Rabaste, P. Forster and J.-P. Ovarlez, On the False Alarm Probability of the Normalized Matched Filter for off-grid targets: A geometrical approach and its validity conditions, submitted to IEEE Transactions on Signal Processing in April 2023.

Conférences internationales

- P. Develter, J. Bosse, O. Rabaste, P. Forster and J.-P. Ovarlez, "False Alarm Regulation for Off-Grid Target Detection With The Matched Filter," ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023.
- -, "On the False Alarm Probability of the Normalized Matched Filter for Off-Grid Target Detection," ICASSP 2022 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022, pp. 5782-5786.
- -, "Off-Grid Radar Target Detection with the Normalized Matched Filter: A Monopulse-Based Detection Scheme," 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 2021, pp. 226-230.

Conférences nationales

- P. Develter, J. Bosse, O. Rabaste, P. Forster, J.-P. Ovarlez, Sur la probabilité de fausse alarme du Filtre Adapté pour la détection distance-Doppler de cibles hors-grille. GRETSI 2023, Grenoble.
- -, Sur la probabilité de fausse alarme du Filtre Adapté Normalisé pour la détection de cibles hors-grille. GRETSI 2022, Nancy.
- Workshops
 - Presentation of the thesis work to the 4th SLSIP Workshop, Cadaquès, 2022
 - Presentation of the thesis work to the 5th SONDRA Workshop, Avignon, 2022

Merci pour votre attention !

Références I

[Abramowitz et al., 1988] Abramowitz, M., Stegun, I. A., and Romer, R. H. (1988).

Handbook of mathematical functions with formulas, graphs, and mathematical tables.

[Adler, 2000] Adler, R. J. (2000).

On excursion sets, tube formulas and maxima of random fields.

Annals of Applied Probability, pages 1–74.

[Adler et al., 2007] Adler, R. J., Taylor, J. E., and Worsley, K. J. (2007).

Random fields and geometry, volume 80.

Springer.

[Adler et al., 2015] Adler, R. J., Taylor, J. E., and Worsley, K. J. (2015). Applications of Random Fields and Geometry : Foundations and Case Studies. In preparation.

[Aleksandrov, 1998] Aleksandrov, P. S. (1998).

Combinatorial topology, volume 1.

Courier Corporation.

Références II

[Anitori et al., 2012] Anitori, L., Maleki, A., Otten, M., Baraniuk, R. G., and Hoogeboom, P. (2012). Design and analysis of compressed sensing radar detectors. *IEEE Transactions on Signal Processing*, 61(4) :813–827.

[Aubry et al., 2020] Aubry, A., De Maio, A., Marano, S., and Rosamilia, M. (2020). Single-pulse simultaneous target detection and angle estimation in a multichannel phased array radar. *Signal Processing, IEEE Transactions on*, 68 :6649–6664.

[Bandiera et al., 2007] Bandiera, F., Besson, O., and Ricci, G. (2007). An ABORT-like detector with improved mismatched signals rejection capabilities. *Signal Processing, IEEE Transactions on*, 56(1) :14–25.

[Bandiera et al., 2009] Bandiera, F., Orlando, D., and Ricci, G. (2009). Advanced Radar Detection Schemes Under Mismatched Signal Models. Morgan & Claypool publishers.

[Besson, 2006] Besson, O. (2006).

Detection of a signal in linear subspace with bounded mismatch. Aerospace and Electronic Systems, IEEE Transactions on, 42(3) :1131–1139.

Références III

[Besson, 2007] Besson, O. (2007).

Adaptive detection with bounded steering vectors mismatch angle. *Signal Processing, IEEE Transactions on*, 55(4) :1560–1564.

[Besson, 2014] Besson, O. (2014).

On false alarm rate of matched filter under distribution mismatch.

IEEE Signal Processing Letters, 22(2) :167–171.

[Besson et al., 2005] Besson, O., Scharf, L. L., and Vincent, F. (2005).

Matched direction detectors and estimators for array processing with subspace steering vector uncertainties. *Signal Processing, IEEE Transactions on*, 53(12) :4453–4463.

[Bhaskar et al., 2013] Bhaskar, B. N., Tang, G., and Recht, B. (2013). Atomic norm denoising with applications to line spectral estimation.

