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Hyperspectral Imaging (HSI)

� ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
To detect all that is “different " from the background (Mahalanobis distance) -
No information about the targets of interest available.

� DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES
To detect targets characterized by a given spectral signature p - Regulation of
False Alarm.
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� Many methodologies for detection and classification in hyperspectral
images can be found in radar detection community. We can retrieve all
the detectors family commonly used in radar detection (AMF
(intensity detector), ACE (angle detector), sub-spaces detectors, ...).

� Almost all the conventional techniques for anomaly detection and
targets detection are based on Gaussian assumption and on spatial
homogeneity in hyperspectral images.

All these techniques need to estimate the data covariance matrix
Σ (whitening process) and the mean vector µ.
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Problem Statement

� In a m-dimensional observation vector x, the problem of detecting a
complex known signal s = αp (p is the steering vector and α the
target amplitude), corrupted by an additive noise b, can be stated as
the following binary hypothesis test :{

Hypothesis H0: x = b xi = bi i = 1, . . . ,N
Hypothesis H1: x = s + b xi = bi i = 1, . . . ,N

where the xi ’s are N "signal-free" independent observations
(secondary data) used to estimate the background parameters .

⇒ Neyman-Pearson criterion : Mazimize the probability of detection for a
fixed probability of false alarm.
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Problem Statement

� Detection test: comparison between the Likelihood Ratio (LR) Λ(x)
and a detection threshold λ:

Λ(x) =
p(x|H1)

p(x|H0)

H1
≷
H0

η .

λ is determined for a fixed value of PFA (set by the user):

� Probability of False Alarm (type-I error):

PFA = P(Λ(x;H0) > λ)

� Probability of Detection (to evaluate the performance):

PD = P(Λ(x;H1) > λ)

for different Signal-to-Noise Ration (SNR).
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Gaussian distribution

A m-dimensional vector x has a complex Gaussian distribution denoted
CN (µ,Σ). If the probability density function exists, it is of the form:

fx(x) = π−m
|Σ|−1 exp{−(x − µ)HΣ−1(x − µ)}.

Maximum Likelihood Estimators:

Let x1, . . . ,xN be an IID N -sample, where xi ∼ CN (µ,Σ). Thus, the SMV
and the SCM can be written as:

µ̂SMV =
1
N

N∑
i=1

xi , Σ̂SCM =
1
N

N∑
i=1

(xi − µ̂)(xi − µ̂)H .

� Simplicity of analysis and well-known statistical properties: consistent,
unbiased and efficient,

� Σ̂SCM is Wishart distributed.
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Matched Filter

The Matched Filter is the optimal filter for maximizing the SNR under
Gaussian background assumption:

ΛMF =
|pH Σ−1 (x − µ)|2

(pH Σ−1 p)

H1
≷
H0

λ

PFA-threshold relationship

PFAMF = exp (−λ)
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Adaptive Matched Filter

Unknown Covariance matrix:

Λ
(N )
AMF Σ̂ =

|pH Σ̂
−1

(x − µ)|2

(pH Σ̂
−1

p)

H1
≷
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λ

PFA-threshold relationship

PFAAMF Σ̂ = 2F1
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N − m + 1, N − m + 2; N + 1; −
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Adaptive Matched Filter

Unknown Covariance matrix and Mean Vector:

Λ
(N )
AMF Σ̂,µ̂ =

|pH Σ̂
−1

(x − µ̂)|2

(pH Σ̂
−1

p)

H1
≷
H0

λ

PFA-threshold relationship

PFAAMF Σ̂,µ̂ = 2F1

(
N − m , N − m + 1; N ; −

λ ′

N − 1

)
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Figure : PFA versus threshold for the AMF when (1) µ and Σ are known (MF)
(red and black curves) (2) only µ is known (gray and blue curves) (3) Proposition
??: both µ and Σ are unknown (yellow and green curves).
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Kelly detection test

The Kelly detector is based on the Generalized Likelihood Ratio Test
assuming Gaussian distribution and unknown covariance matrix Σ:

Λ
(N )
Kelly Σ̂ =

|pH Σ̂
−1
SCM (x − µ)|2(

pH Σ̂
−1
SCMp

) (
N + (x − µ)H Σ̂

−1
SCM (x − µ)

) H1
≷
H0

λ

PFA-threshold relationship

PFAKelly = (1 − λ)N−m+1
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Kelly “Plug-in" detection test

Unknown Covariance matrix and Mean Vector:

