

Estimation Structurée de la Covariance du Bruit en Détection Adaptative.

Guilhem PAILLOUX

Encadrant ONERA: Jean-Philippe Ovarlez (ONERA - DEMR/TSI)

Encadrant SONDRA : Frederic Pascal (SONDRA / SUPELEC)

Directeur de thèse : Philippe Forster (SATIE - ENS de CACHAN)

Soutenance de thèse de l'université Paris Ouest Nanterre-La Défense.

Spécialité Traitement du Signal

Introduction
Etat de l'art de la détection radar
La structure persymétrique
STAP et Rang Réduit
Application à la détection radar
Conclusion et perspectives

Déroulement de la présentation

- Introduction
- Etat de l'art de la détection radar
- La structure persymétrique
- STAP et Rang Réduit
- Application à la détection radar
- Conclusion et perspectives

Introduction
Etat de l'art de la détection radar
La structure persymétrique
STAP et Rang Réduit
Application à la détection radar
Conclusion et perspectives

Introduction

Introduction: la détection radar

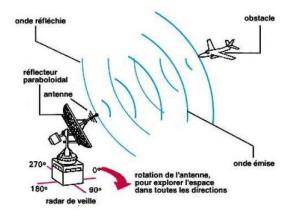


Fig.: Principe de fonctionnement d'un radar

• La réalité du terrain implique des modélisations non-Gaussiennes du fouillis.

- La réalité du terrain implique des modélisations non-Gaussiennes du fouillis.
- Statistiques non-gaussiennes du fouillis difficiles à connaître.

- La réalité du terrain implique des modélisations non-Gaussiennes du fouillis.
- Statistiques non-gaussiennes du fouillis difficiles à connaître.
- Taux de fausses alarmes qui doit être régulé.

- La réalité du terrain implique des modélisations non-Gaussiennes du fouillis.
- Statistiques non-gaussiennes du fouillis difficiles à connaître.
- Taux de fausses alarmes qui doit être régulé.

... et éléments de solution...

• Utilisation de modèles de fouillis gaussiens composés.

- La réalité du terrain implique des modélisations non-Gaussiennes du fouillis.
- Statistiques non-gaussiennes du fouillis difficiles à connaître.
- Taux de fausses alarmes qui doit être régulé.

- Utilisation de modèles de fouillis gaussiens composés.
- Utilisation d'informations a priori sur la structure du fouillis.

- La réalité du terrain implique des modélisations non-Gaussiennes du fouillis.
- Statistiques non-gaussiennes du fouillis difficiles à connaître.
- Taux de fausses alarmes qui doit être régulé.

- Utilisation de modèles de fouillis gaussiens composés.
- Utilisation d'informations a priori sur la structure du fouillis.
- Développement de nouveaux détecteurs basés sur ces développements...

Radar classique

Etat de l'art de la détection radar

Principes généraux des tests de détection

Pour une case d'analyse fixée (le radar découpe en effet sa zone d'analyse en cellules) :

- Vecteur d'observation y de dimension m,
- $\mathbf{s} = A\mathbf{p}$ signal complexe connu caractérisant une cible,
- Bruit de fouillis c additif.

Formalisation : test d'hypothèses binaires

$$\left\{ \begin{array}{ll} H_0: \mathbf{y} = \mathbf{c} & \mathbf{y}_k = \mathbf{c}_k & k = 1, \dots, K \\ H_1: \mathbf{y} = \mathbf{s} + \mathbf{c} & \mathbf{y}_k = \mathbf{c}_k & k = 1, \dots, K \end{array} \right.$$

où les \mathbf{y}_k sont les données secondaires utilisées pour l'estimation des paramètres inconnus.

Tests de détection Les différents détecteurs gaussiens Les détecteurs en milieu non-gaussien

Test de Neyman-Pearson

• Détection : Critère de Neyman-Pearson

Test de Neyman-Pearson

- Détection : Critère de Neyman-Pearson
 - Probabilité de fausse alarme P_{fa} : Fixer la probabilité de choisir H_1 quand la cible est absente.

Test de Neyman-Pearson

- Détection : Critère de Neyman-Pearson
 - Probabilité de fausse alarme P_{fa}: Fixer la probabilité de choisir H₁ quand la cible est absente.
 - Probabilité de détection P_d: Maximiser la probabilité de choisir H₁ quand la cible est présente.

Test de Neyman-Pearson

- Détection : Critère de Neyman-Pearson
 - Probabilité de fausse alarme P_{fa}: Fixer la probabilité de choisir H₁ quand la cible est absente.
 - Probabilité de détection P_d : Maximiser la probabilité de choisir H₁ quand la cible est présente.

 Lorsque la densité de probabilité du bruit est connue a priori, la théorie du Maximum de Vraisemblance est utilisée afin de décider de l'hypothèse la plus vraisemblable.

 Cas de tests d'hypothèses binaires simples, le test du Rapport de Vraisemblance (RV) s'écrit :

$$\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}/H_1)}{p(\mathbf{y}/H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \lambda,$$

et est alors le test optimal pour le critère de Neyman-Pearson.

 Cas de tests d'hypothèses binaires simples, le test du Rapport de Vraisemblance (RV) s'écrit :

$$\Lambda(\mathbf{y}) = \frac{\rho(\mathbf{y}/H_1)}{\rho(\mathbf{y}/H_0)} \mathop{\gtrless}_{H_0}^{H_1} \lambda\,,$$

et est alors le test optimal pour le critère de Neyman-Pearson.

• λ déterminé pour avoir une probabilité de fausse alarme $P_{fa}=\alpha$ fixée et se calcule en résolvant l'équation suivante :

$$P_{fa} = \mathbb{P}(\Lambda(\mathbf{y}; H_0) > \lambda) = \alpha$$

 Cas de tests d'hypothèses binaires simples, le test du Rapport de Vraisemblance (RV) s'écrit :

$$\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}/H_1)}{p(\mathbf{y}/H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \lambda,$$

et est alors le test optimal pour le critère de Neyman-Pearson.

• λ déterminé pour avoir une probabilité de fausse alarme $P_{fa} = \alpha$ fixée et se calcule en résolvant l'équation suivante :

$$P_{fa} = \mathbb{P}(\Lambda(\mathbf{y}; H_0) > \lambda) = \alpha,$$

- Le **processus de détection** consiste donc en deux étapes :
- 1) Régulation de la fausse alarme.

 Cas de tests d'hypothèses binaires simples, le test du Rapport de Vraisemblance (RV) s'écrit :

$$\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}/H_1)}{p(\mathbf{y}/H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \lambda,$$

et est alors le test optimal pour le critère de Neyman-Pearson.

• λ déterminé pour avoir une probabilité de fausse alarme $P_{fa} = \alpha$ fixée et se calcule en résolvant l'équation suivante :

$$P_{fa} = \mathbb{P}(\Lambda(\mathbf{y}; H_0) > \lambda) = \alpha,$$

- Le processus de détection consiste donc en deux étapes :
- 1) Régulation de la fausse alarme.
- 2) Calcul de la probabilité de détection.