Signal Processing, IEEE Transactions on, 61(23) :5987–5999.

[Bosse and Rabaste, 2018] Bosse, J. and Rabaste, O. (2018).

Subspace rejection for matching pursuit in the presence of unresolved targets. *Signal Processing, IEEE Transactions on*, 66(8) :1997–2010.

Références IV

[Bosse et al., 2020] Bosse, J., Rabaste, O., and Ovarlez, J.-P. (2020).

Adaptive subspace detectors for off-grid mismatched targets.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4777–4780.

[Brennan et al., 1968] Brennan, L., Reed, I., and Sollfrey, W. (1968).

A comparison of average-likelihood and maximum-likelihood ratio tests for detecting radar targets of unknown Doppler frequency.

Information Theory, IEEE Transactions on, 14(1):104–110.

[Brouard et al., 2013] Brouard, P., Constancias, L., Brun, A., Attia, S., Peyret, J., and Dreuillet, P. (2013).

Hycam : a new s-band surface radar testbed.

In Radar Conference, IET International.

[Cann, 2002] Cann, A. J. (2002).

Range gate straddling loss and joint probability with partial correlation.

Aerospace and Electronic Systems, IEEE Transactions on, 38(3) :1054–1058.

[Cattenoz et al., 2013] Cattenoz, M., Brouard, P., Brun, A., Constancias, L., and Savy, L. (2013). Coherent collocated mimo radar : A study on real data. In 2013 14th International Radar Symposium (IRS), volume 1, pages 83–88, IEEE.

Références V

[Chaumette, 2004] Chaumette, E. (2004).

Contribution à la caractérisation des performances des problèmes conjoints de détection et d'estimation. PhD thesis, Cachan, Ecole Normale Superieure, Gif-sur-Yvette, France.

[Chen et al., 2018] Chen, P., Cao, Z., Chen, Z., and Wang, X. (2018).

Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling. *Signal Processing, IEEE Transactions on*, 67(1) :208–220.

[Ciuonzo et al., 2016] Ciuonzo, D., De Maio, A., and Orlando, D. (2016).

A unifying framework for adaptive radar detection in homogeneous plus structured interference - part II : Detectors design.

Signal Processing, IEEE Transactions on, 64 :2907–2919.

[Cochran, 1934] Cochran, W. G. (1934).

The distribution of quadratic forms in a normal system, with applications to the analysis of covariance.

In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 30, pages 178–191. Cambridge University Press.

[Conte et al., 1995] Conte, E., Lops, M., and Ricci, G. (1995).

Asymptotically optimum radar detection in compound-Gaussian clutter.

Aerospace and Electronic Systems, IEEE Transactions on, 31(2) :617–625.

Références VI

[Cooley and Tukey, 1965] Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex fourier series. *Mathematics of computation*, 19(90) :297–301.

[Dai et al., 2016] Dai, J., Bao, X., Xu, W., and Chang, C. (2016). Root sparse Bayesian learning for off-grid DOA estimation. *IEEE Signal Processing Letters*, 24(1) :46–50.

[De Maio, 2005] De Maio, A. (2005).

Robust adaptive radar detection in the presence of steering vector mismatches. *Aerospace and Electronic Systems, IEEE Transactions on*, 41(4) :1322–1337.

[De Maio et al., 2010] De Maio, A., Huang, Y., Palomar, D. P., Zhang, S., and Farina, A. (2010). Fractional QCQP with applications in ML steering direction estimation for radar detection. *Signal Processing, IEEE Transactions on*, 59(1):172–185.

[Develter et al., 2021] Develter, P., Bosse, J., Rabaste, O., Forster, P., and Ovarlez, J.-P. (2021). Off-grid radar target detection with the Normalized Matched Filter : A monopulse-based detection scheme. In *IEEE Statistical Signal Processing Workshop (SSP)*, pages 226–230. IEEE.

Références VII

[Develter et al., 2022a] Develter, P., Bosse, J., Rabaste, O., Forster, P., and Ovarlez, J.-P. (2022a).
 On the False Alarm Probability of the Normalized Matched Filter for off-grid target detection.
 In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 5782–5786.
 IEEE.

