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Range-Doppler Parameter Estimation

Electromagnetic wave propagates with speed light c. The two-way propagation delay up to the

distance D is T = —
c

Emitter -
-
Receiver Hf ~ —

&

SCOPE PPL
(Panoramic Plane Indicator)

e Radar emitted signal: s.(t) = u(t) exp (2i7tfy t) where fy is the carrier frequency, and
u(.) the baseband signal,

e Radar received signal: s,(t) = ase(t —T) + b(t) where o is the backscattering amplitude
of the target and b(.) is an additive noise.

s (t) = ase (t— 2) + b(t).

c
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Range-Doppler Parameter Estimation

Mot

Range-Doppler Parameter Estimation - Velocity Measurement

Let us consider an illuminated moving target located for time t at range D(t) = Do + v t where
v is the radial target velocity.

If T(t) is the two-way delay of the received signal at time t, the signal has been reflected at
time t — t(t)/2 and the range D(t) has to verify the following equation:

c1(t)=2D(t—%> .

and the model relative to signal return is:

s,(t)ocse(c_vt— 2D°>+b(t).

2D0—|—Vt

We obtain t(t) = o

c+v c+v

The moving target is characterized in the signal return by a time-shift-compression/dilation of
the emitted signal: action of Affine Group.

J.-P. Ovarlez Radar Autumn School 2024 5/79



Range-Doppler Parameter Estimation

Range-Doppler Parameter Estimation - Velocity Measurement

Under the so-called narrow-band assumptions:
e fy >> B, where B is the bandwidth of baseband signal u(.),

o v <<<C¢,

e 2B T << ¢/v,
- 2D

We have: s, (t) = ocse<c Y O)—l—b(t),
c+v c+v

2 D 2
ocexp(id))u(t—?o) exp (2iTtfhy t) exp (—Qiﬂvabt) + b(t).

s.(t) = a’ s, (t— 25)()) exp (—2imfyt)+ b(t).

2v
where |o'| = |«| and where f; = — fy is called the Doppler frequency corresponding to moving
c

target. The moving target is so characterized in the signal return by a time-shift/frequency
shift of the emitted signal: action of Heisenberg Group .
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Range-Doppler Parameter Estimation

Distance criterion - Ambiguity function and Matched Filter

One of the most important problem arising in radar theory is to separate targets in range and
Doppler spaces. A £?(R) distance R between two signals X and Y can be defined:

R? = rw IX(t) — Y(t)]? dt.

—00
Minimizing this distance leads to maximize the inner product between X and Y (also known as
Matched Filter):

+oo
J X(t) Y*(t) dt.
According to the physical transformation of X, we obtain the so-called Ambiguity functions

[Woodward 53, Kelly 65].
+o0
o Example: Y(t) =X(t—1)e? ™V A(T,v) :J X(t)X*(t—T1)e 2™ dt,

—0o0

o Example: Y(t) =L X (a't—b)): Ala,b) = % J+Oo X(t)X* (a7t t—b)) dt.
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Radar basis
and Imaging Processing Range-Doppler Parameter Estimation

Link with the so-called Matched Filter and Pulse Compression

Let us consider a linear time-invariant filter of impulse response h(t). The filter input x(t) consists of a pulse
signal g(t) corrupted by additive zero mean white noise w(t) (with Power Spectral Density @, (f) = Np/2).
The output is y(t) = go(t) + n(t), the signal and noise components of the input x(t) for 0 <t < T.

Signal X O L) SNR — go(T)? _ leo(T)P
9 Sample at G% E [nz(t)] ,
White noise Linear receiver timet=T where |go(T)[? is the power of the filtered signal g(t) at t =
w(t) T,and 02 =E [n2(t)] is the power of the filtered noise.

Since |go(t)]? = JG(f) H(f)e>™ df

expression for the output SNR is:

2
N, .
and 02 = R,,(0) where R,(1) = J ?" IH(f)? 2™ df, the final

U H(f) G(f)e&>™T df

No
2

‘ 2

SNR = < 2 JIG(f)F df .

j|H(f)F df No

The SNR output is maximized only for the particular impulse response h(t) that verifies:
’ H(f) = k G*(f) e 27T Yk € C, or h(t) — kg*(T —t).
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Range-Doppler Parameter Estimation

Range resolution

Let us suppose N targets with amplitude {oc,-}l.e[LN] located in range space at distance
CcT;
{d,- = —'} . The received signal s,(t) is:
2 Jien

)

N N
s (t) = Z(X,’Se(t—’ti) 205 (f) = ZO"' S.(F)e2imfT
i=1 i—1

The radar processing leads to evaluate for all T, the following expression:

—+00 N —+00
R(7) :J s(t)si(t—1) dt =L R(1) = Zoc,-J [Se(F)? €2 F i) df .
—oo i=1 —o0
N
o When S,(f) =1 for f €] — o0, +oo[, R(T) = ) a;8(t—),
i=1

N .
o When S,(f) =1 for f € [-B/2,+B/2], R(t) = Y_ & W

i=1
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Radar basis
Processing Range-Doppler Parameter Estimation

Deux réflecteurs bien séparés en distance Deux réflecteurs presque indiscernables Deux réflecteurs non résolus
o= oo soeocioncon o= Toom comocioncon

Rionss oo Ripors oo
oo o | eear o | Pemarteca
2 E] E]
S o ] K
H H H
H %, 5.
H H H
= K] =
e H s
% o % z
= = il
3 o H H
3 3 3
H H H

“ 7 Domaineraatx () 7 vomaineradalx(m) 0 ™ vomaineradalxm 0

(a) Distance réflecteurs : 4 m  (b) Distance réflecteurs : 13 cm (c) Distance réflecteurs : 12.5 cm.

