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Range-Doppler Parameter Estimation - Range Measurement
Electromagnetic wave propagates with speed light c. The two-way propagation delay up to the
distance D is τ =

2 D
c

• Radar emitted signal: se(t) = u(t) exp (2i π f0 t) where f0 is the carrier frequency, and
u(.) the baseband signal,

• Radar received signal: sr (t) = α se(t − τ) + b(t) where α is the backscattering amplitude
of the target and b(.) is an additive noise.

sr (t) = α se

(
t − 2 D

c

)
+ b(t) .
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Range-Doppler Parameter Estimation - Velocity Measurement
Let us consider an illuminated moving target located for time t at range D(t) = D0 + v t where
v is the radial target velocity.

If τ(t) is the two-way delay of the received signal at time t, the signal has been reflected at
time t − τ(t)/2 and the range D(t) has to verify the following equation:

c τ(t) = 2 D
(

t − τ(t)
2

)
.

We obtain τ(t) = 2 D0 + v t
c + v and the model relative to signal return is:

sr (t) = α se

(
c − v
c + v t − 2 D0

c + v

)
+ b(t) .

The moving target is characterized in the signal return by a time-shift-compression/dilation of
the emitted signal: action of Affine Group.

J.-P. Ovarlez Radar Autumn School 2024 5 / 79



Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Range-Doppler Parameter Estimation
Noise and Clutter in Radar

Range-Doppler Parameter Estimation - Velocity Measurement
Under the so-called narrow-band assumptions:

• f0 >> B, where B is the bandwidth of baseband signal u(.),
• v << c,
• 2 B T << c/v ,

We have: sr (t) = α se

(
c − v
c + v t − 2 D0

c + v

)
+ b(t) ,

= α exp (i ϕ) u
(

t − 2 D0
c

)
exp (2i π f0 t) exp

(
−2i π 2 v

c f0 t
)
+ b(t) .

sr (t) = α ′ se

(
t − 2 D0

c

)
exp (−2i π fd t) + b(t) .

where |α ′| = |α| and where fd =
2 v
c f0 is called the Doppler frequency corresponding to moving

target. The moving target is so characterized in the signal return by a time-shift/frequency
shift of the emitted signal: action of Heisenberg Group .
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Distance criterion - Ambiguity function and Matched Filter
One of the most important problem arising in radar theory is to separate targets in range and
Doppler spaces. A L2(R) distance R between two signals X and Y can be defined:

R2 =

∫+∞
−∞ |X (t) − Y (t)|2 dt .

Minimizing this distance leads to maximize the inner product between X and Y (also known as
Matched Filter): ∫+∞

−∞ X (t)Y ∗(t) dt .

According to the physical transformation of X , we obtain the so-called Ambiguity functions
[Woodward 53, Kelly 65]:

• Example: Y (t) = X (t − τ) e2i πν t : A(τ,ν) =
∫+∞
−∞ X (t)X∗(t − τ) e−2i πν t dt ,

• Example: Y (t) = 1√a X
(
a−1 t − b)

)
: A(a, b) = 1√a

∫+∞
−∞ X (t)X∗ (a−1 t − b)

)
dt .
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Link with the so-called Matched Filter and Pulse Compression
Let us consider a linear time-invariant filter of impulse response h(t). The filter input x(t) consists of a pulse
signal g(t) corrupted by additive zero mean white noise w(t) (with Power Spectral Density Φw (f ) = N0/2).
The output is y(t) = g0(t) + n(t), the signal and noise components of the input x(t) for 0 ≤ t ≤ T .

Deriving the matched filter (1/8)
n A basic problem that often arises in the study of communication systems is 

that of detecting a pulse transmitted over a channel that is corrupted by 
channel noise (i.e. AWGN)

n Let us consider a received model, involving a linear time-invariant (LTI) filter 
of impulse response h(t).

n The filter input x(t) consists of a pulse signal g(t) corrupted by additive 
channel noise w(t) of zero mean and power spectral density No/2.

n The resulting output y(t) is composed of go(t) and n(t), the signal and noise 
components of the input x(t), respectively.