[Develter et al., 2022b] Develter, P., Bosse, J., Rabaste, O., Forster, P., and Ovarlez, J.-P. (2022b). Sur la probabilité de fausse alarme du filtre adapté normalisé pour la détection de cibles hors-grille. In *GRETSI 2022*, pages 1–5.

[Develter et al., 2023a] Develter, P., Bosse, J., Rabaste, O., Forster, P., and Ovarlez, J.-P. (2023a). False alarm regulation for off-grid target detection with the matched filter.

In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE.

[Develter et al., 2023b] Develter, P., Bosse, J., Rabaste, O., Forster, P., and Ovarlez, J.-P. (2023b).

On the false alarm probability of the normalized matched filter for off-grid targets : A geometrical approach and its validity conditions.

Signal Processing, IEEE Transactions on, submitted.

[Develter et al., 2023c] Develter, P., Bosse, J., Rabaste, O., Forster, P., and Ovarlez, J.-P. (2023c).

Sur la probabilité de fausse alarme du filtre adapté pour la détection distance-doppler de cibles hors-grille. In *GRETSI 2023*, pages 1–5.

Références VIII

```
[Fannjiang and Liao, 2012] Fannjiang, A. and Liao, W. (2012).
Coherence pattern–guided compressive sensing with unresolved grids.
SIAM Journal on Imaging Sciences, 5(1) :179–202.
```

[Gallot et al., 1990] Gallot, S., Hulin, D., Lafontaine, J., et al. (1990).

Riemannian geometry, volume 2.

Springer.

```
[Galloway, G., 2022] Galloway, G. (2022).
```

Introduction to differential geometry.

```
https://www.math.miami.edu/~galloway/.
```

Accessed : 2023-10-08.

[Galy et al., 2010] Galy, J., Chaumette, E., and Larzabal, P. (2010).

Joint detection estimation problem of monopulse angle measurement.

Aerospace and Electronic Systems, IEEE Transactions on, 46(1):397-413.

[Gray, 2003] Gray, A. (2003).

Tubes, volume 221.

Springer Science & Business Media.

Références IX

[Hayward, 2003] Hayward, S. D. (2003).

CFAR detection of targets with unknown Doppler shifts. *Electronics Letters*, 39(6):549–550.

[Hill et al., 2000] Hill, R., Tough, R., and Ward, K. (2000).

Distribution of the global maximum of a gaussian random field and performance of matched filter detectors. *IEE Proceedings-Vision, Image and Signal Processing*, 147(4) :297–303.

[Hill et al., 2001] Hill, R. D., Tough, R. J. A., and Ward, K. D. (2001).

False alarm curve for envelope of gaussian random field. *Electronics Letters*, **37**(4) :1.

[Hohenwarter, 2002] Hohenwarter, M. (2002).

GeoGebra - ein Softwaresystem für dynamische Geometrie und Algebra der Ebene. Diplomarbeit, Universität Salzburg.

[Hotelling, 1939] Hotelling, H. (1939).

Tubes and spheres in *n*-spaces, and a class of statistical problems.

American Journal of Mathematics, 61(2):440-460.

Références X

[Jacobsen and Kootsookos, 2007] Jacobsen, E. and Kootsookos, P. (2007). Fast, accurate frequency estimators [dsp tips & tricks]. *IEEE Signal Processing Magazine*, 24(3) :123–125.

[Jay, 2002] Jay, E. (2002).Détection en environnement non gaussien.PhD thesis, Université de Cergy Pontoise.

[Jay et al., 2003] Jay, E., Ovarlez, J.-P., Declercq, D., and Duvaut, P. (2003). Bord : Bayesian optimum radar detector. *Signal Processing*, 83(6) :1151–1162.

[Johansen and Johnstone, 1990] Johansen, S. and Johnstone, I. M. (1990).

Hotelling's theorem on the volume of tubes : some illustrations in simultaneous inference and data analysis. *The Annals of Statistics*, 18(2):652–684.

[Johnstone and Siegmund, 1989] Johnstone, I. and Siegmund, D. (1989).

On Hotelling's formula for the volume of tubes and Naiman's inequality. *The Annals of Statistics*, pages 184–194.

Références XI

[Kalson, 1992] Kalson, S. Z. (1992).

