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Hyperspectral Imaging (HSI)

0 ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
To detect all that is “different " from the background (Mahalanobis distance) -
No information about the targets of interest available.

[0 DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES
To detect targets characterized by a given spectral signature p - Regulation of
False Alarm.
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[J Many methodologies for detection and classification in hyperspectral
images can be found in radar detection community. We can retrieve all
the detectors family commonly used in radar detection (AMF
(intensity detector), ACE (angle detector), sub-spaces detectors, ...).

[J Almost all the conventional techniques for anomaly detection and
targets detection are based on Gaussian assumption and on spatial
homogeneity in hyperspectral images.

All these techniques need to estimate the data covariance matrix
Y (whitening process) and the mean vector p.
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Preliminary Notions
@00

Problem Statement

[J In a m-dimensional observation vector x, the problem of detecting a
complex known signal s = ap (p is the steering vector and « the
target amplitude), corrupted by an additive noise b, can be stated as
the following binary hypothesis test :

N

N

Hypothesis Ho: x=Db x;=b; 1=1,...,
Hypothesis H1: x=s+b x;=b; 1=1,...,

where the x;’s are N "signal-free" independent observations
(secondary data) used to estimate the background parameters.

= Neyman-Pearson criterion : Mazimize the probability of detection for a
fixed probability of false alarm.
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Preliminary Notions
oeo

Problem Statement

O Detection test: comparison between the Likelihood Ratio (LR) A(x)
and a detection threshold A:

p(x[H1) % .
p(xHo) 15

AR

Alx) =
A is determined for a fixed value of PFA (set by the user):
O Probability of False Alarm (type-I error):
PFA =P(A(x;Ho) > )
O Probability of Detection (to evaluate the performance):
PD =P(A(x;H1) > A)

for different Signal-to-Noise Ration (SNR).

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 7/ 51



Preliminary Notions
ooe

Gaussian distribution

A m-dimensional vector x has a complex Gaussian distribution denoted
CN(u, X). If the probability density function exists, it is of the form:

fu(x) =m0 "Z T exp{—(x — )L (x — u))

Maximum Likelihood Estimators:

Let x1,...,xy be an IID N-sample, where x; ~ CA(u, Z). Thus, the SMV
and the SCM can be written as:

N
Ogyy = NZX“ Lsom = ﬁ; ﬁ)H.

[J Simplicity of analysis and well-known statistical properties: consistent,
unbiased and efficient,

O 2SCM is Wishart distributed.
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Target Detection in Gaussian background

Outline

Target Detection in Gaussian background
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Target Detection in Gaussian background
@00

Matched Filter

The Matched Filter is the optimal filter for maximizing the SNR under
Gaussian background assumption:
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Target Detection in Gaussian background
(o] le}

Adaptive Matched Filter

Unknown Covariance matrix:

-1
AN |PH b (x—n)
AMFE

(p“E 'p) o

PFA-threshold relationship

A
PFAAMFﬁ = F (N—m+1,N—m+2;N+1; —N)
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Target Detection in Gaussian background
[efe] ]

Adaptive Matched Filter

Unknown Covariance matrix and Mean Vector:
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Target Detection in Gaussian background
000

Kelly detection test

The Kelly detector is based on the Generalized Likelihood Ratio Test
assuming Gaussian distribution and unknown covariance matrix X:
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Target Detection in Gaussian background
(o] o]

Kelly “Plug-in" detection test

Unknown Covariance matrix and Mean Vector:
—1
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Target Detection in Gaussian background

ocoe

New Kelly detection test

Unknown Covariance matrix and Mean Vector:

Generalized Kelly detector

| 2

Ha
= A

B(N) |p7S5 (x — fi,)
(p#S57p) (14 (x — fig)¥ S5 (x — fi)) #o

N N
where So = Z(Xi — fig)(xs — ilo)H, and fi, = %H (x + ;m) .

