Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

Théorie des matrices aléatoires pour l'imagerie hyperspectrale

Eugénie Terreaux

e-mail : eugenie.terreaux@centralesupelec.fr

Directeur de thèse : Jean-Philippe Ovarlez Co-directeur de thèse : Frédéric Pascal

Thèse co-financée par l'école d'ingénieur CentraleSupelec et par la DGA

Soutenance de thèse, 23 Novembre 2018

DGA

æ

1/49

イロト イヨト イヨト イヨト

Démélange 0000000

・ロト ・四ト ・ヨト ・ヨト - ヨー

Conclusion 000000

2/49

Motivations

Sujet de la thèse : l'imagerie hyperspectrale et la théorie des matrices aléatoires.

3 questions conductrices de cette thèse :

Quels problèmes pour le traitement une image hyperspectrale?

Qu'est ce que la théorie des matrices aléatoires?

Pourquoi et comment utiliser la théorie des matrices aléatoires en imagerie hyperspectrale?

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

Motivations

100 < m < 1000

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

Sommaire

I Problèmes et méthodes en imagerie hyperspectrale

2 Sélection d'ordre pour le démélange d'images hyperspectrales

3 Le problème du démélange spectral

4 Conclusion

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の < () 4/49

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

1 Problèmes et méthodes en imagerie hyperspectrale

2 Sélection d'ordre pour le démélange d'images hyperspectrales

- La RMT
- Méthodes
- Applications
- 3 Le problème du démélange spectral
- 4 Conclusion

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

6/49

Problèmes et méthodes en imagerie hyperspectrale

L'imagerie hyperspectrale

Hypothèses générales

- Grande dimension spectrale *m*
- Grande dimension spatiale N = nombre de pixels
- Données mélangées constituées d' endmembers = spectres les plus énergétiques

(日) (部) (注) (注) (三)

Fig Image Hyperspectrale [Manolakis 2016]

Démélange 0000000 Conclusion 000000

6/49

Problèmes et méthodes en imagerie hyperspectrale

L'imagerie hyperspectrale

Fig Image Hyperspectrale [Manolakis 2016]

Hypothèses générales

- Grande dimension spectrale m
- Grande dimension spatiale N = nombre de pixels
- Données mélangées constituées d' endmembers = spectres les plus énergétiques

Hypothèses de la thèse

- Nombre d'endmembers p inconnu
- Fond de l'image = bruit aléatoire additif, hétérogène et non gaussien

イロト イポト イヨト イヨト

Pas de librairie spectrale

Démélange 0000000 Conclusion 000000

7/49

Problèmes et méthodes en imagerie hyperspectrale

L'imagerie hyperspectrale

Problèmes généraux

Estimation du nombre d'endmembers

(日) (部) (注) (注) (三)

- Détection/Estimation de source
 Détection d'anomalies
- Démélange
- Détection de changement

Fig Image Hyperspectrale [Manolakis 2016]

Démélange 0000000 Conclusion 000000

Problèmes et méthodes en imagerie hyperspectrale

L'imagerie hyperspectrale

Problèmes généraux

- Estimation du nombre d'endmembers
- Détection/Estimation de source
 Détection d'anomalies
- Démélange
- Détection de changement

Problèmes considérés

- Estimation du nombre p d'endmembers
- Estimation de leur spectre

Fig Image Hyperspectrale [Manolakis 2016]

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

Problèmes et méthodes en imagerie hyperspectrale

Modèle mathématique choisi

Modèle des observations :

$$\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_N] = \mathbf{M} \, \mathbf{S} + \mathbf{C}^{1/2} \mathbf{X} \mathbf{T}^{1/2}$$

Connus :

•
$$\mathbf{Y} \in \mathbb{C}^{m imes N}$$
, m et N grands, $0 < c = rac{m}{N} < 1$

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

Problèmes et méthodes en imagerie hyperspectrale

Modèle mathématique choisi

Modèle des observations :

$$\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_N] = \mathbf{M} \, \mathbf{S} + \mathbf{C}^{1/2} \mathbf{X} \mathbf{T}^{1/2}$$

Connus :

$$\blacksquare~ \mathbf{Y} \in \mathbb{C}^{m \times N}$$
 , m et N grands, $0 < c = \frac{m}{N} < 1$

Inconnus :