An adaptive array detector with mismatched signal rejection.

Aerospace and Electronic Systems, IEEE Transactions on, 28(1):195-207.

[Kay, 2009] Kay, S. M. (2009).

Fundamentals of statistical processing, Volume 2 : Detection theory. Pearson Education India.

[Kelly, 1986] Kelly, E. J. (1986).

An adaptive detection algorithm.

Aerospace and Electronic Systems, IEEE Transactions on, AES-22(2) :115–127.

[Knowles and Siegmund, 1989] Knowles, M. and Siegmund, D. (1989).

On Hotelling's approach to testing for a nonlinear parameter in regression. International Statistical Review/Revue Internationale de Statistique, pages 205–220.

[Kraut and Scharf, 1999] Kraut, S. and Scharf, L. L. (1999).

The cfar adaptive subspace detector is a scale-invariant glrt.

Signal Processing, IEEE Transactions on, 47(9) :2538–2541.

[Kreithen and Steinhardt, 1995] Kreithen, D. E. and Steinhardt, A. O. (1995).

Target detection in post-stap undernulled clutter.

In Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, volume 2, pages 1203–1207. IEEE.

[Kuriki and Takemura, 2001] Kuriki, S. and Takemura, A. (2001).

Tail probabilities of the maxima of multilinear forms and their applications.

Annals of statistics, pages 328-371.

[Kuriki et al., 2022] Kuriki, S., Takemura, A., and Taylor, J. E. (2022).

The volume-of-tube method for gaussian random fields with inhomogeneous variance. *Journal of Multivariate Analysis*, 188 :104819.

[Lasserre et al., 2015] Lasserre, M., Bidon, S., Besson, O., and Le Chevalier, F. (2015). Bayesian sparse Fourier representation of off-grid targets with application to experimental radar data. *Signal Processing*, 111 :261–273.

[Le Chevalier, 2002] Le Chevalier, F. (2002).

Principles of radar and sonar signal processing. Artech House.

Références XIII

[Leitinger et al., 2020] Leitinger, E., Grebien, S., Fleury, B., and Witrisal, K. (2020).

Detection and estimation of a spectral line in mimo systems.

In 2020 54th Asilomar Conference on Signals, Systems, and Computers, pages 1090–1095. IEEE.

[Marcum, 1960] Marcum, J. (1960).

A statistical theory of target detection by pulsed radar.

IRE Transactions on Information Theory, 6(2) :59–267.

[Mosca, 1969] Mosca, E. (1969).

Angle estimation in amplitude comparison monopulse systems.

Aerospace and Electronic Systems, IEEE Transactions on, AES-5(2) :205–212.

[Neyman and Pearson, 1933] Neyman, J. and Pearson, E. S. (1933).

Ix. on the problem of the most efficient tests of statistical hypotheses.

Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 231(694-706) :289–337.

[Ollila et al., 2012] Ollila, E., Tyler, D. E., Koivunen, V., and Poor, H. V. (2012).

Complex Elliptically Symmetric distributions : Survey, new results and applications. *Signal Processing, IEEE Transactions on*, 60(11) :5597 –5625.

Références XIV

[Orlando and Ricci, 2011] Orlando, D. and Ricci, G. (2011).

Adaptive radar detection and localization of a point-like target.

Signal Processing, IEEE Transactions on, 59(9) :4086–4096.

[Ovarlez et al., 2015] Ovarlez, J.-P., Pascal, F., and Breloy, A. (2015).

Asymptotic detection performance analysis of the robust adaptive normalized matched filter.

In 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 137–140. IEEE.

[Pascal et al., 2006] Pascal, F., Ovarlez, J.-P., Forster, P., and Larzabal, P. (2006). On a SIRV-CFAR detector with radar experimentations in impulsive noise. In *European Signal Processing Conference, EUSIPCO'06*, Florence, Italy.

[Petersen et al., 2008] Petersen, K. B., Pedersen, M. S., et al. (2008).

The matrix cookbook.

Technical University of Denmark, 7(15) :510.

[Petersen, 2006] Petersen, P. (2006).

Riemannian geometry, volume 171.

Springer.