1=1

A =

[0 New detector derived when both the mean vector and the covariance
matrix are unknown, Generalized Likelihood Ratio Test,

O The covariance matrix So and the mean vector fi, estimates depend on
the vector under test x,

O So and x— fiy are not independent and So is NOT Wishart distributed,

[0 The distribution of the detector is unknown.
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Target Detection in Gaussian background
[ ele}

Normalized Matched Filter

The Normalized Matched Filter is obtained when considering that the
background and the target have the same covariance structure but different

variance. P )
p” I (x — )| *
Anur = — — Z A
(PP 'p) (x—wWFI '(x—n))

PFA-threshold relationship

PFAyyr = (1—=A)™!

log,o(PFA)
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Target Detection in Gaussian background
(o] le}

Adaptive Normalized Matched Filter

Unknown Covariance matrix:
—1
(N) |l3H2 (x—u)P i
Aanurs = 1 1
(P727'p) (x—w7E " (x—w)) "o

PFA-threshold relationship

PFAanurs = (1 —=A)* " 2Fi(a,a—1;b — 1;7),
where a =N —m +2and b= N + 2.
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Target Detection in Gaussian background
[e]e] ]

Adaptive Normalized Matched Filter

Unknown Covariance matrix and Mean Vector:
p" £ (x— )P @
—1 —1 <
(7L 'p) (x—W7E (x— @) %o

Aanurg g =

PFA-threshold relationship

PFAanurs o = (1—AN)° '2F1 (a,a— 10— L;A)
where a = (N —1)—m+2and b= (N —1)+2.
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Target Detection in Gaussian background
[ le]e}

Adaptive detection on real Hyperspectral Image

FALSE ALARM REGULATION FOR GAUSSIAN-BASED DETECTORS
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Target Detection in Gaussian background
(o] le}

Performance evaluation

Synthetic target with known spectral signature p embedded in the background.
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The performance results are obtained for a fixed PFA = 1073.

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 20/



Target Detection in Gaussian background
[efe] ]

First comments and adequacy with some results found in the literature

[J Hyperspectral data are generally spatially heterogeneous in intensity
and they cannot be only characterized by Gaussian distribution:
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L] Elliptical distribution models have started to be studied in the
hyperspectral scientific community but one generally uses .... Gaussian
estimates !
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Target Detection in non-Gaussian background

Outline

Target Detection in non-Gaussian background
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Target Detection in non-Gaussian background
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Elliptical distributions for Hyperspectral background modeling

Complex Elliptically Contoured Distributions

Let z be a complex circular random vector of dimension m. z has a complex
elliptically (CE) distribution (CE(u, X, hn)) if its PDF is of the form:

£:(2) = 15 b (2= W) 27 (2= ) (1)

where hn, : [0,00) — [0, 00) is the density generator and is such as (1)
defines a PDF.

[J p is the mean vector,

[0 X is the scatter matrix.

In general, X equals to the covariance matrix up to a scalar factor. It
characterizes the correlation structure existing within the spectral bands
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Target Detection in non-Gaussian background
0Oe0000000000000

Powerful statistical model that allows:

O to extend the Gaussian model (K, Weibull, Fisher, Cauchy,
Alpha-Stable, Generalized Gaussian, etc.),

[J to encompass the Gaussian model,

[ to take into account the heterogeneity of the background power with
the texture,

[J to take into account possible correlation existing within the
m-channels of observation.
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Target Detection in non-Gaussian background
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Robust M-estimators

The complex M-estimators of location and scatter are defined as the joint
solutions of:

1

N
v Ev= oY w(t) (2 ) (2 — DT,
i=1

=|

where ¢, — <(zi CWEE T (g — ;1)) vz

O wui(+), uz(-) are two weighting functions acting on the quadratic form,
i.e. Mahalanobis distance,

[0 The choice of u;(-), uz(-) results in different estimates for the
covariance matrix and the mean vector,

[0 Existence and uniqueness of the solution have been proven provided
u1(+), uz(-) satisfy given conditions [Maronna 1976],
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Target Detection in non-Gaussian background
000e00000000000

The Fixed Point Estimators

The Fixed Point Estimators (FPE) firstly introduced in [Tyler 1987],
satisfy the following implicit equations:

N
> =
=t \/((z’ — fpp) T MR (2 — fpp)) m & (z: — fipp) (20 — figp)”
fpp = s MFP = —= Z —
i 1 N 55 (20— Rpp) Mg (zi — fpp))
i=1 \/((zl - ﬁFP)HM;pl(zz - ﬁpp))
These two quantities can be jointly reached by an iterative algorithm J

[J This estimator does not depend on the elliptical distribution density
generator,
[J Robust to outliers, strong targets or scatterers in the reference cells,

[0 FPE matrix estimator is consistent, unbiased, asymptotically Gaussian
and is, for a fixed number N of secondary data, Wishart distributed
with 75 N degrees of freedom.
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Target Detection in non-Gaussian background
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The Huber’s M-estimators