- Bruit additif type distribution **CES** (Complex Elliptically Symmetric)
 - · $\mathbf{C} \in \mathbb{C}^{m \times m}$ matrice de Toeplitz : corrélation du bruit
 - $\cdot \mathbf{X} \in \mathbb{C}^{m \times N}$ matrice de bruit blanc gaussien
 - $\cdot \mathbf{T} \in \mathbb{C}^{N \times N}$ matrice de textures aléatoires : puissance du bruit pixel à pixel
- p : nombre d'endmembers les plus énergétiques = "spectres de forte puissance"
- Signal utile :
 - $\mathbf{M} \in \mathbb{R}^{m imes p}$ Matrice déterministe, contenant le spectre des endmembers
 - $\cdot \ \mathbf{S} \in \mathbb{R}^{p imes N}$ Matrice des abondances

Démélange 0000000 Conclusion 000000

Problèmes et méthodes en imagerie hyperspectrale

Premier problème considéré

Estimation de p

 \hookrightarrow Bruit blanc : p = nombre plus grandes valeurs propres de la matrice de covariance de Y

$$\mathbb{E}\left[\left(\mathsf{MS}+\mathsf{X}\right)\left(\mathsf{MS}+\mathsf{X}\right)^{H}\right] = \mathsf{U}^{H} \begin{pmatrix} \lambda_{1}+\sigma^{2} & & & \\ & \ddots & & \\ & & \lambda_{p}+\sigma^{2} & & \\ & & & \sigma^{2} & \\ & & & & \sigma^{2} \end{pmatrix} \mathsf{U}$$

Se ramener au cas blanc gaussien

 $\hookrightarrow \mathsf{Influence} \ \mathsf{du} \ \mathsf{bruit} \ \mathsf{CES}\, ?$

Estimation de la matrice de covariance et de ses valeurs propres

 $\hookrightarrow \mathsf{Quel} \ \mathsf{estimateur} \, ?$

Seuillage des valeurs propres pour estimer p

 $\hookrightarrow \mathsf{Quel} \; \mathsf{seuil} \, ?$

イロト イヨト イヨト イヨト 三日

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000

イロト イヨト イヨト イヨト 二日

Conclusion 000000

10/49

Problèmes et méthodes en imagerie hyperspectrale

Second problème considéré

Estimation de S et M

- · M : matrice de mélange contenant les spectres des endmembers
- \cdot S : matrice des abondances représentant la distribution des endmembers sur l'image
 - Mêmes problèmes de grande dimension
 - Pas d'a priori
 - Nécessite une bonne estimation de p

 $\begin{array}{l} \hookrightarrow \text{ Quelles methodes ?} \\ \hookrightarrow \text{ Quelles ameliorations ?} \end{array}$

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

Problèmes et méthodes en imagerie hyperspectrale

Positionnement de la thèse

Classiquement :

$$\begin{split} \mathbf{C} &= \mathbf{I}_d : \text{Bruit non corrélé} \\ \mathbf{T} &= \mathbf{I}_d : \text{Bruit gaussien} \\ N &\to +\infty \text{, m fixé et } m << N \end{split}$$

Exemples :

- Méthodes Statistiques estimation de p
 - \rightarrow Critères d'information théorique [Akaike, 1974],[Schwarz, Rissanen 1978]

$$AIC(k) = -2\log f(\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_{N-1} | \hat{\boldsymbol{\Theta}}_k) + 2k(2m-k),$$
$$\hat{p}_{AIC} = \operatorname*{argmin}_k AIC(k),$$
$$MDL(k) = -\log f(\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_{N-1} | \hat{\boldsymbol{\Theta}}_k) + \frac{1}{2}k(2m-k)\log N,$$
$$\hat{p}_{MDL} = \operatorname*{argmin}_k MDL(k),$$

11/49

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

Problèmes et méthodes en imagerie hyperspectrale

Positionnement de la thèse

Classiquement :

$$\begin{split} \mathbf{C} &= \mathbf{I}_d : \text{Bruit non corrélé} \\ \mathbf{T} &= \mathbf{I}_d : \text{Bruit gaussien} \\ N &\to +\infty \text{, m fixé et } m << N \end{split}$$

p = 4

 $m.N \rightarrow \infty$

Exemples :

