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Classi�cation

Goal

Sort pixels in a polarimetric SAR image in di�erent groups thanks to their

polarimetric properties, in an unsupervised way.

Truth Observations
Measurements

Classi�cation
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Synthetic Aperture Radar

Principle of SAR

t0

t1
t2

Plane trajectory

Pulses

Swath

P

Measured signal : k is a complex value.
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Synthetic Aperture Radar

Polarimetry

Incident wave EI

Re�ected wave ER = e−jkr

r

[
SHH SHV

SVH SVV

]
EI

Figure : Polarimetry

� Polarization: orientation of the electric �eld of the EM wave

� Several possible polarizations ⇒ horizontal and vertical

� Monostatic con�guration → SHV = SVH .

� Measured signal : k =

 SHH√
2SHV
SVV

 is a complex vector of size m = 3.
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Statistics in SAR

Random modeling of the signal

� Interferences inside the resolution cells, non-stationarity, ... → model k

as a random variable.

� Common assumption: k ∼ CN (0,T)

Low resolution

Large number of scatterers in each resolution cell

Central Limit Theorem

� In high resolution images, number of scatterers in each resolution cell

smaller → CLT not applicable.

� k is no longer Gaussian-distributed

Need to model the non-Gaussianity

Introduction of a non-Gaussian model.
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Several models

Non-Gaussian models for SAR

Previously proposed distributions:

� K-distribution: Oliver (1984), Jao (1984), Ulaby (1986).

� G distribution: Frery (1997 & 2003).

� KummerU distribution: Bombrun (2008).

� Fisher distribution: Tison (2004).

� K-Wishart distribution by Doulgeris (2008).

The SIRV (Spherically Invariant Random Vectors) model

k =
√
τx

� x (speckle): complex circular zero-mean Gaussian m-vector

� τ (texture): positive random variable.

Used extensively in radar detection. Recently, at ONERA, PhD thesis of E.

Jay (2002), F. Pascal (2006) and M. Mahot (2012) on detection and

estimation with SIRV + postdoc of G. Vasile (2009) on classi�cation.
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Several models

Why choose this model ?

� Takes into account the heterogeneity of the signal thanks to the

texture τ (local variations of power).

� Contains polarimetric information in x and M = E
[
xxH

]
.

� Encompasses many di�erent distributions: Gaussian, K distribution,

Weibull, Cauchy, Student-t, Rice, etc, depending on the distribution of

τ.

� Provides a strong uni�ed framework, notably for estimation purposes:

e.g. covariance matrix estimator.

Pierre Formont Stat. and geom. tools for the classif. of highly textured PolSAR images Defense 11/ 71



Introduction Statistical context Proposed framework Statistical classi�cation Information geometry Conclusions

Covariance matrix

Covariance matrix

Traditionally, k ∼ CN (0,T)→ need the covariance matrix T = E
[
kkH

]
.

Problem

T unknown and only one observation of k

Estimation with neighbouring pixels.

Pixel under consid-

eration

Secondary data (k1,

... kN )

Sample Covariance Matrix

T̂SCM =
1

N

N∑
i=1

kik
H
i ∼W (T,N )
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Covariance matrix

Covariance matrix

Traditionally, k ∼ CN (0,T)→ need the covariance matrix T = E
[
kkH

]
.

Problem

T unknown and only one observation of k

Sample Covariance Matrix

T̂SCM =
1

N

N∑
i=1

kik
H
i ∼W (T,N )

� In the SIRV case, k =
√
τx with M = E

[
xxH

]
.

� The Sample Covariance Matrix of the SIRV covariance matrix M:

T̂SCM =
1

N

N∑
i=1

kik
H
i =

1

N

N∑
i=1

τixix
H
i 6=

1

N

N∑
i=1

xix
H
i
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The Fixed Point Estimator

The Fixed Point Estimator

Under SIRV assumption, the Approximate Maximum Likelihood Estimator

of the covariance matrix M is the solution of the following equation:

M̂ =
m

N

N∑
i=1

kik
H
i

kHi M̂
−1ki

=
m

N

N∑
i=1

xix
H
i

xHi M̂
−1xi

.

Called the Fixed Point Estimator M̂FPE .

Depends only on the speckle part of the signal

No corruption from the heterogeneous power.

Properties of the FPE

� The solution exists and is unique, up to a scalar factor.

� It is unbiased and consistent.