Test du rapport de Vraisemblance Généralisé (GLRT) et méthodes de "Plug-In"

La mise en oeuvre du test de Neyman-Pearson suppose que la PDF des observations est connue sous les deux hypothèses. En pratique, dans le cadre de la détection radar, certains paramètres sont inconnus :

• L'amplitude complexe A du signal s : s = Ap ou p désigne le steering-vector.

Test du rapport de Vraisemblance Généralisé (GLRT) et méthodes de "Plug-In"

La mise en oeuvre du test de Neyman-Pearson suppose que la PDF des observations est connue sous les deux hypothèses. En pratique, dans le cadre de la détection radar, certains paramètres sont inconnus :

- L'amplitude complexe A du signal s : s = Ap ou p désigne le steering-vector.
- Les paramètres statistiques caractérisant le fouillis.

Méthodes de type "plug-in" :

 Estimation du vecteur des paramètres inconnus sous les deux hypothèses par des méthodes appropriées.

Méthodes de type "plug-in" :

- Estimation du vecteur des paramètres inconnus sous les deux hypothèses par des méthodes appropriées.
- Mise en oeuvre d'un test du RV exploitant ces estimées.
 Soient alors θ

 ₀ et θ

 ₁ les estimées respectivement sous les hypothèses H

 ₀ et H

 ₁. Le test du RV ainsi obtenu s'écrit :

$$\Lambda = \frac{p(\mathbf{y}, \mathbf{y}_1 \dots \mathbf{y}_k, \widehat{\boldsymbol{\theta}}_1/H_1)}{p(\mathbf{y}, \mathbf{y}_1 \dots \mathbf{y}_k, \widehat{\boldsymbol{\theta}}_0/H_0)} \overset{H_1}{\underset{H_0}{\gtrless}} \lambda.$$

Méthodes de type "plug-in" :

- Estimation du vecteur des paramètres inconnus sous les deux hypothèses par des méthodes appropriées.
- Mise en oeuvre d'un test du RV exploitant ces estimées.
 Soient alors θ

 ₀ et θ

 ₁ les estimées respectivement sous les hypothèses H

 ₀ et H

 ₁. Le test du RV ainsi obtenu s'écrit :

$$\Lambda = \frac{p(\mathbf{y}, \mathbf{y}_1 \dots \mathbf{y}_k, \widehat{\boldsymbol{\theta}}_1/H_1)}{p(\mathbf{y}, \mathbf{y}_1 \dots \mathbf{y}_k, \widehat{\boldsymbol{\theta}}_0/H_0)} \overset{H_1}{\underset{H_0}{\gtrless}} \lambda.$$

 Méthode d'estimation réputée : le Maximum de Vraisemblance.
 le test de détection particulier qui en résulte s'appelle le test du rapport de vraisemblance généralisé (GLRT).

Les détecteurs et leur environnement...

	Gaussien	Non-gaussien
Non-adaptatif	OGD	NMF
Adaptatif	AMF	GLRT-LQ

• c supposé Gaussien, centré, de matrice de covariance M

- c supposé Gaussien, centré, de matrice de covariance M
- Avec $M = E[\mathbf{c} \mathbf{c}^H]$.

- c supposé Gaussien, centré, de matrice de covariance M
- Avec $M = E[\mathbf{c} \mathbf{c}^H]$.
- Test du rapport de vraisemblance généralisée consiste à comparer la quantité test Λ suivante à un seuil λ :

$$\Lambda = \frac{|\mathbf{p}^H \, \mathbf{M}^{-1} \, \mathbf{y}|^2}{\mathbf{p}^H \, \mathbf{M}^{-1} \, \mathbf{p}} \underset{H_0}{\overset{H_1}{\geqslant}} \lambda.$$

Ce test est connu sous le nom d'Optimum Gaussian Detector (OGD).

- c supposé Gaussien, centré, de matrice de covariance M
- Avec $M = E[\mathbf{c} \mathbf{c}^H]$.
- Test du rapport de vraisemblance généralisée consiste à comparer la quantité test Λ suivante à un seuil λ :

$$\Lambda = \frac{|\mathbf{p}^H \, \mathbf{M}^{-1} \, \mathbf{y}|^2}{\mathbf{p}^H \, \mathbf{M}^{-1} \, \mathbf{p}} \underset{H_0}{\overset{H_1}{\geqslant}} \lambda.$$

Ce test est connu sous le nom d'Optimum Gaussian Detector (OGD).

• Valeur du seuil de détection λ en fonction de la PFA :

$$\lambda_{OGD} = -\ln(P_{fa}).$$

• Estimateur basé sur les données secondaires : Sample Covariance Matrix (SCM) :

$$\widehat{\mathbf{M}}_{SCM} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}_k \mathbf{y}_k^H.$$

• Estimateur basé sur les données secondaires : *Sample Covariance Matrix* (SCM) :

$$\widehat{\mathbf{M}}_{SCM} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}_k \mathbf{y}_k^H.$$

• "Plug-in" dans l'OGD et obtention de l'AMF :

$$\Lambda_{AMF} = \frac{\left|\mathbf{p}^H \widehat{\mathbf{M}}_{SCM}^{-1} \mathbf{y} \right|^2}{\mathbf{p}^H \widehat{\mathbf{M}}_{SCM}^{-1} \mathbf{p}} \mathop{\gtrless}_{H_0}^{H_1} \lambda_{AMF} \,.$$

• Estimateur basé sur les données secondaires : Sample Covariance Matrix (SCM) :

$$\widehat{\mathbf{M}}_{SCM} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}_k \mathbf{y}_k^H.$$

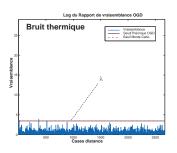
• "Plug-in" dans l'OGD et obtention de l'AMF :

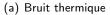
$$\Lambda_{AMF} = \frac{\left|\mathbf{p}^H \widehat{\mathbf{M}}_{SCM}^{-1} \mathbf{y}\right|^2}{\mathbf{p}^H \widehat{\mathbf{M}}_{SCM}^{-1} \mathbf{p}} \mathop{\gtrless}_{H_0}^{H_1} \lambda_{AMF} \,.$$

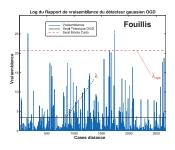
• Relation "Pfa-seuil" de l'AMF :

$$P_{fa} = {}_{2}F_{1}\left(K - m + 1, K - m + 2; K + 1; -\frac{\lambda_{AMF}}{K}\right).$$

Détection en milieu non-gaussien







(b) Fouillis impulsionnel

Fig.: Mise en défaut de l'OGD dans du fouillis non gaussien, de même puissance que le bruit thermique - Ajustement du seuil de détection.

Vecteurs aléatoires sphériquement invariants ou SIRV.

 Des campagnes de mesures ont montrées que les données pouvaient être correctement décrites par des modèles SIRP (Spherically Invariant Random Process).

Vecteurs aléatoires sphériquement invariants ou SIRV.

- Des campagnes de mesures ont montrées que les données pouvaient être correctement décrites par des modèles SIRP (Spherically Invariant Random Process).
- On fera par ailleurs référence aux SIRV (Spherically Invariant Random Vectors) ou vecteurs aléatoires sphériquement invariants.