Méthodes Statistiques – estimation de p

m = 10, N = 1000

•) Q (* 11/49

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

Problèmes et méthodes en imagerie hyperspectrale

Positionnement de la thèse

Classiquement :

$$\begin{split} \mathbf{C} &= \mathbf{I}_d : \text{Bruit non corrélé} \\ \mathbf{T} &= \mathbf{I}_d : \text{Bruit gaussien} \\ N &\to +\infty \text{, m fixé et } m << N \end{split}$$

Exemples :

Méthodes Géométriques – Démélange

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion 000000

Problèmes et méthodes en imagerie hyperspectrale

Positionnement de la thèse

Classiquement :

$$\begin{split} \mathbf{C} &= \mathbf{I}_d : \text{Bruit non corrélé} \\ \mathbf{T} &= \mathbf{I}_d : \text{Bruit gaussien} \\ N &\rightarrow +\infty \text{, m fixé et } m << N \end{split}$$

Exemples :

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion

Problèmes et méthodes en imagerie hyperspectrale

Positionnement de la thèse

Tableau récapitulatif pour ces méthodes souvent utilisées

Méthodes	Robustesse au non gaussien	Robustesse aux grandes dimen- sions	Robustesse à la corrélation	Robustesse à l'absence de pixels purs / Mélange fort
AIC et MDL	\checkmark	Х	X	\checkmark
Géométriques	×	\checkmark	\checkmark	×
Statistiques	\checkmark	×	×	\checkmark

Introduction de nouveaux outils : la théorie des matrices aléatoires (RMT) et théorie de la robustesse

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

13/49

Conclusion 000000

Problèmes et méthodes en imagerie hyperspectrale

Enjeux de la thèse

Objectifs

Extension de techniques d'estimation robuste de *p* lorsque :

 $m, N \rightarrow \infty, \ \frac{m}{N} \rightarrow c > 0$, corrélation spectrale et spatiale

Estimation de M et S avec méthodes de démélange statistiques robustes en grande dimension et sans librairie spectrale

Éléments de réponses

- · Problème de la sélection d'ordre
 - Adaptations d'algorithmes RMT utilisés dans d'autres domaines que HSI
 - Proposition d'algorithmes utilisant la RMT
- · Problème du démélange spectral
 - Utilisation d'estimations de paramètres avec la RMT
 - Proposition d'un algorithme utilisant la RMT

Démélange 0000000 Conclusion 000000

1 Problèmes et méthodes en imagerie hyperspectrale

2 Sélection d'ordre pour le démélange d'images hyperspectrales

- La RMT
- Méthodes
- Applications

3 Le problème du démélange spectral

Sélection d'ordre

Démélange 0000000 Conclusion 000000

La RMT

Sélection d'ordre pour le démélange d'images hyperspectrales

La théorie des matrices aléatoires

- \rightarrow Qu'est ce que la théorie des matrices aléatoires (RMT) ?
 - Matrice aléatoire : matrice dont les éléments sont des variables aléatoires
 - **Grande dimension** : matrice de taille $m \times N$ avec $m, N \to \infty$ et $\frac{m}{N} \to c > 0$
 - Outils et théorèmes dédiés à l'analyse des valeurs propres et des vecteurs propres de grandes matrices
 - Caractérisation de la distribution des valeurs propres de matrice de covariance et extension

Image hyperspectrale \rightarrow adaptée aux hypothèses nécessaires à la RMT grandes dimensions

Cependant :

- · Très peu utilisé pour les images hyperspectrales [Halimi 2015]¹
- · Robustesse développée récemment pour hypothèses particulières [Vinogradova 2014]²

^{1.} Halimi, Abderrahim, et al. "Estimating the intrinsic dimension of hyperspectral images using a noise-whitened eigengap approach."

^{2.} Vinogradova "Random matrices and application to detection and estimation in array processing" + < 🗄 + - 🚊

Démélange 0000000 Conclusion 000000

La RMT

Sélection d'ordre pour le démélange d'images hyperspectrales

La théorie des matrices aléatoires

Cas des grandes dimensions.