The Huber ‘s M-Estimators are defined when taking the following
weighting functions w; (-) and uz(-):

ui(t) = min (¢, k), uz(¢?) = % min (¢*, k)

where ¢ = F\» (2k?) and B = Fy3 (2k?) + k2 170
[0 Extreme values of ¢; outside the interval [0, k%] are attenuated (Fixed
Point behavior),
[0 Normal values below k? are uniformly kept (SCM behavior),

[J The parameter k can be adjusted to choose the percentage of data
treated as Gaussian,

[J The Huber estimate is consistent, unbiased, asymptotically Gaussian
and is, for a fixed number N Whishart distributed with vi N degrees of
freedom (v, very close to 1).
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Target Detection in non-Gaussian background
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Examples of M-estimators

SCM: Huber’s M-estimator: FPE (Tyler):
u(t) =1 ult) = 1/k% if t <= k2 ult)=m
T\ 1/tif ¢ > k2 !

u(r) u(r) u(r)

Kle
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Target Detection in non-Gaussian background

000000800000 000

Asymptotic distribution of complex M-estimators

Asymptotic distribution of Sy

VN(Ey—£) % eN (o, vi(ZT® Z) + V2 vec(Z)vec(Z)H) ,

where v; and v, are completely defined.

0 Let H(V) be a a function on the set of complex positive definite
Hermitian m x m matrices that satisfies H(V) = H(c V) for any
positive scalar ¢ and let us assume that all the partial derivates are
continuous, e.g. the ANMF statistic, the MUSIC statistic.
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Target Detection in non-Gaussian background
0000000 e0000000

An important property of complex M-estimators

Asymptotic distribution of H(X)

m(H(i)—H(i)) LNV (0,81H’(Z)(ZT®Z)H’(Z)H) ,

0H(X)

h H(Y) = ——.
where H'(Z) ovec(X)

H(SCM) and H(M-estimators) share the same asymptotic distribution
(differs from ;).
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Target Detection in non-Gaussian background
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Adaptive Detection in Elliptical Background

ANMF built with M-estimators
p? £y (x— i) e
(7 £'p) ((x— )7 £5" (x— fy)) %o

PFA-threshold relationship

PFAanurg o = (1 —N)*"%Fi (a,a—1;0— 1),

Aanurg g =

where a =91 (N —1)—m+2and b=9:(N —1) + 2.

The parameter v, is very close to 1 but depends on the M-estimator: Ex:
for the FPE, %1 = m/(m + 1).
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Target Detection in non-Gaussian background
000000000 e00000

Adaptive Detection in Elliptical Background

[0 This two-step GLRT test is homogeneous of degree 0: it is independent
of any particular Elliptical distribution: CFAR texture and CFAR
Matrix properties,

[J Under homogeneous Gaussian region, it reaches the same performance
than those of the detector built with the SCM estimate.
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Target Detection in non-Gaussian background
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Results in real Hy

The hyperspectral data are real and positive as they represent
radiance or reflectance.

[J A mean vector has to be included in the model and estimated jointly
with the scatter matrix,

[0 The real data has been transformed into complex ones by a linear
Hilbert filter and then be decimated by a factor 2 (principle of analytic
signals)

ANMF(SCM-SMV) theo. eq.(14)
ANMF(SCM-SMV) MC H
ANMF(FP estimates) theo. ¢q.(?2)
ANMF(FP estimates) MC

0 05 1 15 2 25 3 35 4 45 5

Threshold A

Original data set (Hymap data) False Alarm Regulation
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Target Detection in non-Gaussian background
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Results in real Hyperspectral Images

+ ANMF(SCM-SMV) Eq.(??) | *, Se
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Performance evaluation

Target Detection in non-Gaussian background

000000000000 e00

Synthetic target with known spectral signature p embedded in the background.

0.9 ANMF-SCM
08 ANMF-FP
. ANMF-Hub
07 AMF-SCM
Kelly

09 —— ANMF-FP
—— ANMF-SCM
08 ——— ANMF-Hub
AMF-SCM
0.7 Kelly

06 06
a® 05 05
0.4 04
03 03
02 02
01 01
60 50 40 30 20 10 0 10 20 30 4 15 -0 -5 5 15 20
SNR (dB) SNR (dB)

with simulated data

The performance results are obtained for a fixed PFA = 1073.
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with Hymap data

Robust target detection for Hyperspectral Imaging

Defense 35/ 51



Target Detection in non-Gaussian background
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Shrinkage Covariance Matrix Estimators

Small number of observations or under-sampling N < m: matrix is not
invertible = Problem when using M-estimators or FPE!.