(a la limite de résolution dz = 12.5 ¢m)

Figure: Here: B =1.210° Hz

The range resolution 8D = 0.125 m (defining the so-called Range Bin) is proportional to the
inverse of the emitted signal bandwidth B:

cl
D = - —.
2 B
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Range-Doppler Parameter Estimation

Velocity resolution

2
Let us suppose N targets with amplitude {a};(; y, with Doppler {v,- =— f[)} . The
i€[1,N]

received signal S,(f) is:
N N
S(f) =Y aiSelf—vi) =2 s.(t) =) ayse(t) ¥ i,
i=1 i=1

The radar processing leads to evaluate for all v, the following expression:

+00 . N +00 )
R(v) =J S(F)Si(F —v)df =5 R(v) = Zoc,-J Ise(t)F e 27t v g
o i=1 >
The velocity resolution 5V (so-called Doppler Bin) is proportional to the inverse of the emitted
1
signal duration (or integration time) T: |8V = -
2 T
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Range-Doppler Parameter Estimation

Joint range and Velocity resolution

Let us suppose N targets with amplitude {a;};c(; 5y moving at velocity {v;};c; 5, and located in

/'['.
range space at distance {d; = %} o The received signal S,(f) is:
iel1,N

N
s (t) = Z o so(t — ;) e Vit
i=1

The radar processing (Matched Filter) leads to evaluate for all (T,v), the following expression:

+oo
R(T,v):J s (t)si(t—T)e 2 mVidt,

—00
This last equation is the superposition of the ambiguity functions [Rihaczek 1969] centered at
{(Th ‘vi)},’e[]_’N]

R(t,v) = o A(T— T, v—v;).

™M=
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Noi i Clutter in Radar

Some examples of Ambiguity Functions

. I Diagramme Ambiguite
Diagramme Ambiguite

Vitesse
Vitesse

3 -30 -25 -20 -5 -10 -5 0 8 3 -25 20 -5 -0 -5 0
Retard Retard

e Best radar waveforms are those which look like a thumbtack form (A(t,v) = 6(t) §(v))

but they definitely don't exist :-)
e Range and Doppler sidelobes can be troublesome for high density targets detection
because of their superposition at different ranges and Doppler [Rihaczek 1969)].
13 /79
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Range-Doppler Parameter Estimation

e Let us define the second order moments (centered) of the signal

+oo +oo
o2 :J t? |se(8)]* dt ~ T2, 02 :J £2 |S.(f)P? df ~ B? and the modulation index
1 [t ds(t) , o )
m= s Im tse(t) g dt. Under white Gaussian noise with variance o, range
and doppler accuracies are given by the following Cramer-Rao bounds [Kay 93, Kay 98].
0?2 02 o2 1
E[(v—9)?% = f = 1
(v =977 4?2 0207 — (m—tofy)? ~ 4m? &2 02’ ()
0?2 02 o> 1
E[(r—%)?] = £ > = 2
[(r =] 4?2 x? 0207 — (m—tofo)? ~ 4m2 o2 02’ (2)
0?2 m— tg f¢
Ellv—9)(r—%)] = — (3)

C4Am2 o2 0207 — (m—tof)?

e Radar uses to emit signal characterized with high time-bandwidth product B T.
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Noise and Clutter in Radar

Thermal noise

Thermal noise for most radars corresponds to additive complex white Gaussian noise
CN(0,,,1,,). This noise is generated by electronic devices in radar receivers.

What is the clutter?

Clutter refers to radio frequency (RF) echoes returned from targets which are uninteresting to
the radar operators and interfere with the observation of useful signals.

Such targets include natural objects such as ground, sea, precipitations (rain, snow or hail),
sand storms, animals (especially birds), atmospheric turbulence, and other atmospheric effects,
such as ionosphere reflections and meteor trails.

Clutter may also be returned from man-made objects such as buildings and, intentionally, by
radar countermeasures such as chaff.

A statistical model for the clutter is necessary: in the following, we consider the clutter as a
homogeneous Gaussian process!
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Radar h%\\
Range-Doppler Radar Processing
ground on Detec
more robust detection Lh'—Vﬂ&S

Range-Doppler Radar Processing

e The cross-correlation operation is closely related to the so-called Matched Filter (filter
which maximizes the SNR at its output). This is also known as the pulse compression
processing. This matched filter offers the gain B T on the noise power o2,

e The Doppler resolution is inversely proportional to the integration time. For monostatic
radar (both emission and reception on the same antenna), radar prefers to cut off this long
integration time into m pulses of duration T with Pulse Repetition Frequency (PRF)

F, =1/T, (total integration time m T,):

m—1
s(t) = Se(t—kT,).
k=0
Considering the signal return s,(t), the radar processing consists in evaluating:
+o00 m—1 T,
R(T,V)ZJ s (t)s*(t—1) e*2"””dt:Ze*2””"T’ J si(u+nT,)s (u—7) == du.
- n=0 0

Neglecting the Doppler into the pulse duration leads to adapting the processing to the
0-Doppler: missing high-speed targets, bias in range estimation due to the ambiguity

J.-P. Ovarlez Radar Autumn School 2024 19 /79
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Range-Doppler Radar Processing

Range-Doppler Radar Processing
When supposing non migrating target and neglecting the Doppler variation in the pulse, we can

rewrite the processing as:
m—1 T,
R(t,v) = Z e 2imvnT J s(u+ nT,4+71)s}(u)du=p"z,
n=0

0
z,(7)
. . T
where z = (z(T), z1(T), .. .,zm,l(T))T and p = (17 ey T 2y (im=1) T’) .
time 0 swath  tmeTr swath  HMEKTr oo,
7 ) T
pulse 0 H pulse 1 H pulse k [\2
D 2 Dy b, " Do Dy / D:
z}(r) zl{r) 2(T)

e For each range bin ¢ t/2 (time T, can be sampled at resolution 6t = 1/B) on the range support [D1, D,]
of the analyzed swath, compute z,(T) corresponding to the time correlation between received signal and
emitted pulse se(t) at time n T,

e For each range bin ¢ t/2, compute the Discrete Fourier Transform (pH z) over the m coefficients
{zn(T)},e(0,m—1) to characterize Doppler spectrum in the spectral support v € [0,1/T;].