 $\mathbf{y}_{i \in [1, M]}$ variables aléatoires suivant $\mathcal{CN}(\mathbf{0}_m, \mathbf{I}_d)$, estimation du maximum de vraisemblance pour \mathbf{M} :

$$\hat{\mathbf{M}} = rac{1}{N} \sum_{i=1}^{N} \mathbf{y}_i \mathbf{y}_i^H = rac{1}{N} \mathbf{Y} \mathbf{Y}^H.$$

Régime asymptotique

Lorsque $N \to \infty$:

$$\| \hat{\mathbf{M}} - \mathbf{I}_d \| \stackrel{p.s.}{\to} \mathbf{0}$$

Régime asymptotique en grande dimension

Lorsque $m, N
ightarrow \infty$, $rac{m}{N}
ightarrow c > 0$:

$$\| \hat{\mathbf{M}} - \mathbf{I}_d \| \stackrel{p.s.}{
eq} 0$$

D'autant plus flagrant si $m \sim N$

) Q (~ 16/49

Sélection d'ordre

Démélange 0000000 Conclusion 000000

La RMT

Sélection d'ordre pour le démélange d'images hyperspectrales

La théorie des matrices aléatoires

Théorème (Marchenko & Pastur, 1967)

 $\pmb{X}_N\in\mathbb{C}^{m\times N}$ d'éléments i.i.d. + moyenne nulle + variance unité Si $m,\,N\to\infty,\,m/N\to c>0$

Alors e.s.d. de $\frac{1}{N} X_N X_N^H \xrightarrow{c.f.}$ distribution F_c non aléatoire, fonction de densité f_c :

$$f_c(x) = (-1 - c^{-1})^+ \,\delta(x) + \frac{1}{2 \pi \, c \, x} \,\sqrt{(x - a)^+ \, (x - b)^+} \,, \tag{1}$$

$$a=\left(1-\sqrt{c}
ight)^2$$
, $b=\left(1+\sqrt{c}
ight)^2$, $\delta(.)$ distribution de Dirac.

Fc Loi de Marchenko-Pastur :

m = 10 et N = 1000

17/49

A 3 3

Sélection d'ordre

Démélange 0000000 Conclusion 000000

La RMT

Sélection d'ordre pour le démélange d'images hyperspectrales

Distribution des valeurs propres

Influence de c :

18/49

Méthodes	

Démélange 0000000

La RMT

Sélection d'ordre pour le démélange d'images hyperspectrales

 \rightarrow Le régime des matrices aléatoires commence dès que *m* et *N* du même ordre de grandeur :

Support des valeurs propres pour un bruit blanc gaussien ($\sigma^2 = 1$, $\mathbf{C} = \sigma^2 \mathbf{I}_m$) et c = 0.4.

<ロト < (回) < (回) < (目) < (目) < (目) < (目) < (日) < (日) < (日) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/49) < (19/

 Démélange 0000000 Conclusion 000000

20/49

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales

Méthodes proposées

- Exploitation de la loi de MP
- \hookrightarrow Quid si sources $\mathbf{Y} = \mathbf{M} \, \mathbf{S} + \mathbf{X}$?
- \rightarrow Regarder les fluctuations de la plus grande valeur propre du bruit.

Distribution spectrale des valeurs propres de la SCM pour un bruit blanc gaussien et p = 4 sources indépendantes RSB ? Seuil ? $\langle \Box \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi$

Problèmes - Méthodes HSI 000000000	Sélection d'ordre ○ ○●○○○○ ○●○○○○○○○○○○○○○○○○○○○○○○○○○○	Démélange 0000000	Conclusion 000000
Méthodes			
Sélection d'ordre pour le dé Méthodes proposées	mélange d'images hype	erspectrales	

Que se passe-t-il si corrélation à gauche et texture à droite?

Histogramme des valeurs propres

21/49

 Démélange 0000000 Conclusion 000000

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales

Méthodes proposées

Cas corrélation à gauche et texture à droite

- \rightarrow Adaptation de méthodes déjà développées
 - utilisant des a priori
 - utilisant l'espacement entre valeurs propres
- ightarrow Présentation des résultats les plus importants obtenus durant cette thèse :
 - Algorithme 1 : algorithme robuste avec un M-estimateur adapté aux données
 - Algorithme 2 : algorithme robuste avec un Estimateur de Tyler

Sélection d'ordre

Démélange 0000000 Conclusion 000000

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales

Rappel du problème

Rappel du modèle : $\mathbf{Y} = \mathbf{M} \, \mathbf{S} + \mathbf{C}^{1/2} \mathbf{X} \, \mathbf{T}^{1/2}$