Vecteurs aléatoires sphériquement invariants ou SIRV.

- Des campagnes de mesures ont montrées que les données pouvaient être correctement décrites par des modèles SIRP (Spherically Invariant Random Process).
- On fera par ailleurs référence aux SIRV (Spherically Invariant Random Vectors) ou vecteurs aléatoires sphériquement invariants.
- Expression du SIRV :

$$\mathbf{c} = \sqrt{\tau} \, \mathbf{x}$$
 .

Vecteurs aléatoires sphériquement invariants ou SIRV.

- Des campagnes de mesures ont montrées que les données pouvaient être correctement décrites par des modèles SIRP (Spherically Invariant Random Process).
- On fera par ailleurs référence aux SIRV (Spherically Invariant Random Vectors) ou vecteurs aléatoires sphériquement invariants.
- Expression du SIRV :

$$\mathbf{c} = \sqrt{\tau} \, \mathbf{x} \,.$$

- avec
 - x, noyau Gaussien de matrice de covariance M,
 - τ , texture de densité $p(\tau)$.

Matrice de la forme :

$$\Gamma = \sigma^2 M$$

• Matrice de la forme :

$$\Gamma = \sigma^2 M$$

• Le GLRT qui en découle est connu sous le nom de "Normalized Matched Filter" (NMF) et revient à comparer la quantité Λ_{NMF} à un seuil λ_{NMF} :

$$\Lambda_{NMF} = \frac{|\mathbf{p}^H \, \mathbf{M}^{-1} \, \mathbf{y}|^2}{(\mathbf{p}^H \, \mathbf{M}^{-1} \, \mathbf{p})(\mathbf{y}^H \, \mathbf{M}^{-1} \, \mathbf{y})} \overset{H_1}{\underset{H_0}{\gtrless}} \lambda_{NMF}.$$

• Matrice de la forme :

$$\Gamma = \sigma^2 M$$

• Le GLRT qui en découle est connu sous le nom de "Normalized Matched Filter" (NMF) et revient à comparer la quantité Λ_{NMF} à un seuil λ_{NMF} :

$$\Lambda_{NMF} = \frac{|\mathbf{p}^H \, \mathbf{M}^{-1} \, \mathbf{y}|^2}{(\mathbf{p}^H \, \mathbf{M}^{-1} \, \mathbf{p})(\mathbf{y}^H \, \mathbf{M}^{-1} \, \mathbf{y})} \overset{H_1}{\underset{H_0}{\gtrless}} \lambda_{NMF}.$$

• Ajustement du seuil par la relation

$$\lambda_{NMF} = 1 - P_{fa}^{\frac{1}{m-1}}.$$

• \mathbf{c}_k : SIRV partageant la même matrice de covariance que \mathbf{c} : $\mathbf{c}_k = \sqrt{\tau_k} \, \mathbf{g}_k$ et $E[\mathbf{g}_k \, \mathbf{g}_k^H] = M$.

- \mathbf{c}_k : SIRV partageant la même matrice de covariance que \mathbf{c} : $\mathbf{c}_k = \sqrt{\tau_k} \, \mathbf{g}_k$ et $E[\mathbf{g}_k \, \mathbf{g}_k^H] = \mathbf{M}$.
- τ_k : paramètres déterministes inconnus \Rightarrow estimée \mathbf{M}_{FP} de \mathbf{M} appelée l'estimateur du Point Fixe :

$$\widehat{\mathbf{M}}_{FP} = \frac{m}{K} \sum_{k=1}^{K} \frac{\mathbf{y}_k \, \mathbf{y}_k^H}{\mathbf{y}_k^H \, \widehat{\mathbf{M}}_{FP}^{-1} \mathbf{y}_k}.$$

- \mathbf{c}_k : SIRV partageant la même matrice de covariance que \mathbf{c} : $\mathbf{c}_k = \sqrt{\tau_k} \, \mathbf{g}_k$ et $E[\mathbf{g}_k \, \mathbf{g}_k^H] = \mathbf{M}$.
- τ_k : paramètres déterministes inconnus \Rightarrow estimée \mathbf{M}_{FP} de \mathbf{M} appelée l'estimateur du Point Fixe :

$$\widehat{\mathbf{M}}_{FP} = \frac{m}{K} \sum_{k=1}^{K} \frac{\mathbf{y}_k \, \mathbf{y}_k^H}{\mathbf{y}_k^H \, \widehat{\mathbf{M}}_{FP}^{-1} \mathbf{y}_k}.$$

• Utilisation dans le GLRT et obtention du GLRT-FP :

$$\Lambda_{GLRT-FP} = \frac{\left|\mathbf{p}^{H}\widehat{\mathbf{M}}_{FP}^{-1}\mathbf{y}\right|^{2}}{\left(\mathbf{p}^{H}\widehat{\mathbf{M}}_{FP}^{-1}\mathbf{p}\right)\left(\mathbf{y}^{H}\widehat{\mathbf{M}}_{FP}^{-1}\mathbf{y}\right)} \overset{H_{1}}{\underset{H_{0}}{\gtrless}} \lambda_{GLRT-FP},$$

• Importance de l'estimation de la matrice.

- Importance de l'estimation de la matrice.
- Idée majeure : utilisation d'une information a priori pour améliorer l'estimation.

- Importance de l'estimation de la matrice.
- Idée majeure : utilisation d'une information a priori pour améliorer l'estimation.
- Information utile : structure particulière de la matrice.

- Importance de l'estimation de la matrice.
- Idée majeure : utilisation d'une information a priori pour améliorer l'estimation.
- Information utile : structure particulière de la matrice.
- Approche basée sur l'utilisation des matrices SCM et FP, transformées pour développer de nouveaux détecteurs.

La structure persymétrique de la matrice de covariance.

• \widehat{M}_{SCM} est une matrice non structurée.

- M_{SCM} est une matrice non structurée.
- Dans le cas de systèmes à capteurs centro-symétriques, M présente une structure particulière de type hermitienne (A^H = A) persymétrique (symétrique par rapport à l'antidiagonale) : M = J_mM*J_m avec J_m, matrice antidiagonale identité.

- \widehat{M}_{SCM} est une matrice non structurée.
- Dans le cas de systèmes à capteurs centro-symétriques, M présente une structure particulière de type hermitienne (A^H = A) persymétrique (symétrique par rapport à l'antidiagonale) : M = J_mM*J_m avec J_m, matrice antidiagonale identité.
- Le steering-vector **p** satisfait également à $\mathbf{p} = \mathbf{J}_m \mathbf{p}^*$

- \widehat{M}_{SCM} est une matrice non structurée.
- Dans le cas de systèmes à capteurs centro-symétriques, M présente une structure particulière de type hermitienne (A^H = A) persymétrique (symétrique par rapport à l'antidiagonale) : M = J_mM*J_m avec J_m, matrice antidiagonale identité.
- Le steering-vector \mathbf{p} satisfait également à $\mathbf{p} = \mathbf{J}_m \mathbf{p}^*$
- Idée : exploitation de cette structure afin d'améliorer les performances de détection.