� When N is large: same asymptotic behavior as M̂SCM with a di�erent

secondary data number: N for M̂SCM ,
m + 1

m
N for M̂FPE

Pierre Formont Stat. and geom. tools for the classif. of highly textured PolSAR images Defense 14/ 71



Introduction Statistical context Proposed framework Statistical classi�cation Information geometry Conclusions

Outline

1 Introduction

2 Statistical context

3 Proposed framework

Wishart classi�er

Illustration

4 Statistical classi�cation

5 Information geometry

6 Conclusions and perspectives

Pierre Formont Stat. and geom. tools for the classif. of highly textured PolSAR images Defense 15/ 71



Introduction Statistical context Proposed framework Statistical classi�cation Information geometry Conclusions

Wishart classi�er

Proposed framework

Many existing techniques

Wishart classi�er (K-means clustering)

� Initialization: P classes with class centers C1, ...,CP

� Reassignment:

T ∈ Ωk ⇔ k = argmin
p

(
ln |Cp | + Tr

(
C

−1
p T

))
(Wishart distance: Lee,1994)

� Class center computation:

Ck =
1

N

∑
Ti∈Ωk

Ti
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Illustration

Dataset

(a) Optical view (b) RAMSES data, Pauli basis(1)

Figure : Dataset, Brétigny

(1):(
SHH + SVV√

2
,
SHH − SVV√

2
,
√
2SHV )
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Illustration

Limitation of the Gaussian assumption

(a) Using the SCM (b) Using only the intensity

Figure : Wishart classi�cation of the Brétigny area

⇒ same results with Tr (T) and T ?
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Illustration

In�uence of the SIRV assumption

(a) Using the SCM (b) Using the FPE

Figure : Wishart classi�cation of the Brétigny area

⇒ better separation of heterogeneous areas
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Motivations

Motivations

Second step of the Wishart classi�er

T ∈ Ωk ⇔ k = argmin
p

(
ln |Cp | + Tr

(
C

−1
p T

))

� No constraint on the minimum

◦◦
◦

◦◦

◦◦
◦ ◦

◦

◦◦ ◦
◦ ◦

◦◦◦
◦◦

�

�

�

� Di�culty �nding an optimal number of classes.
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Motivations

Motivations

Second step of the Wishart classi�er

T ∈ Ωk ⇔ k = argmin
p

(
ln |Cp | + Tr

(
C

−1
p T

))

� No constraint on the minimum

� Di�culty �nding an optimal number of classes.

Proposed approach: hypothesis test

Test if an hypothesis is valid and provides a threshold for the rejection of

this hypothesis.
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Proposed approach

Test construction

Goal

Compare the covariance matrices of two pixels k(1) and k(2).

Hypothesis test: {
H0 : T1 = T2 = T,

H1 : T1 6= T2,

T1,T2,T unknown ⇒ estimated from
(
k
(1)
1 , ...k

(1)
N1

)
and

(
k
(2)
1 , ...k

(2)
N2

)
Generalized Likelihood Ratio Test

Λ =

sup
θ

L(k;H1, θ)

sup
θ

L(k;H0, θ)

H1

≷
H0

η, where L(k;H , θ) =
∏
i

f (ki |H , θ).
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Proposed approach

Case T2 known

GLRT

ln(Λ) = N1

(
ln |T2| − ln

∣∣∣T̂1

∣∣∣ + Tr
(
T−1
2 T̂1

)
−m

)
For both SCM and FPE

ln(Λ) = d(T̂1,T2) =
(
ln |T2| + Tr

(
T−1
2 T̂1

))⇒ Wishart distance

⇒ Generalization of the Wishart distance
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Proposed approach

Case where both matrices are unknown

GLRT

Λ =

∣∣∣T̂∣∣∣N1+N2∣∣∣T̂1

∣∣∣N1 ∣∣∣T̂2

∣∣∣N2 exp
(
Tr
(
T̂−1

[
N1T̂1 +N2T̂2

])
− (N1 +N2)m

)

� SCM case:

T̂ =
N1T̂1 +N2T̂2

N1 +N2
⇒ Λ =

∣∣∣T̂∣∣∣N1+N2∣∣∣T̂1

∣∣∣N1 ∣∣∣T̂2

∣∣∣N2
� FPE case:

T̂ = f (T̂1, T̂2) ???
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Box's approximation

Box's M-test (Gaussian case)

Bartlett's distance (1937)

ΛBar =

∣∣∣T̂1

∣∣∣ν12 ∣∣∣T̂2

∣∣∣ν22∣∣∣T̂∣∣∣ν2
where νi = Ni and ν = N1 +N2 are the degrees of freedom of the

estimation of T̂i and T̂, respectively.

Box's χ2 approximation (1949)

ΛBox = −2(1 − c1) ln(ΛBar ) ∼ χ
2

(
1

2
m(m + 1)

)

where c1 =


2∑

i=1

1

νi
−

1
2∑

i=1

νi


(
2m2 + 3m − 1

6(m + 1)

)
.
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Box's approximation

Box's M-test (SIRV case)

Asymptotic property of the FPE: same asymptotic behavior as M̂SCM with

a di�erent secondary data number: N for M̂SCM ,
m + 1

m
N for M̂FPE

Box's χ2 approximation for the SIRV case

ΛBox = −2(1 − c1) ln(Λ
′
Bar ) ∼ χ

2

(
1

2
m(m + 1)

)

Di�erence from Gaussian case

νi =
m

m + 1
Ni and ν =

m

m + 1
(N1 +N2).