Références XV

[Rabaste et al., 2016] Rabaste, O., Bosse, J., and Ovarlez, J.-P. (2016).
 Off-grid target detection with Normalized Matched Subspace Filter.
 In 24th European Signal Processing Conference (EUSIPCO), pages 1926–1930.

[Rabaste and Trouvé, 2014] Rabaste, O. and Trouvé, N. (2014).

Geometrical design of radar detectors in moderately impulsive noise. Aerospace and Electronic Systems, IEEE Transactions on, 50(3) :1938–1954.

[Rice, 1944] Rice, S. O. (1944).

Mathematical analysis of random noise.

The Bell System Technical Journal, 23(3) :282–332.

[Richards et al., 2010] Richards, M. A., Scheer, J., Holm, W. A., and Melvin, W. L. (2010).

Principles of modern radar, volume 1.

Citeseer.

[Richmond and Basu, 2018] Richmond, C. D. and Basu, P. (2018).

Architectures for cooperative radar-communications : Average vs. generalized likelihood ratio tests. In 2018 IEEE Radar Conference (RadarConf18), pages 1584–1588. IEEE.

Références XVI

[Robey et al., 1992] Robey, F. C., Fuhrmann, D. R., Kelly, E. J., and Nitzberg, R. (1992).

A cfar adaptive matched filter detector.

Aerospace and Electronic Systems, IEEE Transactions on, 28(1):208-216.

[Rouvière and Debreil, 2016] Rouvière, F. and Debreil, A. (2016).

Initiation à la géométrie de Riemann.

Calvage & Mounet.

[Scharf and Demeure, 1991] Scharf, L. L. and Demeure, C. (1991).

Statistical signal processing : detection, estimation, and time series analysis. Prentice Hall.

[Scharf and Friedlander, 1994] Scharf, L. L. and Friedlander, B. (1994).

Matched subspace detectors.

Signal Processing, IEEE Transactions on, 42(8) :2146–2157.

[Scharf and Lytle, 1971] Scharf, L. L. and Lytle, D. W. (1971).

Signal detection in Gaussian noise of unknown level : an invariance application.

Information Theory, IEEE Transactions on, 17:404–411.

[Selin, 1965] Selin, I. (1965).

Detection of coherent radar returns of unknown Doppler shift. *Information Theory, IEEE Transactions on*, 11(3):396–400.

[Sherman and Barton, 2011] Sherman, S. M. and Barton, D. K. (2011).

Monopulse principles and techniques.

Artech House.

[Siegmund and Worsley, 1995] Siegmund, D. O. and Worsley, K. J. (1995).

Testing for a signal with unknown location and scale in a stationary gaussian random field. *The Annals of Statistics*, 23(2) :608–639.

[Stoica and Babu, 2011] Stoica, P. and Babu, P. (2011).

Sparse estimation of spectral lines : Grid selection problems and their solutions.

IEEE Transactions on Signal Processing, 60(2) :962–967.

[Strohmer, 2012] Strohmer, T. (2012).

Measure what should be measured : progress and challenges in compressive sensing.

IEEE Signal Processing Letters, 19(12) :887-893.

Références XVIII

[Sun, 1993] Sun, J. (1993).

Tail probabilities of the maxima of gaussian random fields.

The Annals of Probability, pages 34–71.

[Synge and Schild, 1978] Synge, J. L. and Schild, A. (1978).

Tensor calculus, volume 5.

Courier Corporation.

[Takemura and Kuriki, 2002] Takemura, A. and Kuriki, S. (2002).

On the equivalence of the tube and euler characteristic methods for the distribution of the maximum of gaussian fields over piecewise smooth domains.

Annals of Applied Probability, pages 768-796.

[Tan, 2019] Tan, U. H. (2019).

Méthodologies de conception de formes d'onde pour radars sol. Application au cas du radar MIMO. PhD thesis, Université Paris-Saclay (ComUE).

[Tang et al., 2013] Tang, G., Bhaskar, B. N., Shah, P., and Recht, B. (2013).

Compressed sensing off the grid.

Information Theory, IEEE Transactions on, 59(11) :7465–7490.

Références XIX

[Taylor et al., 2007] Taylor, J. E., Worsley, K. J., and Gosselin, F. (2007). Maxima of discretely sampled random fields, with an application to 'bubbles'. *Biometrika*, 94(1) :1–18.