- \widehat{M}_{SCM} est une matrice non structurée.
- Dans le cas de systèmes à capteurs centro-symétriques, M présente une structure particulière de type hermitienne (A^H = A) persymétrique (symétrique par rapport à l'antidiagonale) : M = J_mM*J_m avec J_m, matrice antidiagonale identité.
- Le steering-vector \mathbf{p} satisfait également à $\mathbf{p} = \mathbf{J}_m \mathbf{p}^*$
- Idée : exploitation de cette structure afin d'améliorer les performances de détection.
- Cas du traitement d'antenne pour fouillis stationnaire et du STAP.

Exploitation de la structure de la matrice de covariance

 But : rendre réels tous les éléments de la matrice afin d'améliorer l'estimation. Matrice de transformation :

$$\mathbf{T} = \left\{ \begin{array}{l} \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} \mathbf{I}_{m/2} & \mathbf{J}_{m/2} \\ i \mathbf{I}_{m/2} & -i \mathbf{J}_{m/2} \end{array} \right) & \text{pour } m \text{ pair} \\ \\ \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} \mathbf{I}_{(m-1)/2} & 0 & \mathbf{J}_{(m-1)/2} \\ 0 & \sqrt{2} & 0 \\ i \mathbf{I}_{(m-1)/2} & 0 & -i \mathbf{J}_{(m-1)/2} \end{array} \right) & \text{pour } m \text{ impair.} \end{array} \right.$$

Exploitation de la structure de la matrice de covariance

 But : rendre réels tous les éléments de la matrice afin d'améliorer l'estimation. Matrice de transformation :

$$\mathbf{T} = \left\{ \begin{array}{l} \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} \mathbf{I}_{m/2} & \mathbf{J}_{m/2} \\ i \mathbf{I}_{m/2} & -i \mathbf{J}_{m/2} \end{array} \right) & \text{pour } m \text{ pair} \\ \\ \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} \mathbf{I}_{(m-1)/2} & 0 & \mathbf{J}_{(m-1)/2} \\ 0 & \sqrt{2} & 0 \\ i \mathbf{I}_{(m-1)/2} & 0 & -i \mathbf{J}_{(m-1)/2} \end{array} \right) & \text{pour } m \text{ impair.} \end{array} \right.$$

• on considère donc le problème transformé équivalent suivant :

$$x = T y$$
, $x_k = T y_k$, $s = T p$, $n = T b$ et $R = E(n n^H) = T M T^H$.

$$\begin{cases} H_0 : \mathbf{x} = \mathbf{n} \\ H_1 : \mathbf{x} = \mathbf{s} + \mathbf{n} \end{cases}$$

Nouvelle matrice de covariance.

Résultat

Estimée par MV de la matrice de covariance (sous la contrainte de persymétrie) :

$$\widehat{R}_{\textit{PSCM}} = \mathcal{R}\textit{e}(\widehat{R}_{\textit{SCM}})$$

avec:

$$\widehat{\mathbf{R}}_{SCM} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}_k \mathbf{x}_k^H = \mathbf{T} \widehat{\mathbf{M}}_{SCM} \mathbf{T}^H$$

Nouvelle matrice de covariance.

Résultat

Estimée par MV de la matrice de covariance (sous la contrainte de persymétrie) :

$$\widehat{R}_{\textit{PSCM}} = \mathcal{R}\textit{e}(\widehat{R}_{\textit{SCM}})$$

avec:

$$\widehat{\mathsf{R}}_{SCM} = \frac{1}{K} \sum_{k=1}^{K} \mathsf{x}_k \mathsf{x}_k^H = \mathsf{T} \widehat{\mathsf{M}}_{SCM} \mathsf{T}^H$$

- $K \widehat{R}_{SCM}$ est Wishart complexe à K degrés de liberté tandis que $K \widehat{R}_{PSCM}$ est Wishart *réelle* à 2K degrés de liberté.
 - \Rightarrow Gain de K degrés de liberté en doublant virtuellement le nombre de données secondaires.

Nouveau détecteur : PAMF

 Le remplacement de M
_{SCM} dans l'AMF permet de définir un nouveau détecteur appelé Persymmetric Adaptive Matched Filter (PAMF) :

$$\Lambda_{PAMF} = \frac{|\mathbf{s}^T \widehat{\mathbf{R}}_{PSCM}^{-1} \mathbf{x}|^2}{\mathbf{s}^T \widehat{\mathbf{R}}_{PSCM}^{-1} \mathbf{s}} \overset{H_1}{\underset{H_0}{\gtrless}} \lambda_{PAMF}$$

On note également que \widehat{R}_{PSCM} est réelle alors que x est complexe.

Nouveau détecteur : PAMF

 Le remplacement de M
_{SCM} dans l'AMF permet de définir un nouveau détecteur appelé Persymmetric Adaptive Matched Filter (PAMF) :

$$\Lambda_{PAMF} = \frac{|\mathbf{s}^T \widehat{\mathbf{R}}_{PSCM}^{-1} \mathbf{x}|^2}{\mathbf{s}^T \widehat{\mathbf{R}}_{PSCM}^{-1} \mathbf{s}} \overset{H_1}{\underset{H_0}{\gtrless}} \lambda_{PAMF}$$

On note également que \widehat{R}_{PSCM} est réelle alors que x est complexe.

 On utilise une info a priori : la persymétrie de la covariance théorique ⇒ amélioration des performances....

Nouveau détecteur : PAMF

 Le remplacement de M
_{SCM} dans l'AMF permet de définir un nouveau détecteur appelé Persymmetric Adaptive Matched Filter (PAMF) :

$$\Lambda_{PAMF} = \frac{|\mathbf{s}^T \widehat{\mathbf{R}}_{PSCM}^{-1} \mathbf{x}|^2}{\mathbf{s}^T \widehat{\mathbf{R}}_{PSCM}^{-1} \mathbf{s}} \overset{H_1}{\underset{H_0}{\gtrless}} \lambda_{PAMF}$$

On note également que \widehat{R}_{PSCM} est réelle alors que x est complexe.

- On utilise une info a priori : la persymétrie de la covariance théorique ⇒ amélioration des performances....
- Maximum de 3dB de perte en détection obtenu pour K=m et non plus pour K=2m (loi de Reed, Mallett et Brennan).

Loi statistique du détecteur

Afin de déterminer la relation "PFA-seuil" du détecteur, il est nécessaire au préalable d'en calculer sa distribution statistique.

Apport de la thèse

Le PAMF ainsi défini est distribué selon :

$$p(z) = \frac{(2K - m + 1)(2K - m + 2)}{2(2K + 1)} \times {}_{2}F_{1}\left(\frac{2K - m + 3}{2}, \frac{2K - m + 4}{2}; \frac{2K + 3}{2}; -z\right)$$

avec F fonction hypergéométrique :

$$_{2}F_{1}(a,b;c;\lambda) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-t\lambda)^{-a} dt$$

Relation "PFA-seuil"

Apport de la thèse

La probabilité de fausse alarme en fonction du seuil de détection est

définie comme suit :
$$PFA = \int_{\lambda/K}^{+\infty} p(z) dz$$
.