)()()(
0),()()(

tntgty
Tttwtgtx

o +=
££+=

LTI filter of impulse
response 

h(t)
∑

White noise 
w(t)

Signal

g(t)
y(t)x(t) y(T)

Sample at 
time t = TLinear receiver

SNR =
|g0(T )|2

σ2n
=

|g0(T )|2

E [n2(t)]
,

where |g0(T )|2 is the power of the filtered signal g(t) at t =

T , and σ2
n = E

[
n2(t)

]
is the power of the filtered noise.

Since |g0(t)|2 =

∣∣∣∫ G(f )H(f )ej2πft df
∣∣∣2 and σ2

n = Rn(0) where Rn(τ) =
∫ N0

2
|H(f )|2 e2iπf τ df , the final

expression for the output SNR is:

SNR =

∣∣∣∫ H(f )G(f )ej2πfT df
∣∣∣2

N0
2

∫
|H(f )|2 df

≤
2

N0

∫
|G(f )|2 df .

The SNR output is maximized only for the particular impulse response h(t) that verifies:
H(f ) = k G∗(f ) e−2iπfT , ∀k ∈ C, or h(t) = k g∗(T − t) .
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Range resolution
Let us suppose N targets with amplitude {αi }i∈[1,N] located in range space at distance{

di =
c τi
2

}
i∈[1,N]

. The received signal sr (t) is:

sr (t) =
N∑

i=1
αi se(t − τi)

t→f
=⇒ Sr (f ) =

N∑

i=1
αi Se(f ) e−2i π f τi .

The radar processing leads to evaluate for all τ, the following expression:

R(τ) =

∫+∞
−∞ sr (t) s∗

e (t − τ) dt t→f
=⇒ R(τ) =

N∑

i=1
αi

∫+∞
−∞ |Se(f )|2 e2i π f (τ−τi) df .

• When Se(f ) = 1 for f ∈] −∞,+∞[, R(τ) =

N∑

i=1
αi δ(τ− τi) ,

• When Se(f ) = 1 for f ∈ [−B/2,+B/2], R(τ) =

N∑

i=1
αi

sin (πB (τ− τi))

πB (τ− τi)
.
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Range resolution

Chapitre 1. Principe de l’Imagerie SAR

• Simulation à 2 réflecteurs en bande X.

On montre ci-après, une série de simulations décrivant le pouvoir de résolution pour une
bande B d’émission donnée.

Le signal d’émission a un spectre fréquentiel de forme parfaitement rectangulaire. On se situe
en bande X : La largeur de bande est B = 1.2 Ghz et la fréquence centrale est fc = 9.5 Ghz.

Par conséquent, la distance �x séparant les 2 réflecteurs doit être plus grande que
c/2B = 12.5 cm pour que les réflecteurs soient résolus en distance radiale comme le montre les
figures (1.12) (a), (b) et (c).
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(a) Distance réflecteurs : 4 m (b) Distance réflecteurs : 13 cm (c) Distance réflecteurs : 12.5 cm.
(à la limite de résolution �x = 12.5 cm)

Fig. 1.12 – Les points séparés d’au moins �x = 12 cm sont résolus en distance.

14

Figure: Here: B = 1.2 109 Hz

The range resolution δD = 0.125 m (defining the so-called Range Bin) is proportional to the
inverse of the emitted signal bandwidth B:

δD =
c
2

1
B .
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Velocity resolution
Let us suppose N targets with amplitude {αi }i∈[1,N] with Doppler

{
νi =

2 vi
c f0

}

i∈[1,N]

. The

received signal Sr (f ) is:

Sr (f ) =
N∑

i=1
αi Se(f − νi)

f →t
=⇒ sr (t) =

N∑

i=1
αi se(t) e2i πνi t .