Λ
(N )
Kelly Σ̂,µ̂ =

|pH Σ̂
−1
SCM (x − µ̂SMV )|2(

pH Σ̂
−1
SCMp

) (
N + (x − µ̂SMV )H Σ̂

−1
SCM (x − µ̂SMV )

) H1
≷
H0

λ

PFA-threshold relationship

PFAKelly Σ̂,µ̂ =
Γ(N )

Γ(N − m + 1) Γ(m − 1)

∫1
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New Kelly detection test

Unknown Covariance matrix and Mean Vector:

Generalized Kelly detector

Λ =
β(N )

∣∣pH Ŝ−1
0 (x − µ̂0)

∣∣2
(pH Ŝ−1

0 p)
(
1 + (x − µ̂0)

H Ŝ−1
0 (x − µ̂0)

) H1
≷
H0

λ

where Ŝ0 =

N∑
i=1

(xi − µ̂0)(xi − µ̂0)
H , and µ̂0 =

1
N + 1

(
x +

N∑
i=1

xi

)
.

� New detector derived when both the mean vector and the covariance
matrix are unknown, Generalized Likelihood Ratio Test,

� The covariance matrix Ŝ0 and the mean vector µ̂0 estimates depend on
the vector under test x,

� Ŝ0 and x− µ̂0 are not independent and Ŝ0 is NOT Wishart distributed,

� The distribution of the detector is unknown.
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Normalized Matched Filter

The Normalized Matched Filter is obtained when considering that the
background and the target have the same covariance structure but different
variance.

ΛNMF =
|pH Σ−1 (x − µ)|2

(pH Σ−1p)
(
(x − µ)H Σ−1 (x − µ)

) H1
≷
H0

λ

PFA-threshold relationship

PFANMF = (1 − λ)m−1
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Adaptive Normalized Matched Filter

Unknown Covariance matrix:

Λ
(N )
ANMF Σ̂ =

|pH Σ̂
−1

(x − µ)|2(
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−1
p
) (

(x − µ)H Σ̂
−1

(x − µ)
) H1
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H0

λ

PFA-threshold relationship

PFAANMF Σ̂ = (1 − λ)a−1 2F1(a , a − 1; b − 1; λ) ,

where a = N − m + 2 and b = N + 2.
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Adaptive Normalized Matched Filter

Unknown Covariance matrix and Mean Vector:

ΛANMF Σ̂,µ̂ =
|pH Σ̂

−1
(x − µ̂)|2

(pH Σ̂
−1
p)
(
(x − µ̂)H Σ̂

−1
(x − µ̂)

) H1
≷
H0

λ

PFA-threshold relationship

PFAANMF Σ̂,µ̂ = (1 − λ)a−12F1 (a , a − 1; b − 1; λ) ,

where a = (N − 1) − m + 2 and b = (N − 1) + 2.
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Adaptive detection on real Hyperspectral Image
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Fig. 4: Probability of detection for different SNR values and
PFA = 10�3 in Gaussian case.

are estimated using a sliding window of size 7 ⇥ 7, having
N = 48 secondary data.
The outcome of the detectors for this image are shown on the
Fig. 6, Fig. 7 and Fig. 8 respectively. The results obtained
on real HSI data on a Gaussian distributed region agree with
the theoretical relationships presented above. Remark that the
false-alarm rate that can be achieved depends on the number
of points on which the detector is calculated (in a similar
manner to the Monte-Carlo trials). As the homogenous area
is bounded and the data set is small, the distribution of the
detectors may divert for small values of the PFA directly
related to the size of the region.

Depending on the underlying material, the detector of the
distribution might divert from the expected behavior when
Gaussian distribution is assumed. This suggests the use of non-
Gaussian distributions to model the background for hyperspec-
tral imaging. The class of elliptically contoured distributions
has already been popularized for background characterization
in HSI [23], [24]. We propose in another paper the study of
false-alarm regulation when elliptical distributions are consid-
ered. Moreover, we analyze some robust estimation procedures
(M -estimators introduced in [16], [25], [26]) more suitable
when non-Gaussian distributions are assumed.