On en déduit donc la relation "PFA-seuil" du PAMF :

$$PFA =_2 F_1\left(\frac{2K - m + 1}{2}, \frac{2K - m + 2}{2}, \frac{2K + 1}{2}; -\frac{\lambda}{K}\right)$$

Schema de détection en "non-gaussien persymétrique"

 Idée : réutiliser la même tansformation par T sur la matrice du point fixe M_{FP}.

Schema de détection en "non-gaussien persymétrique"

- Idée : réutiliser la même tansformation par T sur la matrice du point fixe M_{FP}.
- Plug-in de la nouvelle matrice optimisée dans le GLRT-FP : obtention d'un nouveau détecteur non-gaussien amélioré.

Schema de détection en "non-gaussien persymétrique"

- Idée : réutiliser la même tansformation par T sur la matrice du point fixe M_{FP} .
- Plug-in de la nouvelle matrice optimisée dans le GLRT-FP : obtention d'un nouveau détecteur non-gaussien amélioré.
- Détermination de ses caractéristiques statistiques.

Apport de la thèse

• Exploitation de la structure persymétrique de la matrice de covariance originale du speckle :

$$\widehat{\mathsf{R}}_{PFP} = \mathcal{R}e(\widehat{\mathsf{R}}_{FP})$$
 avec $\widehat{\mathsf{R}}_{FP} = \mathsf{T}\,\widehat{\mathsf{M}}_{FP}\,\mathsf{T}^H$.

Apport de la thèse

• Exploitation de la structure persymétrique de la matrice de covariance originale du speckle :

$$\widehat{\mathbf{R}}_{PFP} = \mathcal{R}e(\widehat{\mathbf{R}}_{FP}) \text{ avec } \widehat{\mathbf{R}}_{FP} = \mathbf{T} \, \widehat{\mathbf{M}}_{FP} \, \mathbf{T}^H.$$

• Plug-in de \hat{R}_{PFP} et obtention d'un nouveau détecteur, le GLRT-PFP :

$$\Lambda_{PFP} = \frac{|\mathbf{s}^H \widehat{\mathbf{R}}_{PFP}^{-1} \mathbf{x}|^2}{|(\mathbf{s}^H \widehat{\mathbf{R}}_{PFP}^{-1} \mathbf{s})(\mathbf{x}^H \widehat{\mathbf{R}}_{PFP}^{-1} \mathbf{x})|} \overset{H_1}{\underset{H_0}{\gtrless}} \lambda_{PFP}$$

Analyse statistique.

Apport de la thèse

L'étude statistique du GLRT-PFP permet de calculer sa

distribution :
$$\Lambda_{PFP} = \frac{\hat{F}}{\hat{F} + 1}$$

$$\text{avec } \hat{F} = \frac{\left(xt_{22} - \rho t_{21}\right)^2 + \left(1 + \left(\frac{\mu}{t_{33}}\right)^2\right) \left(at_{22} - bt_{21}\right)^2}{\left(\rho t_{11}\right)^2 + \left(t_{11}t_{22}\frac{\mu}{t_{33}}\right)^2 + t_{11}^2\left(1 + \left(\frac{\mu}{t_{33}}\right)^2\right)b^2} \text{ qui utilise}$$

9 variables aléatoires indépendantes :

$$a, b, x, t_{21} \sim \mathcal{N}(0, 1), \rho^2 \sim \chi^2_{m-1}$$

 $\mu^2 \sim \chi^2_{m-2}, t_{11}^2 \sim \chi^2_{2K-m+1}$
 $t_{22}^2 \sim \chi^2_{2K-m+2}, t_{33}^2 \sim \chi^2_{2K-m+3}$

Récapitulatif des détecteurs...

	Gaussien	Non-gaussien
Non-adaptatif	OGD	NMF
Adaptatif	AMF => PAMF	GLRT-FP =>
		GLRT-PFP

...et des estimateurs...

	Gaussien	Non-gaussien
Non-adaptatif	M	M
Adaptatif	SCM => PSCM	FP => PFP

traitements spatio-temporels traitements spatio-temporels adaptatifs Algorithmes à rang réduit

Les traitements spatio-temporels.

traitements spatio-temporels traitements spatio-temporels adaptatifs Algorithmes à rang réduit

Principe du STAP.

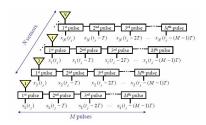
STAP : Traitement spatio-temporel adaptatif :

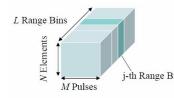
 Les signaux radars sont fournis par un réseau de capteurs et recombinés par un produit de Kronecker des données spatiales et temporelles.

Principe du STAP.

STAP : Traitement spatio-temporel adaptatif :

- Les signaux radars sont fournis par un réseau de capteurs et recombinés par un produit de Kronecker des données spatiales et temporelles.
- Cette technique permet de rejeter fortement le fouillis dans lequel sont noyées les cibles.





Principe du STAP.

• Cas classique du STAP, le radar est dit en configuration à visée latérale ("sidelooking radar" en anglais)

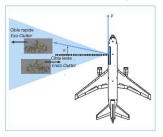


Fig.: Radar en configuration à visée latérale.

Principe du STAP.

 Cas classique du STAP, le radar est dit en configuration à visée latérale ("sidelooking radar" en anglais)

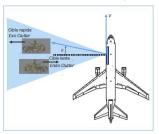


Fig.: Radar en configuration à visée latérale.

 Détection de cibles lentes en compétition avec les échos de fouillis.

traitements spatio-temporels traitements spatio-temporels adaptatifs Algorithmes à rang réduit

Modélisation.

• Signal $\mathbf{s} = A\mathbf{p} \in \mathbb{C}^{MN}$ corrompu par un bruit additif \mathbf{c} .

- Signal $\mathbf{s} = A\mathbf{p} \in \mathbb{C}^{MN}$ corrompu par un bruit additif \mathbf{c} .
- Le signal reçu y est un vecteur complexe de taille MN formé par les données spatio-temporelles reçues.

- Signal $\mathbf{s} = A\mathbf{p} \in \mathbb{C}^{MN}$ corrompu par un bruit additif \mathbf{c} .
- Le signal reçu y est un vecteur complexe de taille MN formé par les données spatio-temporelles reçues.
- En STAP, steering-vector \mathbf{p} est formé par le produit de Kronecker (noté \otimes) d'un steering-vector temporel $\mathbf{b}(f_d)$ de taille M, et d'un steering-vector spatial $\mathbf{a}(\theta)$ de taille N:

$$\mathsf{p}(f_d,\theta)=\mathsf{b}(f_d)\otimes\mathsf{a}(\theta).$$

- Signal $\mathbf{s} = A\mathbf{p} \in \mathbb{C}^{MN}$ corrompu par un bruit additif \mathbf{c} .
- Le signal reçu y est un vecteur complexe de taille MN formé par les données spatio-temporelles reçues.
- En STAP, steering-vector \mathbf{p} est formé par le produit de Kronecker (noté \otimes) d'un steering-vector temporel $\mathbf{b}(f_d)$ de taille M, et d'un steering-vector spatial $\mathbf{a}(\theta)$ de taille N:

$$\mathsf{p}(f_d,\theta)=\mathsf{b}(f_d)\otimes\mathsf{a}(\theta).$$

• avec $\mathbf{b}(f_d)$ de la forme $\mathbf{b}(f_d) = [1 \dots e^{j2\pi f_d mTr} \dots e^{j2\pi f_d (M-1)Tr}]^{\top}$

