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Motivations Motivations

Motivations

Many signal processing applications require the estimation of statistical parameters such as the
covariance matrix of received data.

Classically, data are considered to be Gaussian
The Maximum Likelihood Estimator (MLE) is the Sample Covariance Matrix (SCM).

It is easy to manage and has well-known statistical properties.

However, studies show that :
high resolution techniques provide data which do not have a Gaussian behavior.

Outliers and other parasites are not been taken into account with this model.

The SCM can give poor results as soon as data are not completely Gaussian.

We need a more flexible and adjustable model to take into account most of the contexts.

Unless the corresponding MLE can be obtained, we need, a robust family of estimators.

MM (SONDRA, ONERA, SATIE) Robust Covariance Matrix Estimation in Signal Processing 6/12/12 1 / 44



Motivations Presentation outline

Presentation outline

1 Statistical modelling and associated estimators in signal processing
Classical assumption
Compound-Gaussian distributions
Complex elliptical distributions
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Gross error model
M-estimators
Robustness Criteria
Application of the robustness criteria to the studied estimators
Illustration of the BP on a MUSIC application

3 Asymptotic Performance
Asymptotic distribution of the studied estimators
Particular property of the asymptotic performance
Illustration with the MUSIC method

4 Applications : detection problem in adaptive processing
Context
Performances of the ANMF with different estimators
Spatio-Temporal Adaptive Processing

5 Conclusion and prospects
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Statistical modelling and associated estimators in signal processing Classical assumption

Statistical modelling and associated estimators in signal processing
Classical assumption

Traditionally, data are assumed to be (circular) complex Gaussian.

Gaussian distribution
Let z be a complex circular random vector of length m. z has a complex Gaussian distribution if its
probability density function (pdf) can be written

fc(z) =
1

πm|Σ|
exp

(
−
(

z− µ)HΣ−1(z− µ
))

(1)

where µ is the statistical mean and Σ is the covariance matrix.

This complex Gaussian distribution will be denoted CN (µ,Σ).
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Statistical modelling and associated estimators in signal processing Classical assumption

Statistical modelling and associated estimators in signal processing
Classical assumption

The MLE of the Gaussian distribution is the SCM.

The classical covariance matrix estimator : the SCM
Assuming that (z1, z2, ...zN ) is a N-sample of independant complex Gaussian vectors of length m
and zero mean, the SCM is

Σ̂SCM =
1
N

N∑
n=1

znzH
n . (2)

It is easy to manage,

and has well-known statistical properties.
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Statistical modelling and associated estimators in signal processing Compound-Gaussian distributions

Statistical modelling and associated estimators in signal processing
Compound-Gaussian distributions

A better modelling of the data : Compound-Gaussian Vector (GCV)
The GCV c can be written :

c =
√
τz. (3)

where

τ , the texture, is a scalar positive random variable.

z, the speckle, is a m-dimension random circular complex Gaussian vector with zero mean
and covariance matrix Σ.

The data are considered locally Gaussian, with a spatially variable power.

This Complex Compound-Gaussian distribution will be denoted CCG(0,Σ, τ).
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Statistical modelling and associated estimators in signal processing Compound-Gaussian distributions

Statistical modelling and associated estimators in signal processing
Compound-Gaussian distributions

The MLE depends on τ which is often unknown. Therefore, an approached MLE is mostly used.

The Fixed Point Estimator (FPE)
Let (c1, ..., cN ) be a N-sample of GCV. The FPE is defined as the unique solution, up to a scale
factor, of the equation :

Σ̂FPE =
m
N

N∑
n=1

cn.cH
n

cH
n Σ̂
−1
FPE cn

(4)

Also known as Tyler’s estimator.

The existence and uniqueness of the solution has been proven (F. Pascal 2006).

This estimator is unbiased , consistent and asymptotically complex Gaussian when data are
GCV.
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Statistical modelling and associated estimators in signal processing Complex elliptical distributions

Statistical modelling and associated estimators in signal processing
Complex elliptical circular distributions

A more general model : complex elliptical distributions
Let z be a complex circular random vector of length m. z has a complex elliptical distribution if its
pdf can be written

z −→ fz(z) = c2m,g2m|Σ|−1.g
(

(z− µ)HΣ−1(z− µ)
)
. (5)

where g : [0,∞)→ [0,∞) is the density generator such as (5) defines a pdf and c2m,g is a
normalization constant. µ is the statistical mean and Σ the scatter matrix (proportional to the
covariance matrix if it exists).