[Tibshirani, 1996] Tibshirani, R. (1996).

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society Series B : Statistical Methodology, 58(1) :267–288.

[Tropp and Gilbert, 2007] Tropp, J. A. and Gilbert, A. C. (2007).

Signal recovery from random measurements via orthogonal matching pursuit. *Information Theory, IEEE Transactions on*, 53(12) :4655–4666.

[Ward et al., 2007] Ward, K. D., Tough, R. J. A., and Watts, S. (2007). Sea clutter : scattering, the k distribution and radar performance. *Waves in Random and Complex Media*, 17(2) :233–234.

[Watts, 2013] Watts, S. (2013).

The effects of covariance matrix mismatch on adaptive cfar performance. In *2013 International Conference on Radar*, pages 324–329. IEEE.

[Weyl, 1939] Weyl, H. (1939).

On the volume of tubes.

American Journal of Mathematics, 61(2):461-472.

[Worsley, 1994] Worsley, K. J. (1994).

Local maxima and the expected euler characteristic of excursion sets of χ^2 , f and t fields.

Advances in Applied Probability, 26(1):13-42.

[Worsley, 1995] Worsley, K. J. (1995).

Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images.

The Annals of Statistics, pages 640-669.

[Worsley, 2001] Worsley, K. J. (2001).

Testing for signals with unknown location and scale in a χ^2 random field, with an application to fmri. *Advances in Applied Probability*, 33(4) :773–793.

[Xing et al., 2011] Xing, M., Su, J., Wang, G., and Bao, Z. (2011).

New parameter estimation and detection algorithm for high speed small target. *Aerospace and Electronic Systems, IEEE Transactions on*, 47(1) :214–224.

[Zhang et al., 2009] Zhang, X., Willett, P., and Bar-Shalom, Y. (2009).

Detection and localization of multiple unresolved extended targets via monopulse radar signal processing. *Aerospace and Electronic Systems, IEEE Transactions on*, 45(2) :455–472.

[Zhu et al., 2011] Zhu, H., Leus, G., and Giannakis, G. B. (2011).

Sparsity-cognizant total least-squares for perturbed compressive sampling.

Signal Processing, IEEE Transactions on, 59(5) :2002–2016.

Conséquence : *P*_D **en bruit blanc pour cibles hors-grille**

(c) MF, Détection STAP, N = 8 and P = 4.

(b) NMF, Détection Doppler, N = 10.

(d) NMF, Détection STAP, N = 8 and P = 4.

18 décembre 2023 Pierre Develter Soutenance de thèse 42/43

Conséquence : *P*_D **en bruit fortement corrélé**

(a) MF, Détection Doppler, N = 10, \mathcal{D}_0 .

(c) MF, Détection Doppler, $N = 10, D_0$. ONERA SON RA

RÉPUBLIQUE FRANCAISE

THE FRENCH AEROSPACE LAB

Liberti Fgaliti Protocola

(b) MF, Détection Doppler, $N = 10, D_5$.

(d) NMF, Détection STAP, $N = 10, D_5$.

18 décembre 2023 Pierre Develter Soutenance de thèse 42/43

Etat de l'art : Reconstruction parcimonieuse

Le problème est particulièrement étudié en reconstruction parcimonieuse.

 $\mathbf{y} = \mathbf{F}\mathbf{x} + \mathbf{n}$,

Objectif : reconstruire le signal $\mathbf{y} \in \mathbb{R}^N$ constitué de colonnes du dictionnaire $\mathbf{F} \in \mathbb{R}^{N \times L}$ à partir du signal parcimonieux $\mathbf{x} \in \mathbb{R}^L$. Faible nombre de cibles \rightarrow Parcimonie vérifiée en radar.

Etat de l'art : Reconstruction parcimonieuse

Le problème est particulièrement étudié en reconstruction parcimonieuse.

 $\mathbf{y} = \mathbf{F}\mathbf{x} + \mathbf{n}$,

Objectif : reconstruire le signal $\mathbf{y} \in \mathbb{R}^N$ constitué de colonnes du dictionnaire $\mathbf{F} \in \mathbb{R}^{N \times L}$ à partir du signal parcimonieux $\mathbf{x} \in \mathbb{R}^L$. Faible nombre de cibles \rightarrow Parcimonie vérifiée en radar.