- Signal $\mathbf{s} = A\mathbf{p} \in \mathbb{C}^{MN}$ corrompu par un bruit additif \mathbf{c} .
- Le signal reçu y est un vecteur complexe de taille MN formé par les données spatio-temporelles reçues.
- En STAP, steering-vector \mathbf{p} est formé par le produit de Kronecker (noté \otimes) d'un steering-vector temporel $\mathbf{b}(f_d)$ de taille M, et d'un steering-vector spatial $\mathbf{a}(\theta)$ de taille N:

$$\mathsf{p}(f_d,\theta)=\mathsf{b}(f_d)\otimes\mathsf{a}(\theta).$$

- avec $\mathbf{b}(f_d)$ de la forme $\mathbf{b}(f_d) = [1 \dots e^{j2\pi f_d mTr} \dots e^{j2\pi f_d (M-1)Tr}]^{\top}$
- et $\mathbf{a}(\theta)$ de la forme $\mathbf{a}(\theta) = [1 \dots e^{j2\pi\theta m d} \dots e^{j2\pi\theta(M-1 d)}]^{\top}$.

Géométrie de la matrice de covariance du fouillis

 Matrice de covariance M présente une structuration particulière de type matrice de Toeplitz par bloc, appelé Block-Toeplitz.

Géométrie de la matrice de covariance du fouillis

- Matrice de covariance M présente une structuration particulière de type matrice de Toeplitz par bloc, appelé Block-Toeplitz.
- Matrice de Toeplitz : définie comme une matrice à diagonales constantes.

Géométrie de la matrice de covariance du fouillis

- Matrice de covariance M présente une structuration particulière de type matrice de Toeplitz par bloc, appelé Block-Toeplitz.
- Matrice de Toeplitz : définie comme une matrice à diagonales constantes.
- Persymétrie : cas particulier de Toeplitz donc possibilité de prise en compte du modèle.

• Permet de caractériser la "sévérité" du fouillis, c'est à dire son influence sur le procédé de traitement

- Permet de caractériser la "sévérité" du fouillis, c'est à dire son influence sur le procédé de traitement
- Rang du clutter donné par la règle de Brennan :

$$r = N + \beta(M-1)$$

avec
$$\beta = 2 \frac{Va Tr}{\lambda}$$
.

- Permet de caractériser la "sévérité" du fouillis, c'est à dire son influence sur le procédé de traitement
- Rang du clutter donné par la règle de Brennan :

$$r = N + \beta(M-1)$$

avec
$$\beta = 2 \frac{Va Tr}{\lambda}$$
.

Objectif d'une détection avec 3dB de perte, nécessité d'utiliser
 K ≥ 2NM données secondaires.

- Permet de caractériser la "sévérité" du fouillis, c'est à dire son influence sur le procédé de traitement
- Rang du clutter donné par la règle de Brennan :

$$r = N + \beta(M-1)$$

avec
$$\beta = 2 \frac{Va Tr}{\lambda}$$
.

- Objectif d'une détection avec 3dB de perte, nécessité d'utiliser
 K > 2NM données secondaires.
- La persymétrie pourrait alors permettre de s'affranchir de la fameuse règle de Reed, Mallett et Brennan qui impose K > 2NM pour obtenir un maximum de 3 dB de perte

Traitement spatio-temporel optimal

• Signal exprimé classiquement par $\mathbf{x} = A\mathbf{p} + \mathbf{c}$, avec A l'amplitude complexe du signal.

Traitement spatio-temporel optimal

- Signal exprimé classiquement par $\mathbf{x} = A\mathbf{p} + \mathbf{c}$, avec A l'amplitude complexe du signal.
- Soit un filtre w. La sortie de ce filtre est exprimée par :

$$\mathbf{y} = A\mathbf{w}^H\mathbf{p} + \mathbf{w}^H\mathbf{c}$$

Traitement spatio-temporel optimal

- Signal exprimé classiquement par $\mathbf{x} = A\mathbf{p} + \mathbf{c}$, avec A l'amplitude complexe du signal.
- Soit un filtre w. La sortie de ce filtre est exprimée par :

$$y = A w^H p + w^H c$$

 Le SNR (w) est donc le rapport de la puissance du signal sur la puissance du bruit :

$$SNR(\mathbf{w}) = \frac{|A|^2 |\mathbf{w}^H \mathbf{p}|^2}{\mathbf{w}^H \mathbf{\Gamma} \mathbf{w}}.$$

• Le filtre optimal est le filtre qui permet d'obtenir le SNR_{max} . Il est défini par :

$$\mathbf{w}_{opt} = \mathbf{\Gamma}^{-1} \, \mathbf{p}.$$

• Le filtre optimal est le filtre qui permet d'obtenir le SNR_{max} . Il est défini par :

$$\mathbf{w}_{opt} = \mathbf{\Gamma}^{-1} \, \mathbf{p}.$$

• On obtient donc une expression du SNR maximum :

$$SNR_{max} = |A|^2 \mathbf{p}^H \mathbf{\Gamma}^{-1} \mathbf{p}$$

• Le filtre optimal est le filtre qui permet d'obtenir le SNR_{max} . Il est défini par :

$$\mathbf{w}_{opt} = \mathbf{\Gamma}^{-1} \, \mathbf{p}.$$

• On obtient donc une expression du SNR maximum :

$$SNR_{max} = |A|^2 \mathbf{p}^H \mathbf{\Gamma}^{-1} \mathbf{p}$$

 Facteur de pertes en SNR : ρ. Défini comme le rapport du SNR du filtre considéré avec le SNR max; il permet d'observer les pertes du filtrage utilisé par rapport au filtrage optimum :

$$\rho = \frac{\mathit{SNR}_w}{\mathit{SNR}_{\mathit{max}}} = \frac{|\mathbf{w}^H \, \mathbf{p}|^2}{(\mathbf{w}^H \, \mathbf{\Gamma} \, \mathbf{w})(\mathbf{p}^H \, \mathbf{\Gamma}^{-1} \, \mathbf{p})}.$$

Le STAP adaptatif.

 Cas gaussien, cette matrice est donc estimée à partir de K données secondaires y_k par l'équation suivante :

$$\widehat{\mathbf{M}}_{SCM} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}_k \, \mathbf{y}_k^H,$$

Le STAP adaptatif.

 Cas gaussien, cette matrice est donc estimée à partir de K données secondaires y_k par l'équation suivante :

$$\widehat{\mathbf{M}}_{SCM} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}_k \, \mathbf{y}_k^H,$$

 Algorithme basé sur cet estimateur appelé le "Sample Matrix Inversion" (SMI) dont l'équation du filtre est donnée par :

$$\mathbf{w}_{smi} = \varepsilon \widehat{\mathbf{M}}_{SCM}^{-1} \, \mathbf{p}(f, \theta),$$

où ε est une constante.

Le STAP adaptatif.