Radar Autumn School 2024
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Radar b:

Range-Doppler Radar Processing

080 W0 1000 1100 1200 130
Viesse

Example of the so-called Range-Doppler map of the processing data.
e Coherent Doppler processing brings an improvement of m on the Doppler resolution with regards to the
one pulse processing (6v =1/(m T,)) as well as a gain m in SNR.
e Range resolution does not change. Always related by the pulse bandwidth,
e Appearance of the range ambiguities at ranges ck T,/2, k € Z,
e Appearance of the Doppler ambiguities at Doppler frequency k/T,, k € Z.
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Array/Space-Time Adaptive Processing

Source locating in azimuth 0, at Doppler v and in range bin ¢ t/2

If the radar receives signal on antenna array, each antenna is collecting s,(t) delayed by the
time shift T = nd sin0/c depending on its spatial position nd (n € [0, Ny]) on the array.
Supposing that the array is non-dispersive (Ns dsin® << ¢/B) , the concatenated

Ns x m-observation vector y collected by the radar on the antenna array for a given range bin
¢ T/2 and Doppler v is then:

y=Ap® (1,e2iﬂfodSine/57._.7e2iﬂfo(stl]dsinG/c)T 1b.

Signal arrival

wavefront
dsin6
b
P 0.
— d— I dsin 6
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Radar basis
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General Formulation of All the Detection Problems

Set of two binary hypotheses
Ho :z=D>b
Hi:z=Ap+b
e 7z is a m-vector of data collected in a given measurement support. It can be range support,
spatial support (Imaging), etc.

, where

e The complex amplitude A of the target to detect is considered here deterministic (no
fluctuation)

e The m-vector b represents the additive noise (thermal noise, photon noise, clutter, jam,
etc.) characterized by a known (or unknown) PDF.

e The m-vector p represents the so-called deterministic steering vector: it can be relative to

Doppler, Polarimetry, Interferomety, Wavelength, Spatial, time, joint Angular and Spectral
information (STAP).

The problem here consists in choosing between H; hypothesis and Hy hypothesis.

J.-P. Ovarlez Radar Autumn School 2024
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Problem Statement

® In a m-vector z, detecting an unknown complex deterministic signal s = Ap embedded in an
additive noise y can be written as the following statistical test:

Hypothesis Hy: z =Yy zi=y: i=1...,n
Hypothesis H;: z=s+y zi=y; i=1,...,n |

where the z;'s are n "signal-free" independent secondary data used to estimate the noise
parameters. = Neyman-Pearson criterion [Kay 93, Kay 98]

m Detection test: comparison between the Likelihood Ratio A(z) and a detection threshold A:

m Probability of False Alarm (type-l error): Pr = P(A(z) > A/Ho)
m Probability of Detection: Py = P(A(z) > A/H,) for different Signal-to-Noise Ratios (SNR),

J.-P. Ovarlez Radar Autumn School 2024
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Noise/ T! PFA for Threshold 1
Clutter.
PFA
Jorget Detected Target
False \
Alarm ‘
max g \ Missed
Power level S Targot (T2)
Neiser T1 MirThuiddl = |["==cechossscsasw | i e
Clutier

Nosse/
4 Clutter
3
2
Detection !
Threshold o

”

PFA for Threshold 2

Target
FA

----- T2

Noise!

. Clutier
i firhy ™ RMS
' «— Noise 1

111 Level

max
Power level

Pt =P(A(z) > A/Ho)
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max

Power level

Pd = ]P(/\(Z) > A/Hl) .




Problem Statement

0.7 . :

Noise Only

0.6 Noise Probability Density B Target Absent
205 Detection —
g Threshold
8 0.4 Probability of False Alarm ( Pg,)
2 P, = Prob{ threshold exceeded given target absent }
503 i.e. the chance that noise is called a (false) target
S We want Pg, to be very, very low!
[
a 0.2 |

0.1 |

0 | | !
0 2 4 6 8

Voltage
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0.7 T T T 1
Noise . .
- . Probability of Detection ( Pp)
0.6 Probability Density Pp = Prob{ threshold exceeded given target present }
2051 Detection | I-€- the chance that target is correctly detected
g ’ Threshold | We want P, to be near 1 (perfect)!
o4 ]
2
3503 Signal-Plus-Noise |
s Probability Density
o
S
a 0.2 —
p(x|H,)
0.1 Signal + Noise
0 ! Target Present
0 4 6 8

Probability of Voltage
False Alarm ( Pgp)
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0.7
Noise Only Courtesy of MIT Lincoln Laboratory
0.6 — Detection Threshold Used with permission
P, =0.01

205 —
‘@
c
804 Signal Plus Noise Signal Plus Noise —
2 SNR=10dB SNR =20 dB
503 P, =0.61 Py~1 |
3
°
a 0.2 |

0.1 —

0 k
0 5 10 15

Voltage

* Py increases with target SNR for a fixed threshold (Pg,)

* Raising threshold reduces false alarm rate and increases
SNR required for a specified Probability of Detection
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a. threshold is set too high: Probability of Detection = 20%

b. threshold is set optimal: Probability of Detection = 80%

But one false alarm arises!