Critical region

ΛBox

H1

≷
H0

η⇒ Cr =

{
ΛBox , ΛBox > η = χ2PFA

(
1

2
m(m + 1)

)}
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Applications

Naive implementation

Initialization

1 class ω1 of center C1

∀ pixel, class
Compute ΛBox (Mpixel ,Cclass)

If min
Cclass

ΛBox (Tpixel ,Cclass) < η⇒ pixel in class

If min
Cclass

ΛBox (Tpixel ,Cclass) > η⇒ pixel in rejection class

New class = rejection class

Recompute class centers

Stopping

criterion

reached ?

End

Increase number of classes

Yes

No
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Applications

Naive implementation, classi�cation results using the SCM

(a) 1 iteration (b) 8 iterations

Figure : Classi�cation results with SCM
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Applications

Naive implementation, classi�cation results using the FPE

P. Formont, F. Pascal, G. Vasile, J.-P. Ovarlez and L. Ferro-Famil, �Statistical Classi�cation for

Heterogeneous Polarimetric SAR Images�, IEEE JSTSP, 2011.

(a) 1 iteration (b) 8 iterations

Figure : Classi�cation results with FPEPierre Formont Stat. and geom. tools for the classif. of highly textured PolSAR images Defense 32/ 71
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Applications

Application to hierarchical clustering

� Hierarchical segmentation: Beaulieu and Touzi(2004).

� Salembier and Alonso-Gonzalez (since 2010).

p0 p1 p2

p3 p4

p5 p6

p7

Figure : Hierarchical clustering

� Each pixel initially in its own class (leaf).

� At each iteration, merge closest pixels w.r.t. ΛBox .
� De�ne a linkage function to merge clusters of pixels:

minimum distance

maximum distance

average distance

� Cut the tree at height given by the threshold η.
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Applications

Average distance

(a) SCM (b) FPE

Figure : Hierachical clustering results with average distance and PFA = 10−4

Pierre Formont, Miguel Angel Veganzones, Joana Maria Frontera-Pons, Frédéric Pascal, Jean-Philippe
Ovarlez and Jocelyn Chanussot, �CFAR Hierarchical Clustering of Polarimetric SAR Data�, IEEE 2013
International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, July 21 − 26, 2013.
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Motivations

Motivations

Third step of the Wishart classi�er

Ck =
1

N

∑
Ti∈Ωk

Ti

Use the pixels of the class directly ?

Ck =
1

Nk

Nk∑
n=1

knk
H
n

(a) Arithmetical mean (b) Estimation
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Theory

Structure of covariance matrices

� Another way to look at the problem: consider the structure of the

manipulated objects (covariance matrices) ⇒ Hermitian

de�nite-positive matrices.

� NOT Euclidean space: arithmetical mean not adapted to this space.

Euclidean mean (arithmetic)

argmin
M∈P(m)

N∑
i=1

d(M,Mi )
2, where d(M,Mi ) = ‖M −Mi‖F

Riemannian mean (geometric)

argmin
M∈P(m)

N∑
i=1

d(M,Mi )
2, where d(M,Mi ) = ?
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Theory

Structure of covariance matrices

Euclidean mean (arithmetic)

d(M,Mi ) = ‖M −Mi‖F

Riemannian mean (geometric)

d(M,Mi ) = ?
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Theory

Mean of Hermitian de�nite positive matrices

Riemannian distance between two matrices

d(M1,M2)
2 =

∥∥∥∥log((M−1/2
1

)H
M2M

−1/2
1

)∥∥∥∥2
F

More convenient expression

d (M1,M2) =

[
n∑

k=1

(log λk )
2

]1/2

No analytical expression for M !
N∑
i=1

log
(
M

−1
i M

)
= 0.

Gradient descent algorithm

Mn+1 =
(
M

1/2
n

)H
exp

(
−ε

N∑
i=1

log

((
M

−1/2
n

)H
M

−1
i M

−1/2
n

))
M

1/2
n
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Theory

Recent work

� Moakher (2005) proposed a di�erential approach to compute the mean

of symmetric positive-de�nite matrices.

� Devlaminck (2010) demonstrated the added physical interpretation of

a Riemannian mean for the covariance matrices in polarized light.

� Wang (2010) used Riemannian geometry for PolSAR classi�cation

using the mean-shift algorithm.