Problèmes :

- Grande dimension
- Corrélation C
- Corrélation T
- Information contenue dans MS

 $\mathsf{Objectif}: \to \mathsf{Se} \text{ ramener au cas simple bruit blanc gaussien}.$

Problèmes -	

 Démélange 0000000 Conclusion 000000

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales

Rappel du problème

Rappel du modèle : $\mathbf{Y} = \mathbf{M} \, \mathbf{S} + \mathbf{C}^{1/2} \mathbf{X} \, \mathbf{T}^{1/2}$

Solutions :

- Grandes dimensions Utilisation méthode RMT
- Corrélation C → Blanchiment
- Corrélation **T** → **Estimation robuste** de la matrice de covariance
- Information contenue dans **MS** → Étudier les plus grandes valeurs propres

Objectif : $\sqrt{\text{Se rapprocher du cas simple bruit blanc gaussien}}$.

 Démélange 0000000 Conclusion 000000

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales

Présentation de deux algorithmes

Méthodes d'estimation de p proposées :

Quatre étapes :

- Estimation de la matrice de dispersion du bruit C
 - · Méthode 1 : M-estimateur
 - · Méthode 2 : Estimateur de Tyler
- Blanchiment des données
- Estimation de la matrice de dispersion du signal blanchi
- Analyse et seuillage de la distribution des valeurs propres de la matrice de dispersion estimée des données blanchies
 - · Méthode 1 : seuil dépendant des données
 - · Méthode 2 : seuil classique indépendant des données (Marchenko-Pastur)

 \rightarrow Extension de théorèmes existants en RMT au cas du bruit non gaussien corrélé avec sources

Problèmes -	

Démélange 0000000 Conclusion 000000

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales

Estimation robuste

- Estimation de la matrice de dispersion bruit C
- Méthode 1 : M-estimateur [Maronna 1976] défini comme l'unique solution Σ de :

$$\boldsymbol{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} u\left(\frac{1}{m} \mathbf{y}_{i}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{y}_{i}\right) \mathbf{y}_{i} \mathbf{y}_{i}^{H},$$

(i) Algorithme itératif

(ii) Équation du point fixe

• Méthode 2 : Estimateur de Tyler [Tyler 1987]

$$\mathbf{\Sigma} = rac{m}{N} \sum_{i=1}^{N} rac{\mathbf{y}_i \, \mathbf{y}_i^H}{\mathbf{y}_i^H \, \mathbf{\Sigma}^{-1} \, \mathbf{y}_i} \, .$$

(i) Indépendant de la texture

 Démélange 0000000

イロン イロン イヨン イヨン 一日

Conclusion 000000

26/49

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales

Estimation robuste : Exemples

Fonctions de poids de M-estimateurs et Tyler

Intérêt : atténuation des données de forte puissance

 Démélange 0000000 Conclusion 000000

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales

Estimation robuste - Rectification de Toeplitz

Dernière étape : pour améliorer l'estimation, rectification de Toeplitz

$$\widehat{\mathbf{C}} = \mathcal{T}(\mathbf{\Sigma}) = \frac{1}{m} \begin{pmatrix} \sum_{i=j}^{[\mathbf{\Sigma}]_{i,j}} & \sum_{j=i+1}^{[\mathbf{\Sigma}]_{i,j}} & \dots & [\mathbf{\Sigma}]_{1,m} \\ & \sum_{i=j}^{[\mathbf{\Sigma}]_{i,j}} & \ddots \\ & & \ddots & \sum_{j=i+1}^{[\mathbf{\Sigma}]_{i,j}} \\ & & & \sum_{i=i}^{[\mathbf{\Sigma}]_{i,j}} \end{pmatrix}$$

(2)

Theorème [Terreaux 2017]

Ces estimateurs sont consistants :

$$\|\mathbf{C}-\widehat{\mathbf{C}}\|_{N\to\infty} \to 0.$$

 Démélange 0000000 Conclusion 000000

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales $_{\text{Seconde étape}}$