Regularized SCM:

N
Mscu—pr(B) fTBZ —ligyy) (20 — fgpry)” + B Inm

[J Not appropriate for non-Gaussian, impulsive background.
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Target Detection in non-Gaussian background
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Shrinkage Fixed Point Estimator

Shrinkage FPE

The shrinkage FPE introduced in [Pascal2013] is defined as the solution of
the following fixed point equation:

H
NI = (1— E (ZifaFP)(Zz*ﬁFp) I
re(B) = (1—B) Zl (@ — i) OL26) (s — )

N
i=

subject to the no trace constraint but for € (B, 1], where
B := max(0,1 — N/m).

O Mpp(B) verifies Tr () Mrp(B)™) = m for all p € (0,1].

The main challenge is to find the optimal 3!
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Outline

Anomaly Detection
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Anomaly Detection

[J To detect all that is “different " from the background -
No information about the targets of interest available.
[J Anomaly Detectors cannot distinguish between true targets and

detections of bright pixels of the background or targets that are not of
interest.

500 [ Anomalies - ¢ |
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400 [~ -

300 -
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Reed-Xiaoli Detector

The RXD [Reed1990] is commonly considered as the benchmark anomaly
detector for hyperspectral data:

(Xa") " (XXT)H (XaT)

AX) = axT

The sampled version when assuming non-zero mean Gaussian background
yields:
—1 Ha

som (%i — ﬁSMv) 2 A
Ho

Aarxp = (xi — Laav) 7L

[J x; is present in the covariance estimation,
[J N secondary data are NOT signal-free,
[J Global strategy.
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Kelly Anomaly Detector

Obtained when deriving the Kelly’s LR w.r.t. the steering vector p.

(N) _ TA—1 7;1 AZ
KellyAD £,0 (x — Bgpv)” Pson(x — Bgpry) ;0

Detector distribution under Gaussian hypothesis

N-—-m AW e
m (N + 1) KelyAD£,£ /= 9

with F, nv—m is the non-central F-distribution with m and N — m degrees

of freedom.
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Other Anomaly Detectors

[0 Normalized-RXD

T T
(x—Ogpv)” a1 (x—fAgyy)” M

AN_RXxD = scM 2 A
||X_ﬁ5Mv|| ||x_ﬁsMV|| Ho

[J Uniform Target Detector

Te-1 <
Avrp = (1 — fg) " Esom(x — fgyy) 5 Al
0

Generalized Kelly Anomaly Detector

Ha
AG—keap = (x — fig)? S5 (x — fig) 5 A
0]

1
where So = Y, (xi — fip) (xi — fip)¥, and fi, = Ni1 (x ] Xz)'

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 42/ 51



Anom
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Results on Hyperion image

(a) Original ) RXD (c) Kelly AD  (d) G-Kelly ) N-RXD (f) UTD
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Anomaly Detection in non-Gaussian environment

Robust Kelly Anomaly detector built with M-estimators:

—1 Hi
Ageyaps,p = (X — i) Sy (x— ) 5 A,
0

0 Replace the unknown parameters by robust estimators (M -estimators
or Shrinkage estimators),

[0 The detector’s distribution depends on the underlying non-Gaussian
distribution.
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Results on Hyperion image

(a) FP (b) SCM-DL (c) Shrinkage FPE
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Results on Hymap image

Results obtained with artificial targets
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Results on Hymap image

(b) SCM-DL

(d) Shrinkage FPE
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Outline

Conclusions

Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 48/ 51




Conclusions

[J Extension of classical Target detection and Anomaly detection
techniques for non-zero mean case under Gaussian assumption,

[J Hyperspectral images like radar or SAR images can suffer from
non-Gaussianity or heterogeneity that can reduce the performance of
anomaly detectors (RXD) and target detectors (AMF, ANMF'),

(] Elliptical Distributions modeling is a very useful theoretical tool for
the hyperspectral context that can match and overcome the
heterogeneity and non-Gaussianity of the images,

[J Jointly used with robust estimates, the proposed hyperspectral
detectors may provide better performances and a more accurate false
alarm regulation. And they keep the same performance than the
conventional Gaussian detectors for homogeneous and Gaussian data.
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Perspectives

[J Subspace Projectors
[0 Random Matrix Theory
[0 Change Detection problems,
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Thank you for your attention
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