 Cas gaussien, cette matrice est donc estimée à partir de K données secondaires y_k par l'équation suivante :

$$\widehat{\mathbf{M}}_{SCM} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}_k \, \mathbf{y}_k^H,$$

 Algorithme basé sur cet estimateur appelé le "Sample Matrix Inversion" (SMI) dont l'équation du filtre est donnée par :

$$\mathbf{w}_{smi} = \varepsilon \widehat{\mathbf{M}}_{SCM}^{-1} \, \mathbf{p}(f, \theta),$$

où ε est une constante.

 Résultat classique qui impose d'utiliser K > 2NM lors de la détection afin de ne pas dépasser 3 dB de perte.

Algorithmes à Rang Réduit.

• Adaptation sur un espace de dimension réduite obtenu après une transformation adaptative sur les données.

Algorithmes à Rang Réduit.

- Adaptation sur un espace de dimension réduite obtenu après une transformation adaptative sur les données.
- Permet ainsi de n'utiliser que K > 2r données secondaires avec r < NM.

Algorithmes à Rang Réduit.

- Adaptation sur un espace de dimension réduite obtenu après une transformation adaptative sur les données.
- Permet ainsi de n'utiliser que K > 2r données secondaires avec r < NM.
- La plus petite valeur propre de M est multiple et égale à σ^2 , et de valeur très inférieure aux premières valeurs propres associées au signal.

Principe du RR

$$\lambda_1 \ge ... \ge \lambda_r >> \lambda_{r+1} \simeq ... \simeq \lambda_m \simeq \sigma^2$$

Principe du RR

•

$$\lambda_1 \geq ... \geq \lambda_r >> \lambda_{r+1} \simeq ... \simeq \lambda_m \simeq \sigma^2$$

• Utilisation de projecteurs de la matrice du fouillis :

$$\mathbf{M} = \sum_{i=1}^{r} \lambda_i \, \mathbf{u}_i \, \mathbf{u}_i^H + \sum_{i=r+1}^{m} \sigma^2 \, \mathbf{u}_i \, \mathbf{u}_i^H,$$

avec
$$\lambda_i >> \sigma^2$$
.

Principe du RR

•

$$\lambda_1 \geq ... \geq \lambda_r >> \lambda_{r+1} \simeq ... \simeq \lambda_m \simeq \sigma^2$$

• Utilisation de projecteurs de la matrice du fouillis :

$$\mathbf{M} = \sum_{i=1}^{r} \lambda_i \, \mathbf{u}_i \, \mathbf{u}_i^H + \sum_{i=r+1}^{m} \sigma^2 \, \mathbf{u}_i \, \mathbf{u}_i^H,$$

avec $\lambda_i >> \sigma^2$.

• Lors de l'inversion matricielle, on obtient donc :

$$\mathsf{M}^{-1} = \sum_{i=1}^{r} \frac{1}{\lambda_{i}} \, \mathsf{u}_{i} \, \mathsf{u}_{i}^{H} + \sum_{i=r+1}^{m} \frac{1}{\sigma^{2}} \, \mathsf{u}_{i} \, \mathsf{u}_{i}^{H}.$$

avec
$$\frac{1}{\lambda_i} << \frac{1}{\sigma^2}$$
.

• Cette équation nous permet de négliger les valeurs propres fortes et donc d'approximer la matrice de covariance à :

$$\mathsf{M}^{-1} \approx \frac{1}{\sigma^2} \sum_{i=r+1}^m \mathsf{u}_i \, \mathsf{u}_i^H,$$

avec $\mathbf{\Pi}^{\perp} = \sum_{i=r+1}^{m} \mathbf{u}_{i} \, \mathbf{u}_{i}^{H}$ le projecteur orthogonal de \mathbf{M} sur le sous-espace clutter.

• Cette équation nous permet de négliger les valeurs propres fortes et donc d'approximer la matrice de covariance à :

$$\mathbf{M}^{-1} \approx \frac{1}{\sigma^2} \sum_{i=r+1}^m \mathbf{u}_i \, \mathbf{u}_i^H,$$

avec $\Pi^{\perp} = \sum_{i=r+1}^{m} \mathbf{u}_i \, \mathbf{u}_i^H$ le projecteur orthogonal de \mathbf{M} sur le sous-espace clutter.

• Ce projecteur est donc de rang plus faible que la matrice originale et le filtre qui lui est associé est défini par :

$$\mathbf{w}_{RR} = \frac{1}{\sigma^2} \mathbf{\Pi}^{\perp} \mathbf{p}.$$

• Cette équation nous permet de négliger les valeurs propres fortes et donc d'approximer la matrice de covariance à :

$$\mathsf{M}^{-1} \approx \frac{1}{\sigma^2} \sum_{i=r+1}^m \mathsf{u}_i \, \mathsf{u}_i^H,$$

avec $\Pi^{\perp} = \sum_{i=r+1}^{m} \mathbf{u}_i \, \mathbf{u}_i^H$ le projecteur orthogonal de \mathbf{M} sur le sous-espace clutter.

• Ce projecteur est donc de rang plus faible que la matrice originale et le filtre qui lui est associé est défini par :

$$\mathbf{w}_{RR} = \frac{1}{\sigma^2} \mathbf{\Pi}^{\perp} \mathbf{p}.$$

 Il est possible de déterminer le SNR loss de l'application et d'en calculer sa loi, déterminant les performances de détection associées.

RR classique : calcul de la loi du facteur de pertes.

Apport de la thèse

Dans le cas du rang réduit avec $\widehat{\mathbf{M}}_{SCM}$ complexe Wishart, le SNR_{loss} ρ est distribué comme suit :

$$\rho \sim 1 - \frac{1}{2K} \chi_{2r}^2.$$

Remarque : Dans ce cas, $\rho_{moyen} = E[\rho] = 1 - \frac{r}{K}$. Un $\rho_{moyen} = \frac{1}{2}$ (soit 3 dB de pertes en SNR) est obtenu pour K = 2r.

Etude du rang réduit persymétrique.

Apport de la thèse

 $\widehat{\mathbf{M}}$ remplacée par $\widehat{\mathbf{R}}_{PSCM}$, distribuée selon une loi de Wishart réelle à 2K degrés de liberté.

Dans ce cas K'=2K et le SNR_{loss} ρ est distribué comme suit :

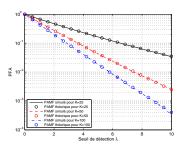
$$\rho \sim 1 - \frac{1}{K'} \chi_r^2.$$

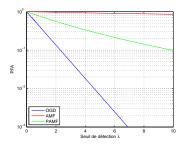
$$\rho_{moyen} = E[\rho] = 1 - \frac{r}{K'}$$
. Un $\rho_{moy} = \frac{1}{2}$ est obtenu pour $K = r$.

Application à la détection radar.

Courbes Opérationnelles du PAMF : simulation.

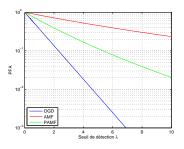
Résultats simulés pour les 3 détecteurs gaussiens :

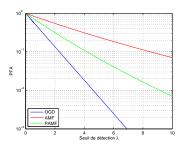




(a) Adéquation des résultats pour K (b) Comparaison des relations pour avec m=10. m=10 et K=10.