V. CONCLUSION

Three adaptive detection schemes, the AMF, the Kelly
detector and the ANMF, have been analyzed in the case
where both the covariance matrix and the mean are unknown
and need to be estimated. In this context, theoretical closed-
form expressions for false-alarm regulation have been derived
under Gaussian assumptions for the SCM-SMV estimates. The
theoretical analysis has been validated through simulations
and the performances of the detectors has been compared
in terms of probability of detection. Finally, the analysis
on experimental hyperspectral data validates the theoretical
contribution through real application. This work finds its

Fig. 5: True color composition of the Hyperion scene.
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Fig. 6: AMF false-alarm regulation for a real HSI image

purpose in signal processing methods for which both mean
vector and covariance matrix are unknown.
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V. CONCLUSION

Three adaptive detection schemes, the AMF, the Kelly
detector and the ANMF, have been analyzed in the case
where both the covariance matrix and the mean are unknown
and need to be estimated. In this context, theoretical closed-
form expressions for false-alarm regulation have been derived
under Gaussian assumptions for the SCM-SMV estimates. The
theoretical analysis has been validated through simulations
and the performances of the detectors has been compared
in terms of probability of detection. Finally, the analysis
on experimental hyperspectral data validates the theoretical
contribution through real application. This work finds its
purpose in signal processing methods for which both mean
vector and covariance matrix are unknown.

APPENDIX A
COMPLEX NORMAL DISTRIBUTIONS

A m-dimensional vector x = u+ jv has a complex normal
distribution with mean µ and covariance matrix ⌃ = E[(x�
µ)(x � µ)H ], denoted CN (µ,⌃), if z = (uT ,vT )T 2 R2m

has a normal distribution [23]. If rank(⌃) = m, the probability
density function exists and is of the form

fx(x) = ⇡�m|⌃|�1 exp{�(x � µ)H⌃�1(x � µ)}.

The resulting Maximum Likelihood Estimates (MLE) are the
well-known SCM and SMV defined as:

µ̂SMV =
1

N

NX

i=1

xi ⌃̂SCM =
1

N

NX

i=1

(xi � µ̂)(xi � µ̂)H

where the xi are independent and identically distributed (IID)
CN (µ,⌃).
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V. CONCLUSION

Three adaptive detection schemes, the AMF, the Kelly
detector and the ANMF, have been analyzed in the case
where both the covariance matrix and the mean are unknown
and need to be estimated. In this context, theoretical closed-
form expressions for false-alarm regulation have been derived
under Gaussian assumptions for the SCM-SMV estimates. The
theoretical analysis has been validated through simulations
and the performances of the detectors has been compared
in terms of probability of detection. Finally, the analysis
on experimental hyperspectral data validates the theoretical
contribution through real application. This work finds its
purpose in signal processing methods for which both mean
vector and covariance matrix are unknown.
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density function exists and is of the form
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The resulting Maximum Likelihood Estimates (MLE) are the
well-known SCM and SMV defined as:
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V. CONCLUSION

Three adaptive detection schemes, the AMF, the Kelly
detector and the ANMF, have been analyzed in the case
where both the covariance matrix and the mean are unknown
and need to be estimated. In this context, theoretical closed-
form expressions for false-alarm regulation have been derived
under Gaussian assumptions for the SCM-SMV estimates. The
theoretical analysis has been validated through simulations
and the performances of the detectors has been compared
in terms of probability of detection. Finally, the analysis
on experimental hyperspectral data validates the theoretical
contribution through real application. This work finds its
purpose in signal processing methods for which both mean
vector and covariance matrix are unknown.

APPENDIX A
COMPLEX NORMAL DISTRIBUTIONS

A m-dimensional vector x = u+ jv has a complex normal
distribution with mean µ and covariance matrix ⌃ = E[(x�
µ)(x � µ)H ], denoted CN (µ,⌃), if z = (uT ,vT )T 2 R2m

has a normal distribution [23]. If rank(⌃) = m, the probability
density function exists and is of the form

fx(x) = ⇡�m|⌃|�1 exp{�(x � µ)H⌃�1(x � µ)}.