This complex elliptical distribution will be denoted CE(µ,Σ, g)
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Statistical modelling and associated estimators in signal processing Complex elliptical distributions

Statistical modelling and associated estimators in signal processing
Complex elliptical circular distributions

The MLE of the elliptical distributions depends on the density generator g.

MLE of elliptical distributions
Let (z1, ..., zN ) be a N-sample of independant complex elliptical vectors such as zi ∼ CE(0,Σ, g)
for i = 1...N. The MLE of Σ can be written,

Σ̂ML =
1
N

N∑
i=1

− g′(zH
i Σ̂
−1
ML zi )

g(zH
i Σ̂
−1
ML zi )

zi zH
i (6)
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Statistical modelling and associated estimators in signal processing Complex elliptical distributions

Statistical modelling and associated estimators in signal processing

MLE



= SCM for Gaussian distributions

Σ̂SCM =
1
N

N∑
n=1

znzH
n

≈ FPE for Compound-Gaussian distributions

Σ̂FPE =
m
N

N∑
n=1

cn.cH
n

cH
n Σ̂
−1
FPE cn

= depend on g for elliptical distributions

Σ̂ML =
1
N

N∑
i=1

− g′(zH
i Σ̂
−1
ML zi )

g(zH
i Σ̂
−1
ML zi )

zi zH
i

Elliptical distributions provide a more general model, but the MLE can not be used if g is unknown.

Estimators which are robust all over elliptical distributions, must be used.
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Robustness
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Robustness Gross error model

Robustness Theory
Gross error model (Huber, 1964)

Given a distribution model G, the real distribution F , is in the neighborhood of the model :

F = (1− ε)G + εH

0 ≤ ε < 1

H is an unknown distribution

Robust estimator
gives good results∗ when the distribution is G

and all over F .

∗bias controlled or negligible, low asymptotic variance.
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Robustness M-estimators

Robustness Theory
M-estimators

M-estimators are a robust generalization of MLE.

M-estimators
Let (z1, ..., zN ) be an N-sampling of complex independant circular random vectors of length m. We
assume that zi ∼ CE(0,Σ, g)), i = 1, ...,N. The complex M-estimator of Σ is defined as the
solution of

VN =
1
N

N∑
n=1

u
(

zH
n V−1

N zH
n

)
znzH

n , (7)

Existence and uniqueness of the solution has been shown in the real case, provided weight
function u satisfies a set of general assumptions (Maronna, 1976). Ollila (2003) has shown that
these conditions hold also in the complex case.

Link with the scatter matrix
Let V = E

[
u(z′V−1z) zz′

]
where z ∼ CE(0,Σ, g).

The previous assumptions been respected,

- This equation admits a unique solution V and V = σΣ, where σ is given by Tyler(1982),

- A simple iterative procedure provides VN ,

- VN is a consistent estimate of V.
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Robustness M-estimators

Robustness Theory
Examples of M-estimators

The SCM is not a M-estimator since K is infinite.

The FPE is not a M-estimator since u is not defined in zero.
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Robustness M-estimators

Robustness Theory
Examples of M-estimators

Huber’s M-estimator
Is such as its weight function is :

u(s) =
1
β

min
s∈R+

(1, a/s),=
1
β

(
1s≤a +

a
s
1s>a

)
, (8)

It is a mix between the SCM and the FPE.

+ =⇒

Parameters a and β enable to adjust the proportion of data processed with the SCM or the FPE.
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Robustness M-estimators

Robustness Theory
Huber’s M-estimator

Gaussian context settings :

q : proportion of data, treated as Gaussian and processed with the SCM.

1− q : proportion of data processed with FPE.

s = zH
n Λ
−1zn has a χ2 distribution with 2m degrees of freedom.

We can write
q = F2m(2a)

where F2m(.) is the cumulative distribution function of a χ2 with 2m degrees of freedom.
β is set such as σ = 1 and verifies

E [σψ(|t|2)] = m

where t ∼ N (0m,1, Im) and ψ(s) = s.u(s). This leads to

β = F2m+2(2a) + a
1− q

m

In the elliptical case, similar computations can be done.
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Robustness Robustness Criteria

Robustness Theory
Robustness Criteria

The Influence Function (IF)
Measures the effect of an infinitesimal disturbance at a given point :

IFV,G(z0) = lim
ε→0

V
(

(1− ε)G + εδz0

)
− V(G)

ε
(9)

with δz0 the Dirac in z0 and G the nominal distribution.
An estimator is robust according to the IF if its IF is continuous and bounded.