The radar processing leads to evaluate for all ν, the following expression:

R(ν) =

∫+∞
−∞ Sr (f ) S∗

e (f − ν) df t−f
=⇒ R(ν) =

N∑

i=1
αi

∫+∞
−∞ |se(t)|2 e−2i π t (ν−νi) dt .

The velocity resolution δV (so-called Doppler Bin) is proportional to the inverse of the emitted

signal duration (or integration time) T : δV =
c

2 f0
1
T .
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Joint range and Velocity resolution
Let us suppose N targets with amplitude {αi }i∈[1,N] moving at velocity {vi }i∈[1,N] and located in
range space at distance

{
di =

c τi
2

}
i∈[1,N]

. The received signal Sr (f ) is:

sr (t) =
N∑

i=1
αi se(t − τi) e2i πνi t .

The radar processing (Matched Filter) leads to evaluate for all (τ,ν), the following expression:

R(τ,ν) =
∫+∞
−∞ sr (t) s∗

e (t − τ) e−2i πν t dt .

This last equation is the superposition of the ambiguity functions [Rihaczek 1969] centered at
{(τi ,νi)}i∈[1,N]

R(τ,ν) =
N∑

i=1
αi A(τ− τi ,ν− νi) .
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Some examples of Ambiguity Functions
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Fig. 3.3 – Diagramme d’ambiguïté d’un code à fréquence instantanée non-linéaire de type hamming de durée T = 1 et de largeur
de bande B = 64

THE FRENCH AEROSPACE LAB
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THE FRENCH AEROSPACE LAB

• Best radar waveforms are those which look like a thumbtack form (A(τ,ν) = δ(τ) δ(ν))
but they definitely don’t exist :-)

• Range and Doppler sidelobes can be troublesome for high density targets detection
because of their superposition at different ranges and Doppler [Rihaczek 1969].
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Link with Minimal Bounds (Cramer Rao bounds)
• Let us define the second order moments (centered) of the signal

σ2
t =

∫+∞
−∞ t2 |se(t)|2 dt ≈ T 2, σ2

f =

∫+∞
−∞ f 2 |Se(f )|2 df ≈ B2 and the modulation index

m =
−1
2π Im

∫+∞
−∞ t se(t)

ds∗
e (t)
dt dt. Under white Gaussian noise with variance σ2, range

and doppler accuracies are given by the following Cramer-Rao bounds [Kay 93, Kay 98]:

E
[
(ν− ν̂)2] = σ2

4π2 α2
σ2

f
σ2

f σ
2
t − (m − t0 f0)2 ≥ σ2

4π2 α2
1
σ2

t
, (1)

E
[
(τ− τ̂)2] = σ2

4π2 α2
σ2

t
σ2

f σ
2
t − (m − t0 f0)2 ≥ σ2

4π2 α2
1
σ2

f
, (2)

E [(ν− ν̂)(τ− τ̂)] =
σ2

4π2 α2 . m − t0 f0
σ2

f σ
2
t − (m − t0 f0)2 (3)

• Radar uses to emit signal characterized with high time-bandwidth product B T .
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Noise and Clutter in Radar

Thermal noise
Thermal noise for most radars corresponds to additive complex white Gaussian noise
CN (0m, Im). This noise is generated by electronic devices in radar receivers.

What is the clutter?
Clutter refers to radio frequency (RF) echoes returned from targets which are uninteresting to
the radar operators and interfere with the observation of useful signals.
Such targets include natural objects such as ground, sea, precipitations (rain, snow or hail),
sand storms, animals (especially birds), atmospheric turbulence, and other atmospheric effects,
such as ionosphere reflections and meteor trails.
Clutter may also be returned from man-made objects such as buildings and, intentionally, by
radar countermeasures such as chaff.
A statistical model for the clutter is necessary: in the following, we consider the clutter as a
homogeneous Gaussian process!
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Noise and Clutter in Radar

/ 186

EXAMPLES OF RADAR CLUTTER
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Clutter : echoes due to interaction with environnement 
Ground clutter (soil, sea, forest,..) , surface clutter
rain, volumic clutter