The resulting Maximum Likelihood Estimates (MLE) are the
well-known SCM and SMV defined as:

µ̂SMV =
1

N

NX

i=1

xi ⌃̂SCM =
1

N

NX

i=1

(xi � µ̂)(xi � µ̂)H

where the xi are independent and identically distributed (IID)
CN (µ,⌃).
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Performance evaluation

Synthetic target with known spectral signature p embedded in the background.
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with simulated background with Hyperion image

The performance results are obtained for a fixed PFA = 10−3.
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First comments and adequacy with some results found in the literature

� Hyperspectral data are generally spatially heterogeneous in intensity
and they cannot be only characterized by Gaussian distribution:

Mahalanobis on DSO Experimental data

Hotelling T2
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� Elliptical distribution models have started to be studied in the
hyperspectral scientific community but one generally uses .... Gaussian
estimates !
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Elliptical distributions for Hyperspectral background modeling

Complex Elliptically Contoured Distributions

Let z be a complex circular random vector of dimension m . z has a complex
elliptically (CE) distribution (CE(µ,Σ, hm )) if its PDF is of the form:

fz(z) = |Σ|−1hm

(
(z − µ)H Σ−1 (z − µ)

)
(1)

where hm : [0,∞)→ [0,∞) is the density generator and is such as (1)
defines a PDF.

� µ is the mean vector,

� Σ is the scatter matrix.

In general, Σ equals to the covariance matrix up to a scalar factor. It
characterizes the correlation structure existing within the spectral bands
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Powerful statistical model that allows:

� to extend the Gaussian model (K, Weibull, Fisher, Cauchy,
Alpha-Stable, Generalized Gaussian, etc.),

� to encompass the Gaussian model,

� to take into account the heterogeneity of the background power with
the texture,

� to take into account possible correlation existing within the
m-channels of observation.
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Robust M -estimators

M -estimators
The complex M -estimators of location and scatter are defined as the joint
solutions of:

µ̂N =

N∑
i=1

u1(ti ) zi

N∑
i=1

u1(ti )

, Σ̂N =
1
N

N∑
i=1

u2
(
t2i
)
(zi − µ̂) (zi − µ̂)H ,

where ti =
(
(zi − µ̂)H Σ̂

−1
(zi − µ̂)

)1/2
.

� u1(·), u2(·) are two weighting functions acting on the quadratic form,
i.e. Mahalanobis distance,

� The choice of u1(·), u2(·) results in different estimates for the
covariance matrix and the mean vector,

� Existence and uniqueness of the solution have been proven provided
u1(·), u2(·) satisfy given conditions [Maronna 1976],
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The Fixed Point Estimators

The Fixed Point Estimators (FPE) firstly introduced in [Tyler 1987],
satisfy the following implicit equations:

µ̂FP =

N∑
i=1

zi√(
(zi − µ̂FP)

H M̂−1
FP (zi − µ̂FP)

)
N∑

i=1

1√(
(zi − µ̂FP)

H M̂−1
FP (zi − µ̂FP)

)
, M̂FP =

m
N

N∑
i=1

(zi − µ̂FP) (zi − µ̂FP)
H

((zi − µ̂FP)
H M̂−1

FP (zi − µ̂FP))

These two quantities can be jointly reached by an iterative algorithm

� This estimator does not depend on the elliptical distribution density
generator,

� Robust to outliers, strong targets or scatterers in the reference cells,

� FPE matrix estimator is consistent, unbiased, asymptotically Gaussian
and is, for a fixed number N of secondary data, Wishart distributed
with m

m+1N degrees of freedom.
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The Huber’s M -estimators

The Huber´s M -Estimators are defined when taking the following
weighting functions u1(·) and u2(·):

u1(t) = min (t , k) , u2(t2) =
1
β

min
(
t2, k2)

where q = Fχ22m

(
2 k2

)
and β = Fχ22m

(
2 k2

)
+ k2 1−q

m .

� Extreme values of ti outside the interval [0, k2] are attenuated (Fixed
Point behavior),

� Normal values below k2 are uniformly kept (SCM behavior),

� The parameter k can be adjusted to choose the percentage of data
treated as Gaussian,

� The Huber estimate is consistent, unbiased, asymptotically Gaussian
and is, for a fixed number N Whishart distributed with ν1N degrees of
freedom (ν1 very close to 1).
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Examples of M -estimators

SCM:

u(t) = 1

Huber’s M -estimator:

u(t) =
{

1/k2 if t <= k2

1/t if t > k2

FPE (Tyler):

u(t) = m
t
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Asymptotic distribution of complex M -estimators

Asymptotic distribution of Σ̂N

√
N (Σ̂N − Σ)

d−→ CN (0, ν1 (ΣT ⊗ Σ) + ν2 vec(Σ)vec(Σ)H
)
,

where ν1 and ν2 are completely defined.