Blanchiment des données

$$\mathbf{Y}_b = \hat{\mathbf{C}}^{-1/2} \mathbf{Y}$$

 $\mathbf{Y}_b = \hat{\mathbf{C}}^{-1/2} \mathbf{M} \, \mathbf{S} + \hat{\mathbf{C}}^{-1/2} \mathbf{C}^{1/2} \mathbf{X} \, \mathbf{T}^{1/2}$

Seconde Estimation robuste par estimateur de Tyler :

estimation de la matrice de dispersion $\hat{\Sigma}$ solution de :

$$\hat{\boldsymbol{\Sigma}} = rac{m}{N} \sum_{i=1}^{N} rac{\check{\mathbf{y}}_b \check{\mathbf{y}}_b^H}{\check{\mathbf{y}}_b^H \hat{\boldsymbol{\Sigma}}^{-1} \check{\mathbf{y}}_b} \,.$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 28/49

 Démélange 0000000

Conclusion 000000

29/49

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales Dernière étape

(1) Analyse de la distribution

Introduction d'une matrice $\hat{\mathbf{S}}$:

- \rightarrow qui dépend de l'estimateur choisi
- \rightarrow qui ne contient que du bruit
- \rightarrow distribution des valeurs propres : support borné et connu

Théorème [Terreaux 2018]

$$\|\hat{\boldsymbol{\Sigma}} - \hat{\boldsymbol{\mathsf{S}}}\| \stackrel{\textit{p.s.}}{
ightarrow} 0$$

lorsque $N, m \to \infty$

(2) Seuillage des valeurs propres

- Méthode 1 : seuil qui dépend de la fonction u
- Méthode 2 : seuil $(1 + \sqrt{c})^2$

Méthodes	

 Démélange 0000000 Conclusion 000000

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales Quelques figures

Illustration méthode 1 :

Distribution de Marchenko-Pastur et distribution des valeurs propres de $\hat{\Sigma}$ pour 1 *endmember* de RSB = 10dB, N = 2000, m = 900

Sélection d'ordre

Démélange 0000000 Conclusion 000000

Méthodes

Sélection d'ordre pour le démélange d'images hyperspectrales Quelques figures

Illustration méthode 2 :

Distribution des valeurs propres de $\hat{\Sigma}$ pour 4 endmembers de RSB = 30dB, N = 2000, m = 900

イロト イボト イヨト イヨト 二日

 Démélange 0000000 Conclusion 000000

Applications

Applications

Images hyperspectrales simulées avec des spectres réels

Images simulées, spectres réels

Bruit simulé, c = 0.45, p = 4.

p avec méthode 1 p avec méthode 2 p méthode AIC D 10 20 30 40 RSB (dB) Bruit simulé, fonction u utilisée pour le

seuil méthode 1 ne correspondant pas aux données c = 0.45, p = 4, $z \to z = 0.45$

Sélection d'ordre

0 00000 000000000000 0**0000** Démélange 0000000 Conclusion 000000

Applications

Images réelles

Table Estimation du nombre d'endmembers sur des images hyperspectrales

Images	Indian Pines	SalinasA	PaviaU	Cube
р	16	9	9	6
<i>PAIC</i>	219	203	102	143
\hat{p}_{Hysime}	19	14	60	19
$\hat{p}_{methode1}$	11	9	1	3
$\hat{p}_{methode2}$	13	2	10	13

・ロト・西ト・ヨト・ヨト・日 シック

Sélection d'ordre

0 00000 000000000000 00000 Démélange 0000000

(日)

Conclusion 000000

34/49

Applications

D'autres applications possibles :

- En finance
- Détection et estimation en radar
- Traitement d'antenne
- Estimation d'ordre de modèle en général

Problèmes - Méthodes HSI 000000000	Sélection d'ordre ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Démélange 0000000	Conclusion 000000
Applications			
Applications Autres			

Application en finance

Allocation de portefeuilles d'actions [Jay, Terreaux 2018]³

 \rightarrow Se ramène au même problème d'estimation d'une matrice de covariance ${\bf C}$

Méthode	Rendements Ann.	Volatilité Ann.	Rapport Rend/Vol	Perte Maximale
RMT Tyler	9.71 %	12.9 %	0.75	50.41 %
SCM	8.51 %	13.80 %	0.62	55.02 %
Référence	4.92 %	15.19 %	0.32	58.36 %

3. E. Jay, E. Terreaux et al, "Improving Portfolios Global Performance with Robust Covariance Matrix Estimation : Application to the Maximum Variety Portfolio". arXiv preprint arXiv :1804.00191, 2018. $\langle \overline{c} \rangle + \langle \overline{z} \rangle + \langle \overline{z} \rangle = \langle \overline{z} \rangle$

Sélection d'ordre

0 00000 000000000000 00000 Démélange 0000000 Conclusion 000000

Applications

Conclusions :

Partie principale de la thèse. Choix d'un modèle, adaptation des outils.