Courbes Opérationnelles du PAMF : simulation.

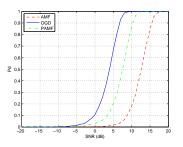




(c) Comparaison des relations PFA- (d) Comparaison des relations PFA-seuil pour les trois détecteurs. m= seuil pour les trois détecteurs. m= 10, K= 20.

Performances de détection.

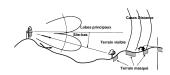
En terme de performance de détection, des résultats similaires se retrouvent.

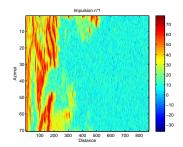


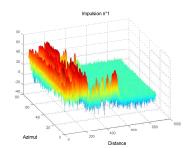


- (e) Comparaison des relations Pd- (f) Comparaison des relations PD-10. K = 15 et $Pfa = 10^{-3}$.
- SNR pour les trois détecteurs. m = SNR pour les trois détecteurs. m =10. K = 20 et $Pfa = 10^{-3}$.

Données: radar sol du groupe THALES.

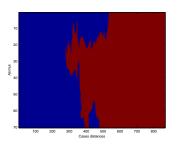


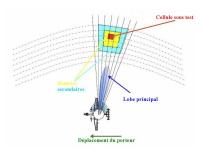




ONERA

Sélection des zones gaussiennes :





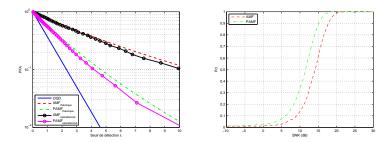
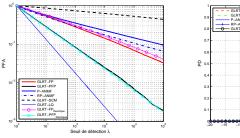


Fig.: Utilisation d'un masque 3×5 . m = 8, K = 14 et $P_{fa} = 10^{-2}$.

Mise en compétition du GLRT-PFP



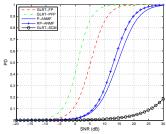


Fig.: Comparaison des différentes performances pour les détecteurs GLRT-FP, GLRT-PFP, GLRT-LQ, GLRT-SCM, P-ANMF, RP-ANMF, GLRT-FP théorique et GLRT-PFP théorique. Cas d'un fouillis simulé par K-distribution de paramètre $\nu=0.2$. m=8, K=10 et $P_{\rm fa}=10^{-3}$.

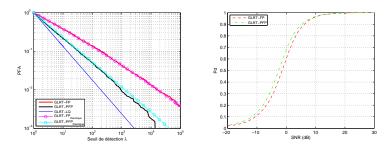
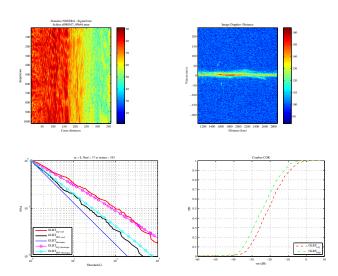
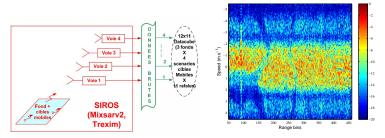


Fig.: Comparaison des différentes performances pour les détecteurs GLRT-LQ, GLRT-FP et GLRT-PFP. Cas d'un fouillis de sol réel avec utilisation d'un masque 3×5 . m=8, K=15 et $P_{fa}=10^{-2}$. Données opérationnelles THALES.

Données réelles de fouillis de mer; radar Nostradamus

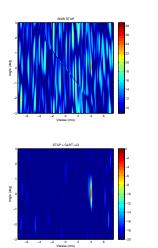


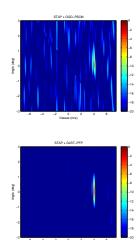
Application à des données STAP :



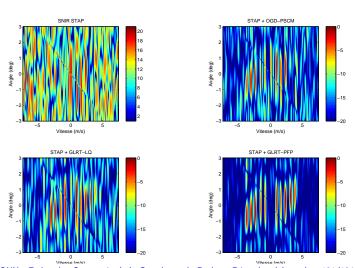
- (a) Schéma de fonctionnement du simulateur STAP du CELAR
- (b) Données acquises sur une voie

Détection d'une cible à 4m/s :





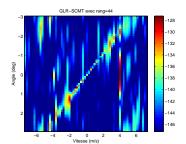
10 Cibles présentes à l'azimuth 0 avec des vitesses comprises entre -4 et 4m/s.



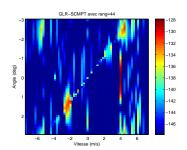
G.PAILLOUX - Estimation Structurée de la Covariance du Bruit en Détection Adaptative- 121/134

Méthode du rang réduit :

• Données STAP, r = 44. Utilisation de 100 données secondaires avec détecteur AMF et PAMF.

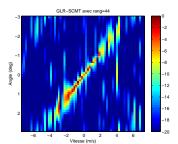


Détection sans persymmetrie

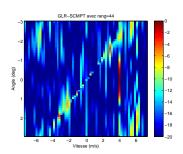


Application de la persymmetrie

 Données STAP, r = 44. Utilisation de 50 données secondaires avec détecteur AMF et PAMF.



Détection sans persymmetrie



Application de la persymmetrie

Conclusion Perspectives

Conclusion et perspectives

 Exploitation de la structure persymétrique de la matrice de covariance du fouillis.

- Exploitation de la structure persymétrique de la matrice de covariance du fouillis.
- Etude en environnement gaussien et non-gaussien.

- Exploitation de la structure persymétrique de la matrice de covariance du fouillis.
- Etude en environnement gaussien et non-gaussien.
- Developpement et caractérisation de deux nouveaux détecteurs basés sur cette exploitation.

- Exploitation de la structure persymétrique de la matrice de covariance du fouillis.
- Etude en environnement gaussien et non-gaussien.
- Developpement et caractérisation de deux nouveaux détecteurs basés sur cette exploitation.
- Validation des résultats sur des simulations et des données réelles : amélioration des performances.

- Exploitation de la structure persymétrique de la matrice de covariance du fouillis.
- Etude en environnement gaussien et non-gaussien.
- Developpement et caractérisation de deux nouveaux détecteurs basés sur cette exploitation.
- Validation des résultats sur des simulations et des données réelles : amélioration des performances.
- Résultats prometteurs sur des simulations de matrices Toeplitz.

• Etude de la validité de la technique sur du STAP de pointe avant (Fouillis non stationnaire et inhomogène).

- Etude de la validité de la technique sur du STAP de pointe avant (Fouillis non stationnaire et inhomogène).
- Validité en traitement pre/post-doppler.

- Etude de la validité de la technique sur du STAP de pointe avant (Fouillis non stationnaire et inhomogène).
- Validité en traitement pre/post-doppler.
- Validité sur des matrices de Toeplitz-bloc-Toeplitz.

- Etude de la validité de la technique sur du STAP de pointe avant (Fouillis non stationnaire et inhomogène).
- Validité en traitement pre/post-doppler.
- Validité sur des matrices de Toeplitz-bloc-Toeplitz.
- Problème de l'inversion matricielle.

Conclusion Perspectives

Merci de votre attention.