The Breakdown Point (BP)
Global criterion which describes how far from a model, the actual distribution can be, the estimator
still giving some information on the estimated parameter.
Given the gross error model F = (1− ε)G + εH,
the BP is such as for ε < BP the eigenvalues of V(F ) remain strictly positive and bounded.
BP ≤ 1

2

The asymptotic bias bV,G,H

Bias between the eigenvalues of V(F ) and V(G), for each ε < BP. The maximum asymptotic bias
is the maximum over all distributions H.
An estimator is robust according to the asymptotic bias if bV,G,H is close to 1.
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Robustness Application of the robustness criteria to the studied estimators

Robustness Theory
Application of the robustness criteria to the studied estimators

The SCM
The IF is continuous but unbounded∗.

BP = 0

The asymptotic bias depends on the power of the outlier∗.

This estimator is not robust.

The M-estimators
The IF is continuous and bounded (Ollila).

BP ≤
1
m

The maximum asymptotic bias depends on the weight function. Tables can be found.

This estimator is more robust.

∗ An intermediate result is presented in a paper (Mahot 2010, Conference EUSIPCO).
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Robustness Application of the robustness criteria to the studied estimators

Robustness Theory
Application of the robustness criteria to the studied estimators

The FPE
The IF is continuous and bounded∗.

BP =
1
m
∗∗.

The maximum asymptotic bias depends only on m and ε∗∗.

This estimator is the most robust.

∗ An intermediate result is presented in a paper (Mahot 2010, Conference EUSIPCO).
∗∗ The expression and proof is in the final manuscript.
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Robustness Illustration of the BP on a MUSIC application

Illustration of the BP on a MUSIC application
The MUSIC Method

Let us consider a Uniform Linear Array (ULA) with m sensors and p < m sources. This ULA
receives a narrow band signal :

y(t) = A(θ0)s(t) + b(t)

with

θ0 =
(
θ1 θ2 ... θp

)T with θk the angle of the k th signal,

A(θ0) =
(
a(θ1) a(θ2) ... a(θp)

)
, containing the directional vectors,

s(t) =
(
s1(t) s2(t) ... sp(t)

)T vector of the source signals,

b(t), additive stationnary noise with zero mean. The vectorsb(t) are independant.

The covariance matrix is

R = A(θ)ssHAH (θ) + σ2I =
∑

λk ek eH
k = EsΛsEH

s + σ2EnEH
n ,

with

ek the eigenvector associated to λk .

Es = [e1 . . . ep ] generating the signal subspace.

En = [ep+1 . . . .em ] generating the noise subspace(p < m).

The angles of the arriving signals are given by the maxima of

VMUSIC(θ) =
1

aH (θ)EnEH
n a(θ)
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Robustness Illustration of the BP on a MUSIC application

Illustration of the BP on a MUSIC application
Application

We consider a ULA with

m = 3 sensors,

N = 1000 independant samples,

a Gaussian stationary signal with DOA 20◦,

a Gaussian white additive noise (SNR=3dB).

A proportion ε of vectors is replaced by outliers corresponding to a Gaussian stationnary
signal of DOA 60◦.

Outliers with different powers are represented
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Robustness Illustration of the BP on a MUSIC application

Illustration of the BP on a MUSIC application
Application
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Asymptotic Performance Asymptotic distribution of the studied estimators

Asymptotic Performance

When data are complex elliptical, the asymptotic distributions of the studied estimators can be
written √

Nvec(Σ̂−Σ)
d−→ GCN

(
0m2,1,Λ,Ω

)
where GCN is the general complex Gaussian distribution, Λ the covariance matrix and Ω the
pseudo-covariance matrix.

SCM
For Complex Gaussian data, Λ = (ΣT ⊗Σ) Ω = (ΣT ⊗Σ)K, where K is the commutation matrix.

FPE
For Compound-Gaussian data,

Λ =
m + 1

m

[
(ΣT ⊗ Σ)−

1

m
vec(Σ)vec(Σ)H

]
Ω =

m + 1

m

[
(ΣT ⊗ Σ)K−

1

m
vec(Σ)vec(Σ)T

]

Complex M-estimators∗

For complex elliptical distributions,

Λ = σ1Σ
T ⊗Σ + σ2vec(Σ)vec(Σ)H , Ω = σ1(ΣT ⊗Σ)K + σ2vec(Σ)vec(Σ)T ,

∗ Result accepted with major comments in IEEE SP-T.
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Asymptotic Performance Asymptotic distribution of the studied estimators

Asymptotic Performance
Particular Property

Let Σ be a fixed hermitian positive-definite matrix and ΣN a sequence of symmetric positive
definite random matrices of order m which satisfies

√
N (vec(ΣN −Σ))

d−→ GCN
(

0m2,1,Λ,Ω
)
,

with

Λ = ν1Σ
T ⊗Σ + ν2vec(Σ)vec(Σ)H Ω = ν1(ΣT ⊗Σ)K + ν2vec(Σ)vec(Σ)T ,

where ν1 and ν2 are any real numbers.