 \rightarrow **RMT** adaptable à de nombreux modèles différents

 \rightarrow Méthodes proposées pour la sélection d'ordre efficaces et pertinentes sur les images testées réelles et simulées

 \rightarrow Beaucoup d'autres applications possibles pour les méthodes proposées

Démélange ●000000 Conclusion 000000

1 Problèmes et méthodes en imagerie hyperspectrale

2 Sélection d'ordre pour le démélange d'images hyperspectrales

- La RMT
- Méthodes
- Applications

3 Le problème du démélange spectral

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0●00000 Conclusion 000000

Le problème du démélange spectral Méthodes proposées

Estimation des matrices **M** et **S** par minimisation de critère sous contraintes :

$$\hat{\mathbf{M}} = \operatorname{argmin}_{\hat{\mathbf{M}}} f\left(\hat{\mathbf{M}}, \hat{\mathbf{S}}\right)$$

 $\hat{\mathbf{S}} = \operatorname{argmin}_{\hat{\mathbf{S}}} f\left(\hat{\mathbf{M}}, \hat{\mathbf{S}}\right)$

 \cdot Besoin des dimensions des matrices ${\bf M}$ et ${\bf S}$

· Cas $p \ll m$

 \hookrightarrow Possible uniquement si *p* correctement estimé.

<ロト<合ト<Eト<Eト E のQで 38/49

Sélection d'ordre 0 00000 00000000000 00000 Démélange 00●0000 Conclusion 000000

Le problème du démélange spectral Méthodes proposées

Amélioration de méthode déjà existante avec introduction de la robustesse

Méthode 1 : méthode robuste

$$f\left(\hat{\mathbf{M}},\hat{\mathbf{S}}\right) = \rho\left(\left(\mathbf{Y} - \hat{\mathbf{M}}\,\hat{\mathbf{S}}\right)_{i,j}\right) + \lambda\,K\left(\hat{\mathbf{M}}\right)$$

 ρ fonction de coût de Huber, λ un paramètre à fixer.

 \rightarrow Moins sensible aux outliers que méthode non robuste suivante

 \rightarrow Fonction quadratique pour petites valeurs et fonction valeur absolue pour grandes valeurs

 $\mathcal{K}\left(\hat{\mathbf{M}}
ight)$ une fonction de pénalité sur le volume du simplex de $\hat{\mathbf{M}}$

Démélange 0000000

イロト イヨト イヨト イヨト 三日

Conclusion 000000

40/49

Le problème du démélange spectral Méthodes proposées

 Amélioration de méthode déjà existante avec utilisation des estimations des matrices précédentes pour améliorer l'algorithme

Méthode 2 : méthode projetée

$$f\left(\hat{\mathbf{M}},\,\hat{\mathbf{S}}\right) = \left\|\hat{\mathbf{\Sigma}}^{1/2}\,\mathbf{U}_{s}\,\mathbf{U}_{s}^{H}\,\hat{\mathbf{\Sigma}}^{-1/2}\,\mathbf{Y} - \hat{\mathbf{M}}\,\hat{\mathbf{S}}\right\|_{F}^{2} + \lambda\,K\left(\hat{\mathbf{M}}\right)$$

 U_s Sous espace signal estimé $\mathcal{K}\left(\hat{M}\right)$ une fonction de pénalité sur le volume du simplex de \hat{M}

ightarrow Utilise l'information obtenue précédemment : $\hat{\Sigma}$ et p.