False alarm rate =1 /666 = 1,5 - 103
c. threshold is set too low: a large number of false alarms arises!
d. threshold is set variable: constant false-alarm rate

CFAR Property

A detector is said Constant False Alarm Rate (CFAR property) if the PDF of the test is
independent on the noise parameter (mean, covariance, variance, statistic) under Hy hypothesis.

J.-P. Ovarlez Radar Autumn School 2024
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Real-Valued Multivariate Gaussian distribution

Definition
Let x = (x1,...,Xy,) " be a random vector. The vector x is Gaussian if and only if, for any

sequence a = (al,...a,)" € R™ of real numbers, the scalar random variable
m

z=alx= E a; x; is a Gaussian variable.
=i

We note n = E(x) its mean and X = E [(x —u) (x—u) T} its covariance matrix.

Its PDF that is noted A/(u, X) is given by

1
= e P

J.-P. Ovarlez Radar Autumn School 2024
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Complex-Valued Multivariate Gaussian distribution

A random vector z = x + jy is complex Gaussian distributed z ~ CN (u, £,,P,) iif
X m(u)] {Zx 2% D
~ N , y
[y] <[j(”) I Xy
with £, =FE [(z —u)(z— p)"’] =X +X, +j(Zx—Z,) and
P,=E [(Z —u)(z— H)T] =X — X, +j(Zyx + Zy)

Circularity Property

z=x+jy € C™is circularly symmetric z ~ CN (u, X,) iif z L el®(z— ) Vo € [0; 27
Notably, Xy, =X, and £, =%, =0& X, =2%, and P, =0.

pu(2) exp (—(z— W' (z — )

G

J.-P. Ovarlez Radar Autumn School 2024
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Noise distribution

Central limit theorem

Let xq, X2, ..., X, be a sequence of random scalar i.i.d. variable with
zero-mean and variance o, then

VX, I3 N (0,0%) with x,=atxet.. .+
n—oo

n

A Gaussian/Normal random variable has the largest entropy among all ran-

dom variables of equal variance. n

Scalar speckle noise (Goodman 1976) The Galton board
@ : 2P (top), Random

z= ; ai expjp; = z~CN(0,0%), p(z) = 5 o? P <—%> : walk (bottom)

This explains why the Gaussian distribution is often used to model
the in-phase return of a large number of i.i.d. backscatterers in a radar resolution cell.
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The Power Spectral Density @ (f) characterizes, in a given range bin, the spectral (Doppler)
fluctuations of a process z = (2o, ..., 2Zn_1)" collected from pulse to pulse.

e Examples of some PSD models with —1/(2T,) < f <1/(2T,):

PRy
O () = g exp <—%) o= —20
(%)

f
o(T) = J+Oo O(f) exp (2i7tf 1) df.

—00

e Autocorrelation function (Wiener-Khintchine Theorem):

RCS (dBsm)

- L . L 2 p(0) ce p((m=1)Ty)
T ¢ Covariance Matrix: £ = E [z2"] = : 3 :
[Billingsley 1993 p((m=-1)T,) ... p(0)

J.-P. Ovarlez Radar Autumn School 2024 35 /79



Problem Statement

Link Between Covariance Matrix and Power Spectral Density 2/2

Examples of PSD and their associated covariance matrices:

e ®O(f) = Np € R that corresponds to a white noise leads to the CM equal to Z = Ny BI,
where B is the bandwidth of the receiver and I is the identity matrix.

e The exponential PSD @ (f) = Py exp (—«|f]), with « € R corresponds to the CM equal

to {p(k Tr) = 2Py (o + 472(k T,)2)*1/2}

ke[0,m—1]

e For any 0 < |po| < 1, the practical covariance model Z;; = {p‘o';j‘ leads to the

}i,je[l,mfl]
1— po exp (2itfmT,)

1 —po exp (2infT,)
o Exercise: How to generate simulated (Matlab) random Gaussian vectors z with a given
?

PSD |®(f)] =

covariance matrix X; j = {po }
ijell,m—1]

J.-P. Ovarlez Radar Autumn School 2024
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General Detection Theory

When some parameters (noise, target) are unknown:

e GLRT Detection test: comparison between the Generalized Likelihood Ratio A(z) and a
detection threshold A:
TaX max Pa/ky (2,0, 1) 1

Alz) = ZA,
( ) mE'X pz/Ho(Z7 H) ’jo

where © and u represent respectively the unknown target parameter vector and the unknown
noise parameter vector.

CFAR Property

A GLRT detector is said Constant False Alarm Rate (CFAR property) if the PDF of the GLRT
test is independent on the noise parameter (mean, covariance, variance, statistic) under Hy
hypothesis.
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Problem Statement

General Estimation Theory: unknown deterministic parameters

e Maximum Likelihood Estimation (MLE) scheme: maximize the PDF with respect to the
unknown parameter. Ex for noise parameter pu:
p= AIGMAX Pyt (2, 1) -
where z; ~CN (0,,,X) where X is an

unknown covariance matrix. The MLE §,, is set by solving

) u 5 B N B
Eloggpz(z,-,Z): sy <n log |27} =) 2’z 1z,-> =0.