Let H(Σ) be a r -dimensional multivariate function on the set of m ×m complex hermitian
positive-definite matrices, possessing continuous first partial derivatives and such as
H(Σ) = H(αΣ) for all α > 0.
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Asymptotic Performance Asymptotic distribution of the studied estimators

Particular property
Link with the studied estimators

The asymptotic distribution of H(ΣN ) is given by∗

√
N (H(ΣN )− H(Σ))

d−→ GCN
(
0r,1,ΛH ,ΩH

)
.

where
ΛH = ν1H′(Σ)(ΣT ⊗Σ)H′(Σ)H ΩH = ν1H′(Σ)(ΣT ⊗Σ)KH′(Σ)T ,

and H′(V) =

(
dH(V)

dvec(V)

)
.

This result has been obtained by Tyler in the real case and we have extended it to the complex
elliptical case.

Link with the studied estimators
The SCM verifies the conditions and ν1 = 1 in the Gaussian context.

The FPE verifies the conditions and ν1 =
m + 1

m
in the Compound-Gaussian context.

The M-estimators verifie the conditions and ν1 = σ1 in the complex elliptical context.

∗ Result accepted with major comments in IEEE SP-T..
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Asymptotic Performance Illustration with the MUSIC method

Asymptotic Performance
Illustration with the MUSIC method

We consider a ULA with

m = 3 sensors,

a Gaussian stationary signal with DOA 20◦,

a Gaussian white additive noise in the first figure, and a K-distributed additive noise of
parameter ν = 0.1 in the second figure (SNR=5dB/sensor).

The x-axis gives the number N of independant data used to estimate the covariance matrix.
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Asymptotic Performance Illustration with the MUSIC method
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Applications : detection problem in adaptive processing Context

Context

Binary hypothesis test{
H0 : z = c zi = ci i = 1, ...,N
H1 : z = s + c zi = ci i = 1, ...,N

with

s = Ap the complex known signal characterizing the target. A is the amplitude of the signal
an p the steering vector containing all the other information

c the additive noise (clutter),

zi the observation vectors. They are assumed i.i.d.

The purpose of the detection is to decide which hypothesis is the more likely to be true.

The Adaptive Normalized Match Filter (ANMF)

Λ(M̂|z) =
|pHM̂−1z|2

(pHM̂−1p)(zHM̂−1z)
.
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Applications : detection problem in adaptive processing Performances of the ANMF with different estimators

Application : detection problem in adaptive processing
Performances of the ANMF with different estimators

Here the function H(.) of the particular property, is such as H(M̂) = Λ(M̂|z) = Λ(αM̂|z)
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Applications : detection problem in adaptive processing Performances of the ANMF with different estimators

Second example : Pfa-threshold relationship
Background

Probability of false alarme (Pfa)
Probability of detecting a signal in the noise only case.

Pfa-threshold relationship
In the Gaussian case and with the SCM, it is known to be :

Pfa = (1− λ)a−1
2F1(a, a− 1; b − 1;λ), (10)

where
a = N −m + 2, b = N + 2

and 2F1 is the Hypergeometric function defined as

2F1(a, b; c; x) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a + k)Γ(b + k)

Γ(c + k)

xk

k!
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Applications : detection problem in adaptive processing Performances of the ANMF with different estimators

Second example : Pfa-threshold relationship
Generalization

Generalization∗

For any estimator verifying the conditions of the particular property,

any complex elliptically distributed signal

and for N large enough

the Pfa-threshold relationship is still given by (10) if we replace N by N/ν1.

∗ Result published in a conference (Mahot 2012, conference SAM).
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Applications : detection problem in adaptive processing Performances of the ANMF with different estimators

Application : detection problem in adaptive processing
Illustration of the approached Pfa-threshold relationship

In the case of the FPE, for N large enough equation (10) stands by replacing N by
m

m + 1
N. In the

case of M-estimators, N must be replaced by N/σ1.
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Pfa-threshold curve obtained with

the SCM and Huber’s M-estimator with
N = 10 data,

Huber’s M-estimator with σ1N ' 12 data.