� Let H (V) be a a function on the set of complex positive definite
Hermitian m ×m matrices that satisfies H (V) = H (cV) for any
positive scalar c and let us assume that all the partial derivates are
continuous, e.g. the ANMF statistic, the MUSIC statistic.
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An important property of complex M -estimators

Asymptotic distribution of H (Σ)

√
N
(
H (Σ̂) − H (Σ̂)

)
d−→ CN (0, ϑ1 H ′(Σ)(ΣT ⊗ Σ)H ′(Σ)H

)
,

where H ′(Σ) =
∂H (Σ)

∂vec(Σ)
.

H (SCM ) and H (M -estimators) share the same asymptotic distribution
(differs from ϑ1).
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Adaptive Detection in Elliptical Background

ANMF built with M -estimators

ΛANMF Σ̂,µ̂ =
|pH Σ̂

−1
N (x − µ̂N )|

2

(pH Σ̂
−1
N p)

(
(x − µ̂N )

H Σ̂
−1
N (x − µ̂N )

) H1
≷
H0

λ

PFA-threshold relationship

PFAANMF Σ̂,µ̂ = (1 − λ)a−12F1 (a , a − 1; b − 1; λ) ,

where a = ϑ1(N − 1) − m + 2 and b = ϑ1(N − 1) + 2.

The parameter ϑ1 is very close to 1 but depends on the M -estimator: Ex:
for the FPE, ϑ1 = m/(m + 1).
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Adaptive Detection in Elliptical Background

� This two-step GLRT test is homogeneous of degree 0: it is independent
of any particular Elliptical distribution: CFAR texture and CFAR
Matrix properties,

� Under homogeneous Gaussian region, it reaches the same performance
than those of the detector built with the SCM estimate.
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Results in real Hyperspectral Images

The hyperspectral data are real and positive as they represent
radiance or reflectance.

� A mean vector has to be included in the model and estimated jointly
with the scatter matrix,

� The real data has been transformed into complex ones by a linear
Hilbert filter and then be decimated by a factor 2 (principle of analytic
signals)

Original data set (Hymap data) False Alarm Regulation

Figure 1. Color rendering of self test hyperspectral image.

 

 

Figure 2. Screenshot of home page for Target Detection Blind Test website. 
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Fig. 5: PFA versus threshold for the ANMF under a K-
distribution for m = 10 and N = 50 when
(1) the SCM-SMV are used (red and black curves)
(2) the FP estimates are used (yellow and green curves)

Fig. ??. The required SNR is slightly higher for the ANMF
test.

C. Real Hyperspectral Data

VI. CONCLUSION

We have detailed the class of complex elliptical distri-
butions as a general model for background characterization
in Hyperspectral Imaging. Elliptical distributions account for
heterogeneity and long tail distributions present in real hy-
perspectral data. Once established that hyperspectral data can
not fit a multivariate Normal distribution, the use of the
Gaussian maximum likelihood estimates (SCM and SMV) do
not provide the optimal parameter estimation. We propose the
use of robust estimates for the mean vector and the covariance
matrix. We have described the M-estimators, notably the FP
and the Huber type approach. The joint estimation of both
parameters is a new challenging problem that opens many
unknowns and it will be further investigated. We introduce the
use of these estimates on classical detection methods. For false
alarm regulation purposes, we have derived the theoretical
relationship to set the proper threshold for a fixed probability
of false alarm. Finally, we have validated the theoretical
analysis over simulations and given some results on a real
hyperspectral image. We conclude that the robust estimation
tools presented in this paper offer a versatile alternative to
Gaussian estimates. We remark that proposed M-estimators in
Gaussian environment are capable of reaching the same results
as the SCM and SMV. On the other hand, they outperform
the classical estimation methods in case of non-Gaussian
impulsive noise. This adaptability and their robustness make
them suitable estimates in most scenarios.
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Results in real Hyperspectral Images
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Performance evaluation

Synthetic target with known spectral signature p embedded in the background.
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with simulated data with Hymap data

The performance results are obtained for a fixed PFA = 10−3.
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Shrinkage Covariance Matrix Estimators

Small number of observations or under-sampling N < m : matrix is not
invertible ⇒ Problem when using M -estimators or FPE!.

Regularized SCM:

M̂SCM−DL(β) =
1 − β
N

N∑
i=1

(zi − µ̂SMV ) (zi − µ̂SMV )H + β Im

� Not appropriate for non-Gaussian, impulsive background.
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Shrinkage Fixed Point Estimator

Shrinkage FPE

The shrinkage FPE introduced in [Pascal2013] is defined as the solution of
the following fixed point equation:

M̂FP (β) = (1 − β)
m
N

N∑
i=1

(zi − µ̂FP ) (zi − µ̂FP )
H

((zi − µ̂FP )
H M̂−1

FP (β) (zi − µ̂FP ))
+ β I,

subject to the no trace constraint but for β ∈ (β̄, 1], where
β̄ := max(0, 1 − N/m).