Example: Suppose n target-free i.i.d. m-vectors {z;},_; ,

i=1

Recalling that %log |Z7H =% and 5;_1 (2 =7 2) = (2 zf’)T, we obtain:

Sample Covariance Matrix: MLE of the Gaussian problem
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Modeling Homogeneous Gaussian Noise/Clutter

Problem to solve in Gaussian environment

{Ho: Z=Yy zi=y; i=1,...,n

Hi: z=s+y z;=y;, i=1,...,n

where s = Ap, y and y; ~CN (0, X), i.e. p,(z) = exp (—ZH ! z)

nm |Z|
Goal: to choose the best hypothesis while minimizing the risk of being wrong (False Alarm)
from an observation vector z

= All is known for Gaussian assumption!

PN 12
When X is unknown, the Gaussian environment is modeled through the SCM: S, = EZZ"Z:'LI'
i=1
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Properties of the SCM in homogeneous Gaussian noise/clutter

environment

m Simple Covariance Matrix estimator,
m Very tractable,
m Wishart distributed,
m Well-known statistical properties: unbiased and efficient.
Then, v/nvec (g,, — Z) A, CN (0,2,C,P),

C=X®X)

where b (5% %) Ko

where K, , is the m x m commutation matrix transforming any m-vector vec (A) into
vec (AT).
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Modeling Homogeneous Gaussian Noise/Clutter

Under Gaussian assumptions CN'(0,,, Z), the Sample Covariance Matrix (SCM) is the most
likely covariance matrix estimate (MLE) and is the empirical mean of the cross-correlation of n
m-vectors zy:

m This estimate is unbiased, efficient, Wishart distributed,

E n can represent any samples support called the secondary data: in time, spatial, angular
domain, zx a vector of any information collected in any domain:

= in Radar Detection, it can represent the time returns collected in a given range bin of
interest, n is here the range bin support

= in Array Processing, it can represent the spatial information collected by the antenna array
at a given time, n is here the time support,

= in Space Time Adaptive Processing, it can represent the joint spatial and time information
collected in a given range bin of interest, n is here the range bin support,

m in SAR or Hyperspectral imaging, it can represent the polarimetric and/or interferometric,
or spectral information collected for a given pixel of the spatial image, n is here the spatial
support.
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Examples of Detector Derivations

Example 0 - Detection Schemes in Range Doppler map

® In a scalar measurement z, detecting an unknown complex deterministic signal s embedded in an

additive noise y can be written as the following statistical test:

] [awe.
zi=y; i=1,...

z=y, 1 p—, ) p
zi=y; i=1,...,n [ == |

z=s5+y,

Hypothesis H;:

Training et Coll Uner Tost Guard Cals

{ Hypothesis Ho:

usecans

where the z's are n "signal-free" independent secondary data used to estimate the noise

parameters. = Neyman-Pearson criterion [Kay 93, Kay 98]
Conventional detection framework on a mono-channel radar data mainly

consists of locally comparing

the complex amplitude of pixel z. In Gaussian homogeneous environment, i.e. y ~ CN(0, 2):

Hi
o Known power ¢?: global thresholding — A(z) = [z]> = A, leads to A = —0” log P, ,
Ho
2. . o ‘Z|2 H o ~1/N
e Unknown power ¢°: local thresholding — A(z) = m Z Aleadsto A =N (Pfa — 1).
1 2 Ho
N Z ||
ki

The detection scheme only consists of thresholding the intensity of each

J.-P. Ovarlez Radar Autumn School 2024

map pixel.
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Examples of Detector Derivations

Example 1 - Detection Schemes in Gaussian Noise

Hypothesis Hy: z=Db

Problem under study: { Hypothesis Hi: z = Ap+b

where A # 0 is a known complex scalar amplitude, p is the known steering vector and
b ~CN(0,,,X) with known covariance matrix X. The probability density functions of the
received m-vector z under each hypothesis are given by:

1 _ _
Pz/Ho(Z) = 71’"—|Z| exp (—ZH z lz) Pz/H, (z,A) = 7T'"—|Z| exp (—(Z - AP)H z 1(2 - AP)) .

T . Pz/H, (Z) . e . Hs—1 H
The Log-Likelihood function log ———— can be simplified as: | A(z) = Re (p”"Z "z) = A.

pz/Ho (Z HO
The statistic of the test becomes:

Alz) ~N (O,pH ! p) under Hy |and |A(z) ~N (Re (AH pHz ! p) pHz p) under H;
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Examples of Detector Derivations

Example 2 - Matched Filter (1)

Hypothesis Hy: z=b,

Problem under study: { Hypothesis H;: z=Ap+b

where A is unknown complex scalar amplitude, p is the known steering vector and
b ~CN(0,,,X) with known covariance matrix X. The probability density functions of the
received m-vector z under each hypothesis are given by:

1 Hg—1 1 Hg—1
Pa/H, (2) = 71'"—IZI exp (—Z z Z), Pa/ty (2, A) = nm—IZI exp (—(Z —Ap)"E (2 — AP)) .
o . piI 'z o
Maximizing p,/m, (2, A) with respect to A leads to the MLE A A= Ty Replacing it in
b P

the Log-Likelihood Ratio test, we obtain the well-known Matched Filter:

max Pa/ty (2, A) p" Z_1z|2 Hy
Awr(z) = log =

- — <
pz/Ho(Z) pHZ 1p Ho
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Example 2 - Matched Filter - Derivation of Performances (2)

Let SNR = |A p" Z7 p be the Signal to Noise Ratio of the target to be detected.
1
Under Hy hypothesis, z ~ CN (0, Z) and Ape(z) ~ 5)(2(2). We have:

+oo
Pta =P (Amr(z) > Avr/Ho) = J e " du=exp(—AuF),

AmME

’7\MF = —log Pr, .