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000●00 Conclusion 000000

Le problème du démélange spectral

Méthodes proposées : Résultats

- Image simulée : bruit additif CES, sources réelles
- Différents RSB : [-10dB, 0dB, 10dB, 20dB, 30dB, 40dB]
- 4 méthodes testées

Distance euclidienne $\parallel \mathbf{S} - \widehat{\mathbf{S}} \parallel$

Démélange 00000€0 Conclusion 000000

Le problème du démélange spectral

Méthodes proposées : Résultats

- Image réelle
- Résultats de la méthode projetée

Spectres estimés :

Spectres réels :

Sélection d'ordre 0 00000 00000000000 00000 Démélange 000000 Conclusion 000000

Le problème du démélange spectral Méthodes proposées : Résultats

Selon le critère d'évaluation choisi : pas les mêmes résultats

 $\rightarrow |\textbf{S} - \hat{\textbf{S}}|$ ou $|\textbf{M} - \hat{\textbf{M}}|$ ou comparaison entre les divergences de Kullback-Leibler

- Sur images réelles : résultats des méthodes proposées plus ou moins efficaces mais globalement méthodes fiables.
- Démélange amélioré selon les cas (cas où l'image correspond le plus au modèle choisi)

Démélange 0000000 Conclusion

1 Problèmes et méthodes en imagerie hyperspectrale

2 Sélection d'ordre pour le démélange d'images hyperspectrales

- La RMT
- Méthodes
- Applications

3 Le problème du démélange spectral

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion

Conclusion

- ightarrow Modèle CES choisi beaucoup plus large que modèle gaussien souvent utilisé
- ightarrow Modèle CES corrélé gauche et droite + grande dimension + pas d'a priori assez complexe

Estimation d'ordre de modèle

Démélange spectral

Deux méthodes proposées Résultats variables selon les cas / selon les critères

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion

Perspectives

Sélection d'ordre

- · Analyser plus finement pourquoi deux estimations robustes nécessaires
- \cdot Estimateur de Tyler = cas limite M-estimateur?
- \cdot Hypothèse de Toeplitz \rightarrow limites, intérêts

Démélange

- · Combiner méthode robuste et projetée
- · Approches plus pertinentes?
- · Test sur plus d'images de modèles différents, tailles différentes, résolutions différentes
- · Méthodes nouvelles à exploiter

Autres applications

- · Application en finance : aller plus loin dans les performances
- · Application en finance : hypothèse de Toeplitz ?

Démélange 0000000

Conclusion

47/49

Conclusion - Communications orales

Communications orales ____

 \cdot Prix de Thèse ONERA : prix doctorant PHY 2018, et journées des doctorants ONERA, Palaiseau, 2016, 2017, 2018

· GDR ISIS, Ecole d'été de Peyresq, Peyresq, juillet 2017

· Workshop SONDRA 2016, Lacanau, mai 2016

· GDR ISIS Imagerie Hyperspectrale, Quelle données? Quels traitements? Quelles applications? ENSEIHHT, Toulouse, avril 2016

· Séminaires du laboratoire SONDRA

Démélange 0000000 Conclusion

Conclusion - Publications

Participations aux conférences

- 2 conférences internationales
- 1 conférence française

Publications

 \cdot E. Terreaux, J.P. Ovarlez and F. Pascal, "Robust Model Order Selection in Large Dimensional Elliptically Symmetric Noise", submitted to IEEE Trans. on Signal Processing, Oct. 2017,

http://arxiv.org/abs/1710.06735

· E. Terreaux, J.P. Ovarlez and F. Pascal, "Anomaly Detection and Estimation in Hyperspectral Imaging Using RMT Tools". In IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),2015.

· E. Terreaux, J.P. Ovarlez and F. Pascal, "New Model Order Selection in Large Dimension Regime for Complex Elliptically Symmetric Noise", Proc. EUSIPCO, 2017.

· E. Terreaux, J.P. Ovarlez and F. Pascal, "Estimation de l'Ordre de Modèle pour un Bruit Elliptique Symétrique Complexe en Grande Dimension", Proc. GRETSI, 2017.

 \cdot E. Terreaux, J.P. Ovarlez and F. Pascal, "A Toeplitz-Tyler Estimation of the Model Order in Large Dimensional Regime", IEEE-ICASSP, 2018.

· E. Jay, E. Terreaux, J.P. Ovarlez and F. Pascal, "Improving portfolios global performance with robust covariance matrix estimation : application to the maximum variety portfolio", EUSIPCO, 2018.

Sélection d'ordre 0 00000 00000000000 00000 Démélange 0000000 Conclusion

Merci pour votre attention