� M̂FP (β) verifies Tr (() M̂FP (β)
−1) = m for all β ∈ (0, 1].

The main challenge is to find the optimal β!
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Anomaly Detection

� To detect all that is “different " from the background -
No information about the targets of interest available.

� Anomaly Detectors cannot distinguish between true targets and
detections of bright pixels of the background or targets that are not of
interest.
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Reed-Xiaoli Detector

The RXD [Reed1990] is commonly considered as the benchmark anomaly
detector for hyperspectral data:

Λ(X) =
(XαT )T (XXT )−1(XαT )

ααT

The sampled version when assuming non-zero mean Gaussian background
yields:

ΛARXD = (xi − Σ̂SMV )T Σ̂
−1
SCM (xi − µ̂SMV )

H1
≷
H0

λ

� xi is present in the covariance estimation,

� N secondary data are NOT signal-free,

� Global strategy.
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Kelly Anomaly Detector

Obtained when deriving the Kelly’s LR w.r.t. the steering vector p.

Λ
(N )

KellyAD Σ̂,µ̂
= (x − µ̂SMV )T µ̂−1

SCM (x − µ̂SMV )
H1
≷
H0

λΣ

Detector distribution under Gaussian hypothesis

N − m
m (N + 1)

Λ
(N )

KellyAD Σ̂,Σ̂
∼ Fm,N−m ,

with Fm,N−m is the non-central F -distribution with m and N − m degrees
of freedom.
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Other Anomaly Detectors

� Normalized-RXD

ΛN−RXD =
(x − µ̂SMV )T

||x − µ̂SMV ||
Σ̂

−1
SCM

(x − µ̂SMV )T

||x − µ̂SMV ||

H1
≷
H0

λ

� Uniform Target Detector

ΛUTD = (1 − µ̂SMV )T Σ̂
−1
SCM (x − µ̂SMV )

H1
≷
H0

λ .

Generalized Kelly Anomaly Detector

ΛG−KellyAD = (x − µ̂0)
H Ŝ−1

0 (x − µ̂0)
H1
≷
H0

λ

where Ŝ0 =
∑N

i=1(xi − µ̂0)(xi − µ̂0)
H , and µ̂0 =

1
N + 1

(
x +
∑N

i=1 xi

)
.
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Results on Hyperion image

(a) Original (b) RXD (c) Kelly AD (d) G-Kelly (e) N-RXD (f) UTD
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Anomaly Detection in non-Gaussian environment

Robust Kelly Anomaly detector built with M -estimators:

ΛKellyAD Σ̂,µ̂ = (x − µ̂N )
T Σ̂

−1
N (x − µ̂N )

H1
≷
H0

λ,

� Replace the unknown parameters by robust estimators (M -estimators
or Shrinkage estimators),

� The detector’s distribution depends on the underlying non-Gaussian
distribution.
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Results on Hyperion image

(a) FP (b) SCM-DL (c) Shrinkage FPE
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Results on Hymap image

Results obtained with artificial targets

Original image (Forest Region) Target Spectrum 
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Results on Hymap image

(a) SCM (b) SCM-DL

(c) FPE (d) Shrinkage FPE
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Conclusions

� Extension of classical Target detection and Anomaly detection
techniques for non-zero mean case under Gaussian assumption,

� Hyperspectral images like radar or SAR images can suffer from
non-Gaussianity or heterogeneity that can reduce the performance of
anomaly detectors (RXD) and target detectors (AMF, ANMF),

� Elliptical Distributions modeling is a very useful theoretical tool for
the hyperspectral context that can match and overcome the
heterogeneity and non-Gaussianity of the images,

� Jointly used with robust estimates, the proposed hyperspectral
detectors may provide better performances and a more accurate false
alarm regulation. And they keep the same performance than the
conventional Gaussian detectors for homogeneous and Gaussian data.

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 49/ 51



Preliminary Notions Target Detection in Gaussian background Target Detection in non-Gaussian background Anomaly Detection Conclusions

Perspectives

� Subspace Projectors

� Random Matrix Theory

� Change Detection problems,
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Thanks

Thank you for your attention
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