1
Under H; hypothesis, z ~ CN(Ap, X) and /\Mp(z,ﬁ) ~ 5)(2 (2,2SNR). We have:

Py =P (Amr(z,A) > Ar/Hi) = 1— Fe(as) (2AmF) |

where Fy2(5 5)(.) is the cumulative x2(2,8) density function with non-centrality parameter
5§ =2SNR=2A2p" L 'p.
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Example 3 - Normalized Matched Filter (1)

Hypothesis Hy: z=Db,

Hypothesis H;: z=Ap—+b,

where A is unknown complex scalar amplitude, p is the known steering vector and

b ~CN(0,,, 0% ) with known covariance matrix £ but unknown variance 2. The probability
density functions of the received m-vector z under each hypothesis are given by:

9 1 2"z 71z 1 (z—Ap)"Z Yz— Ap)
Pa/H, (2, 0°) = mexp T2 Pa/Hy (2, A) = mexp - 02 .

"L 1y

Problem under study: {

o Maximizing p,,/p, (z, 0%) with respect to 02 leads to the MLE: 62 =

m
e Maximizing p,,p, (2, 02, A) with respect to o2 and with respect to A leads to the MLEs:
2
1 Hy 1y ~ Hy-t
62:— ZHZ_IZ—u andA:p—ilz.
pZ p
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Replacing it in the Log-Likelihood Ratio test, we obtain the well-known Normalized Matched

Filter:

Anwr(z) =1 maXNAX Py (3 0%, A) prs e
e (z) = Og — — — < NMF
max py (2, %) (PHZ ') (&I 2) W

We can note that the NMF is invariant with respect to a change scale for p, z or X. Let
SNR = |AR p" Z7 ! p be the Signal to Noise Ratio of the target to be detected. Under Ho
hypothesis, z ~ CN(0,,, 0°> £) and A(z) ~ B(1, m —1). We have:

P, = P (Anmr(z) > Anmr/Ho) = (1 —Anme)™

A=1—pym Y

We can note that the threshold Ayye does not depend on unknown variance 02. The test is
CFAR under Hy hypothesis.

J.-P. Ovarlez Radar Autumn School 2024



Some Background on Detectlon Theory Examples of Detector Derivations
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0 Matched Filter o Normalized Matched Filter
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Example 4 - Kelly and Adaptive Matched Filter (1)

Hypothesis Hy: z=Db, zi=b;, i=1...,n,

Problem under study: { Hypothesis H;: z=Ap+b, z =b;, i=1...,n.

where the z;'s are n "signal-free" independent secondary data used to estimate the noise
parameters, where A is unknown complex scalar amplitude, p is the known steering vector and
b ~ CN(0,,,X) with unknown covariance matrix £. The probability density function of the
received m-vector z under hypothesis Hy is given by:

1 -1 H . H

dloglz ! _ o7 Otr (Z7'B)

With formulas ————— — =B, we obtain:
o0X o0x

1 H . H
argmgxpz,{zk}k,;/Ho(z) :m <zz +;zkzk .
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The probability density function of the received m-vector z under hypothesis H; is given by:

1 -1 H . H
Puin), £.A/H (2) = At gt P (‘Tr (Z <(Z —Ap) (z—Ap)"+ ) u Zk))) -

k=1

. H
—A — A S
By denoting S = )z, z;, we obtain AIGIIAX Py, (5], £.A/ 1 (2) = (z—Ap) (Z p) +

and replacing thes&%to expressions in the Generallzed Log Likekihood Gatio Ieads to:

|zzH—|—S| Hy
<

If we note z; = S~ 1/2z and p; = S~ 1/2p, we have:
(2= Ap) (2~ Ap)" +8| = 181 | (2 — ADs) (2~ Ap)" + 1| = 18| (llzs — ApsI>+1)

. 2
and min S| <||z5 —Aps||2 + 1) =8| (HP;‘S ZSH + 1) where P}J;s =1, —pspt/p! ps.
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Example 4 - Kelly and Adaptive Matched Filter (3)

We obtain the following Generalized Likelihood Ratio test, known as the so-called Kelly's test
[Kelly 86].

Haq—1,]2 n
PS4 o Z H
ey (5) = (pHS~1p) (1+2"S 12) I%o Aty where . k=1 e

This detector has good properties but is often (usually) replaced by a simpler one (so-called
two-step), the Adaptive Matched Filter [Robey 92].

—~ 2
Hq-1
‘p Sn Z|  H ~ 1 &
/\AMF(Z) = ﬁ 2 }\AMF where Sn = — E Zy ZkH .
p"S,'p Ho L

~ 1
The covariance matrix estimate S, = — S is the empirical covariance matrix of the secondary
n
data {z}, [y, and is called Sample Covariance Matrix estimate.
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Example 5 - Adaptive Normalized Matched Filter (1)

Detection in quasi-homogeneous Gaussian Noise: Problem under study:
Hypothesis Hy: z=Db, zi=b;, i=1...,n,
Hypothesis Hy: z=Ap+b, z;=b;,, i=1...,n,

where the z;'s are n "signal-free" independent secondary data used to estimate the noise
parameters, where A is unknown complex scalar amplitude, p is the known steering vector,
where b; ~CN(0,,,Z) and b ~ CN(0,,, 6> £) with unknown covariance matrix £ and unknown
variance 02. The PDF under each hypothesis is given by [Bandiera 09]:

1 Hs—1 . H¢—1
Pafaid £/ Ho (2) = o) gt P <—Z Il ) sl E e,
T k=1
1 z—Ap"Z ' (z—Ap) & he
pz,{zk}k,}:,o'Q,A/Hl(Z) = (1) g2m |Z|"+1 exp (— . + gzk Xz .
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The corresponding detector [Scharf 94, Kraut 99] is homogeneous of degree 0 with the
variables p, S, and z and is named Adaptive Normalized Matched Filter (ANMF):

2
s i
— ! — 21 AanmE  Where S, = — sz z,‘:’.
p/ SEIP) (ZH Syt Z) Ho i

ANMF and Cosine Estimate

This detector is often called a Cosine Estimator as it has the dimension of a cosine squared
between the steering vector p and the observation z:

Aanmr (z) = (

Aanmr(z) = cos® (p, z) .