� Barbaresco (2010) proposed di�erent approaches for the computation

of the mean of Hermitian de�nite positive matrices and applications to

radar signal processing, especially STAP processing.
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Application

Simulated data

Figure : Extraction of covariance matrices

Pierre Formont Stat. and geom. tools for the classif. of highly textured PolSAR images Defense 51/ 71



Introduction Statistical context Proposed framework Statistical classi�cation Information geometry Conclusions

Application

Simulated data

M1, λ1 M1, λ2

M1, λ3 M1, λ4

M2, λ1 M2, λ2

M2, λ3 M2, λ4

M3, λ1 M3, λ2

M3, λ3 M3, λ4

M4, λ1 M4, λ2

M4, λ3 M4, λ4

(a) K-distributed data (b) Power

Figure : Simulated data
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Application

Classi�cation scheme

K-means clustering with 4 classes:

� Choice of Wishart distance or Riemannian distance

� Choice of Euclidean mean or Riemannian mean

� Choice of SCM or FPE

� Choice of supervised case (initial class centers are generating matrices

M1, ..., M4) or unsupervised case (initial class centers are estimated

through random initialization of the data).

Pierre Formont, Jean-Philippe Ovarlez and Frédéric Pascal, �On the use of Matrix Information
Geometry for Polarimetric SAR Image Classi�cation�, Matrix Information Geometry, Springer, pp.
257 − 276, 2013.
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Application

Classi�cation results, simulated data

All cases

SCM polluted by power.

(a) SCM (b) Power
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Application

Classi�cation results, simulated data

All cases (FPE, Euclidean mean)

Little di�erence between Wishart distance and Riemannian distance

(a) Riemannian distance (b) Wishart distance
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Application

Classi�cation results, simulated data

Supervised case (FPE, Wishart distance)

Little di�erence between Euclidean mean and Riemannian mean

(a) Euclidean mean (b) Riemannian mean

Pierre Formont Stat. and geom. tools for the classif. of highly textured PolSAR images Defense 56/ 71



Introduction Statistical context Proposed framework Statistical classi�cation Information geometry Conclusions

Application

Classi�cation results, simulated data

Unsupervised case (FPE, Wishart distance)

Riemannian mean can perform better when matrices are not known

(a) Euclidean mean (b) Riemannian mean
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Application

Classi�cation scheme for real data

K-means clustering with 8 classes:

� Choice of Wishart distance or Riemannian distance

� Choice of Euclidean mean or Riemannian mean

� Fixed Point Estimator

� Choice of Cloude-Pottier initialization or random initialization.
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Application

Cloude-Pottier decomposition

Figure : Entropy - α plane
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Application

Classi�cation results, real data

All cases

Little di�erence between Cloude-Pottier and random initialization.

(a) Cloude-Pottier (b) Random

Figure : Euclidean mean, Wishart distance
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Application

Classi�cation results, real data

All cases

Impact of Riemannian distance di�cult to quantify.

(a) Wishart distance (b) Riemannian distance

Figure : Euclidean mean, Cloude-Pottier initialization
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Application

Classi�cation results, real data

Impact of Riemannian mean

Separates some features

(a) Euclidean mean (b) Riemannian mean

Figure : Wishart distance, Cloude-Pottier initialization
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Application

Repartition in the H − α plane

(a) Classi�cation results (b) Repartition

Figure : SCM, Euclidean mean, Wishart distance
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Application

Repartition in the H − α plane

(a) Classi�cation results (b) Repartition

Figure : FPE, Euclidean mean, Wishart distance
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Application

Repartition in the H − α plane

(a) Classi�cation results (b) Repartition

Figure : FPE, Riemannian mean, Wishart distance
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Outline

1 Introduction

2 Statistical context

3 Proposed framework

4 Statistical classi�cation

5 Information geometry

6 Conclusions and perspectives

Conclusions

Perspectives
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Conclusions

Modeling

� Introduction of a non-Gaussian model for polarimetric SAR

classi�cation

� Limitations of the traditional Gaussian approach

� Uni�cation of previous work

� Application on real data

� Increase interest of polarimetry
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Conclusions

Statistical approach

� Original approach to the classi�cation problem through hypothesis test

� Generalization of the traditional Wishart distance for the SIRV model

� Introduction of a rejection class

� Development of new algorithms and application on real data
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Conclusions

Application of information geometry

� Introduction of tools for computation of mean of polarimetric

covariance matrices

� Study impact on simulated data

� Application on real data
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Perspectives

Perspectives

� Validation of all these techniques: physical interpretation

� Texture can provide polarimetric information jointly with covariance

matrix

� Validity of the SIRV model: single texture for all polarisations ?

� Local estimation of the covariance matrix

� Application to other data: hyperspectral, ...

Pierre Formont Stat. and geom. tools for the classif. of highly textured PolSAR images Defense 70/ 71



Introduction Statistical context Proposed framework Statistical classi�cation Information geometry Conclusions

Thanks

Thanks for your attention
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