White Gaussian noise, σ1 = 1.23, q = 0.25 and
m = 3.
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Applications : detection problem in adaptive processing Spatio-Temporal Adaptive Processing

Application of different estimators to Space Time Adaptive Processing
(STAP)
Presentation

STAP are used, to detect moving targets.

Instead of using space processing and time processing separatly, it uses the spatio-temporal
link between arriving signals.

Results in a better filtering of the noise and ground echo.

Space processing, time processing and space-time processing
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Applications : detection problem in adaptive processing Spatio-Temporal Adaptive Processing

Application of different estimators to Space Time Adaptive Process
(STAP)
Context

For one range bin (distance), 4 sensors receive 48 pulses.

The resulting steering vectors allow to detect the DOA and Doppler speed of potential targets.

the covariance matrix is estimated using the data of the over range bins.

The results of the detector is observed on one range bin.

Angle scanning for a side looking radar
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Applications : detection problem in adaptive processing Spatio-Temporal Adaptive Processing

Application of different estimators to Space Time Adaptive Process
(STAP)
Gaussian Background

Gaussian background (with no outlier).

Unique target of DOA 0◦, Doppler speed Vc = 4 m/s and range bin 256.
STAP AMF+SCM, data 1, burst 6, range bin 256
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Detection of the target with the SCM

STAP ANMF−FP, Essai 1, burst 6, range bin 256
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Detection of the target with the FPE
STAP ANMF−Huber, Essai 1, burst 6, range bin 256
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Detection of the target with Huber’s
M-estimator, q = 0.6

STAP ANMF−Student, Essai 1, burst 6, range bin 256
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Detection of the target with Student’s
M-estimator, ν = 2
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Applications : detection problem in adaptive processing Spatio-Temporal Adaptive Processing

Application of different estimators to Space Time Adaptive Process
(STAP)
Gaussian Background with outlier

Same background but with an outlier in the learning data : A second target with same DOA
and Doppler in a different range bin.

STAP AMF+SCM, data 1, burst 6, range bin 256
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Detection of the target with the SCM

STAP ANMF−FP, Essai 1, burst 6, range bin 256
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Detection of the target with the FPE
STAP ANMF−Huber, Essai 1, burst 6, range bin 256
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Detection of the target with Huber’s
M-estimator, q = 0.6

STAP ANMF−Student, Essai 1, burst 6, range bin 256
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Detection of the target with Student’s
M-estimator, ν = 2
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Applications : detection problem in adaptive processing Spatio-Temporal Adaptive Processing

Application of different estimators to Space Time Adaptive Process
(STAP)
non-Gaussian Background

(slightly) non-Gaussian data obtained by the SAR (Synthetic Aperture Radar)THR RAMSES.

Unique target with range bin 255, DOA 0◦ and Doppler speed Vc = 4 m/s.
STAP AMF+SCM, data 3, burst 6, range bin 255
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Detection of the target with the SCM

STAP ANMF−FP, Essai 3, burst 6, range bin 255
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Detection of the target with the FPE
STAP ANMF−Huber, Essai 3, burst 6, range bin 255
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Detection of the target with Huber’s
M-estimator, q = 0.6

STAP ANMF−Student, Essai 3, burst 6, range bin 255

Speed (m/s)

An
gle

 (d
eg

)

 

 

−6 −4 −2 0 2 4 6

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Detection of the target with Student’s
M-estimator, ν = 2
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Conclusion and prospects

Outline
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Conclusion and prospects

Conclusion

The classical Gaussian modelling and its MLE the SCM, giving often poor results, more
general models have been studied (GCV, elliptical distributions).

Since the exact distribution of the data is unknown, the MLE can not be used. Estimors which
are robust all over a class of distribution have been studied

The asymptotic performance of these estimators has been studied. A particular property with
interesting consequences has been highlighted.

These results have been illustrated with the detection problem and with STAP data.
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Conclusion and prospects

Prospects

The FPE and M-estimators could be used in many signal processing applications, for more robust
results. However, some problems remain :

Non-stationnary data case.

The FPE or the M-estimators give bad results if there is not enough data.
(structure of the matrix, low rank techniques)

The robustness of the FPE and the M-estimators decreases with the dimension of the vectors.
(other estimators, random matrix)

This study could be generalized to applications where the joint estimation of the mean and
covariance matrix is needed.
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Conclusion and prospects

Thank you for your attention.
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