Unlike the AMF which characterizes the power of a scalar product, the ANMF measures an
angle. It is so more sensible to a possible mismatch between p and z ([P. Develter 23)).
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Example 6 - Persymmetric Adaptive Matched Filter (1)

Many applications can result in a clutter covariance matrix that exhibits some particular
structure. For example, radars use symmetrically spaced linear arrays for spatial domain
processing and symmetrically spaced pulse trains for temporal domain processing.

m In these systems, the clutter covariance matrix £ has the persymmetric property:
>=J,ZJ,,

where J,, is the m-dimensional antidiagonal matrix having 1 as non-zero elements.
m The signal vector is also persymmetric, i.e. it satisfies: p = J,, p*.

m The persymmetric structure of £ can be exploited to improve its estimation accuracy
compared to the SCM.
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Examples of Detector Derivations

Example 6 - Persymmetric Adaptive Matched Filter (2)

We can build a two-step AMF with the persymmetric Maximum Likelihood (ML) estimate of
the clutter covariance matrix instead of the SCM. The problem under study is:

Hypothesis Hy: x=Tz=Tb, x;=Tz =Tb;, i=1,...
Hypothesis H;: x=Tz=ATp+Tb, x; =Tz =Tb;,, i=1,...,n,

where T is the unitary matrix defined by:

L Im/2 Imy2 for m even
2\ il =3

1 [ Ymvz 0 Jmaype
7 0 V2 0 for m odd.
iLm1)2 0 —idim-1),2

Through this unitary transformation, secondary data x; ~ CA (0,R) where R = TZ T/ is a
real covariance matrix
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Example 6 - Persymmetric Adaptive Matched Filter (3)

Let us now investigate the ML estimate of the real covariance matrix R from the n transformed
secondary data xx. The ML estimate R of real matrix R is unbiased and is given by:

ﬁ = Re(ﬁn) )

where Re(.) stands for the real part, and where:

1
:—§ =TS, T" wh == §
Z lxkxk where S - zkz,<

~ 1
m nR is real Wishart distributed with 2n degrees of freedom with parameter 5 R,
m This result could be retrieved by the COMET procedure!

J.-P. Ovarlez Radar Autumn School 2024
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The distribution of this new detector under hypothesis Hy can be derived. Replacing R in the
AMF (two-step procedure) leads to the following detection test, called the P-AMF:

sTR x| 4
L—"—

= Z APAMF

sTR s H

where s = Tp. In terms of the original data, we have, equivalently:

ApamF =

pH TH [Re (T§n TH)Tl Tz

ApamvF =

~ —1
pH TH [Re (TS,,TH” Tp '

In the ML estimation procedure, taking into account the real structure of R, or equivalently,
the persymmetric structure of X, virtually doubles the amount of secondary data.
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2n—m+1 2n—m+2 2n+1' APAMF

) 2 ’

-10 [ 10 20
Signal to Noise Ratio (dB)

m Left figure: Threshold decreasing brought by the P-AMF compared to the AMF for n = 25 and m = 20.
m Right figure: Improvement of about 7dB in terms of detection for the PAMF compared to the AMF for
this set of parameters.




Model :

Hypothesis Hp : x; = b;,
Hypothesis H; : x; = «;p + b;,
{titic,y are unknown and {bi}; ~ CN(0,X).

where p,

,i=1,...,n

If we note ¢ =

x1(1) ... x,(1) - 4
(01, . 00)" and X = : : The RXD GLRT Nl

)_(1 (m) Xn(m) secondary éa.ta, X
test (Reed and Yu, 90) is defined as: H .

(Xa™)" (XXH) " (XaxT)
Arxp(X) = 5
oxx
Taking a particular &« = [0,...,0,1,0,...,0]", a more simple and well-known RXD version

yields (the signal under test x; is present in the covariance estimation!):

J.-P. Ovarlez
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Example 7 - Anomaly Detector (2)

vector under text x
|

:x=b i=bi},i=1..., '
Model: Ho:x =D, » x ) I " Where {bi}; ~ ‘l
Hi:x=ap+b, , {x;=bj},,i=1...,n
CN(0,Z), « and p are unknown. The Kelly GLRT test (Frontera, 14) N !
is defined as: //
/

secondary data xi

~ H,
—
/\RXD(X)—X Sn X’%}\
0

that corresponds to the Mahalanobis distance.
n—m

The Kelly test is Hotelling T2 distributed: mn+1)

RXDSCM(C/HO) ~ Fm,n—m-
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Synthesis of CFAR Detection Schemes Under Gaussian Noise

Synthesis of CFAR Detection Schemes Under Gaussian Noise (1)

e Adaptive Matched Filter [Robey 92]:

‘pH §;1 z|
Aamr(z) = = 2 MNmF
pHS;tp Ho

A
P = 2h ("—m+1,n—m+2;n+1;_ A:””) :

o Adaptive Kelly Filter [Kelly 86].