Les algorithmes de reconstruction sont particulièrement sensibles à un mismatch entre le dictionnaire **F** et les vrais signaux \rightarrow Développement de nombreuses méthodes hors-grille.

Etat de l'art : Reconstruction parcimonieuse

Le problème est particulièrement étudié en reconstruction parcimonieuse.

 $\mathbf{y} = \mathbf{F}\mathbf{x} + \mathbf{n}$,

Objectif : reconstruire le signal $\mathbf{y} \in \mathbb{R}^N$ constitué de colonnes du dictionnaire $\mathbf{F} \in \mathbb{R}^{N \times L}$ à partir du signal parcimonieux $\mathbf{x} \in \mathbb{R}^L$. Faible nombre de cibles \rightarrow Parcimonie vérifiée en radar.

Les algorithmes de reconstruction sont particulièrement sensibles à un mismatch entre le dictionnaire **F** et les vrais signaux \rightarrow Développement de nombreuses méthodes hors-grille.

Mais :

- Difficultés pour contrôler la P_{FA},
- Métriques qui viennent plutôt de l'estimation (MSE...).

 \rightarrow peu adapté pour la détection radar.

Etat de l'art : Détection robuste

Travaux en détection pour obtenir des détecteurs robustes à certains types de mismatch. Les mismatchs traités sont généraux \rightarrow peu adaptés au mismatch hors-grille :

Etat de l'art : Détection robuste

Travaux en détection pour obtenir des détecteurs robustes à certains types de mismatch. Les mismatchs traités sont généraux \rightarrow peu adaptés au mismatch hors-grille :

Inclure une cellule entière :

- Baisse en sélectivité,
- P_{FA} minimum exigée.

Cône incluant une cellule.

\rightarrow Peu adapté pour la détection radar de cibles hors-grille.

Mise en évidence de la déficience du NMF (1)

Acquisitions de NMF sur grille (en haut) et NMF hors-grille (en bas) séparées de 0.5s.

18 décembre 2023 Pierre Develter Soutenance de thèse 42/43

Le problème de recouvrement (2)

L'étude du critère suivant permet d'établir les seuils limites de recouvrement [Johansen and Johnstone, 1990, Develter et al., 2023b] :

$$egin{aligned} \cot^2 oldsymbol{\phi}_{\mathsf{lim}} &= \sup_{oldsymbol{\xi},oldsymbol{\xi}' \in \mathcal{D}^2} rac{1 - oldsymbol{\gamma}(oldsymbol{\xi})^T oldsymbol{Q}_{oldsymbol{\xi}'}oldsymbol{\gamma}(oldsymbol{\xi}))^2}{(1 - oldsymbol{\gamma}(oldsymbol{\xi})^T oldsymbol{\gamma}(oldsymbol{\xi}'))^2}\,, \ &\triangleq \sup_{oldsymbol{\xi},oldsymbol{\xi}' \in \mathcal{D}^2} h(oldsymbol{\xi},oldsymbol{\xi}')\,, \end{aligned}$$

où $\mathbf{Q}_{\xi'}$ est le projecteur sur le sous-espace engendré par $\gamma(\xi')$ et ses dérivées.

Recouvrement local : sup de h atteint pour $\xi' \rightarrow \xi$.

Recouvrement non-local : sup de h atteint pour $\xi' \neq \xi$.

En particulier, sous bruit blanc, on trouve :

$$w_{\text{lim}}^2 = \cos^2\left(\tan^{-1}\left(rac{\sqrt{5-C_N}}{2}
ight)
ight)$$
 , avec $C_N = rac{3}{5}rac{3N^2-7}{(N-1)^2}$.

18 décembre 2023 Pierre Develter Soutenance de thèse 42/43

Et quand $\Gamma \neq \sigma^2 \mathbf{I}$?

Et quand $\Gamma \neq \sigma^2 \mathbf{I}$?

 \rightarrow terme de recouvrement inévitable.

Estimateur monopulse [Develter et al., 2021]

18 décembre 2023 Pierre Develter Soutenance de thèse 43/43