Hy
— — Z AKelly
(p"’ St p) (n +2zH St z) Ho

1 n+1—m
Ppy = 1 ,
f (7\Ke//y )

Akelly(2) =
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Synthesis of CFAR Detection Schemes Under Gaussian Noise (2)

o Adaptive Normalized Matched Filter [Scharf 94, Kraut 99].

~ 2
‘pH S z’ "
Aanmr(z) = — — Z MNMF -
) ()

Po=(1—Aanmr)" " 2F1(n—m+2,n—m+ 10+ 1; Aanmr) -
m Persymmetric Adaptive Matched Filter [Pailloux 09]:

. 1 2
’pH TH [Re (T S, TH)} Tz

Hy

— = 2 ApAMF -
pH TH {Re (TS,,TH)} Tp o

Apamr =

2n—m+1 2n—m+2 2n+1  Apamr
PfaZZFl 2 ) 2 ) 2 T = o

J.-P. Ovarlez
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The particular case of conventional Range Doppler 1/2

If we assume the noise if white Gaussian with known covariance matrix £ = o2 I, then the

X i {pH Zil Z|2 Hy
conventional detection scheme Ayr(z) = T 2 Aur leads to the well known
. P7Z D H
simplified test:
2
|P z|” H 2
Awr(z) = 2 0 AmF
p''p Ho '

The test consists, for each range bin, in comparing the normalized Discrete Fourier Transform
of the vector z acquired for m pulses to a threshold. The corresponding PFA /threshold
relationship is defined as:

7\/\///: = 70‘2 log Pfa.
The conventional Range Doppler algorithm makes implicitly assumption that the noise is white.

In clutter environment, this processing is not optimal and we generally do not known the power
02 of the noise.
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The particular case of conventional Range Doppler 2/2

conventional detection scheme AayrF(z) = 2 Aamr. For particular white noise

H S 1 p HO
with unknown power 02 we can build a simp//f/ed two-step detection scheme, assuming that
§,, =021 where 62 = — Z |p zk| The new detection test becomes:
M=
Aamr(z) = Ip Z| 2 G2 Aawmr
0

The test consists, for each range bin, in comparing the normalized Discrete Fourier Transform
of the vector z acquired for m pulses to a adaptive threshold built with secondary data
{Zk}ici1,m- The corresponding PFA /threshold relationship is defined as:

Mawe = m (PH"—1) .

This threshold tends to Ayr for large value m of secondary data.
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Examples of Gaussian Hypothesis Failure

High Resolution Radars

e Small number of scatterers in the cell under test - Varying number of scatterers from cell to cell - Central Limit Theorem
non valid = non-Gaussianity [Jakeman 80]

e No validity of conventional tools based on Gaussian statistics [Farina 87, Gini 00, Jay 02].

Low-Grazing angles Illlumination Radar

e Microshadowing = impulsive clutter [Billingsley 93]

e Transitions of clutter areas, heterogeneity of spatial area under test = difficulty to set up the detection test Aop and the
Probability of False Alarm depending on the area.

D Likelinood Ratio

| Thermal Noise o tico esnots| Impulsive Noise
o
[ —

T 8 !

ot Scse

FuaTerain
o et
= anreier

[ omuwozs

02510050

Likinood

Lobin
Free Space) N+~ *
[ Y& |
g N | Depression
i ¢

Angle
Multipath

Probabllty That F* < Abscissa

. = o frax (RRTTARIC AT

~%> L. ] | 0 T A
™ Microshadowing ) N Fhmgewer’ T T g™

Low-Grazing angle surveillance Non-Gaussian behavior False Alarm regulation problem

Please refer to [F. Gini, A. Farina and M. S. Greco 2001]
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Examples of Gaussian Hypothesis Failure

m The SAR images are more and more complex, detailed, heterogeneous. The spatial statistic of
SAR images is not at all Gaussian,

= In polarimetry research field, almost all Non-Coherent Polarimetric Decomposition and
classification techniques [Lee 09, Formont 2012] are generally based on conventional covariance
matrix estimate (covariance or coherency matrix), typically the Sample Covariance Matrix (SCM),

Ovarlez Radar Autumn School 2f
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Examples of Gaussian Hypothesis Failure

RXD CDF
o 100 F
© Ly Cauchy N
% 10 [ Blocks_
B E ixture of t-Distributions|| =
s §
w
5 3 . -
£ F NN =
i \ —
-10 g 3 7
E(x2(144)) Trees N ?:
F Grass <
1 | L 1 | I T t
15 0 100 200 300 400 500 600 700 800 900 1000
Mahalanobis Distance
4
DSO data 2010 [Manolakis 2002]

Bad regulation of False Alarm rate for Anomaly Detector [Reed 1990, Manolakis 2002, Ovarlez
2011, Frontera-Pons 2016] and detectors of targets [Frontera-Pons 2017] in Hyperspectral
Images when they are based on conventional SCM estimate.
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Need of Better Approaches

Need to build alternatives to conventional approaches:

= Better Covariance Matrix Estimation

Requirements:
m Background modeling: Compound Gaussian, SIRV (K-distribution, Weibull, etc.), CES
(Multidimensional Generalized Gaussian Distributions, etc.),
m Estimation procedure: ML-based approaches, M-estimation, LS-based methods, etc.
m Adaptive detectors derivation and adaptive performance evaluation.

Some solutions will be proposed in Radar 2024 Tutorial on Robust Estimation and Detection

Schemes in non-Standard Conditions for Radar, Array Processing and Imaging
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