Clutter is characterized by its reflectivity
(σoo) in m2/ m2  for surfaces
(σoo) in m2/ m3   for volumes

How to mitigate the clutter effect on detection
Cancellation by coherent soustraction of successive pulses
Doppler processing (echoes are concentrated around 0 Hz, for a groundbased radar)
STAP (Space time Adaptive Processing) for airborne radar

In some cases, the clutter is used by the radar
SAR imaging systems (Synthetic Aperture Radar) – ground or sea clutter
Weather radar – rain / ice / « air» clutter

Radar clutter - definition
PropagationPropagation

C1 – RADAR FUNDAMENTALS – Page 30
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Radar clutter - example

Example of clutter map for different azimuth resolutions

resolution 3° resolution 1°

Antenna pattern has a strong impact on clutter return

PropagationPropagation
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Range-Doppler Radar Processing
• The cross-correlation operation is closely related to the so-called Matched Filter (filter

which maximizes the SNR at its output). This is also known as the pulse compression
processing. This matched filter offers the gain B T on the noise power σ2,

• The Doppler resolution is inversely proportional to the integration time. For monostatic
radar (both emission and reception on the same antenna), radar prefers to cut off this long
integration time into m pulses of duration T with Pulse Repetition Frequency (PRF)
Fr = 1/Tr (total integration time m Tr ):

s(t) =
m−1∑

k=0
se(t − k Tr ) .

Considering the signal return sr (t), the radar processing consists in evaluating:

R(τ,ν) =
∫+∞
−∞ sr (t) s∗(t−τ) e−2i πν t dt =

m−1∑

n=0
e−2i πν n Tr

∫Tr

0
sr (u+ n Tr ) s∗

e (u−τ)����XXXXe−2i πν u du .

Neglecting the Doppler into the pulse duration leads to adapting the processing to the
0-Doppler: missing high-speed targets, bias in range estimation due to the ambiguity
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Range-Doppler Radar Processing
When supposing non migrating target and neglecting the Doppler variation in the pulse, we can
rewrite the processing as:

R(τ,ν) =
m−1∑

n=0
e−2i πν n Tr

∫Tr

0
sr (u + n Tr + τ) s∗

e (u) du
︸ ︷︷ ︸

zn(τ)

= pH z ,

where z = (z0(τ), z1(τ), . . . , zm−1(τ))
T and p =

(
1, e2i πν Tr , . . . , e2i πν (m−1) Tr

)T .

• For each range bin c τ/2 (time Tr can be sampled at resolution δτ = 1/B) on the range support [D1, D2]
of the analyzed swath, compute zn(τ) corresponding to the time correlation between received signal and
emitted pulse se(t) at time n Tr ,

• For each range bin c τ/2, compute the Discrete Fourier Transform (pH z) over the m coefficients
{zn(τ)}n∈[0,m−1] to characterize Doppler spectrum in the spectral support ν ∈ [0, 1/Tr ].
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Range-Doppler Radar Processing
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Fig. 5.4 – Sortie de traitement distance-vitesse idéal dans le cas de deux cibles pour deux codes radar et un cas de détection
(S/B=28dB) : 40 impulsions de durée τ = 10 µs, de période Tr = 40 µs (ambiguïté vitesse 750 m/s, ambiguïté distance 6 km,

résolution distance 5.88m, résolution vitesse 18.75 m/s).

THE FRENCH AEROSPACE LAB

Example of the so-called Range-Doppler map of the processing data.
• Coherent Doppler processing brings an improvement of m on the Doppler resolution with regards to the

one pulse processing (δν = 1/(m Tr )) as well as a gain m in SNR.
• Range resolution does not change. Always related by the pulse bandwidth,
• Appearance of the range ambiguities at ranges c k Tr/2, k ∈ Z,
• Appearance of the Doppler ambiguities at Doppler frequency k/Tr , k ∈ Z.
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Array/Space-Time Adaptive Processing
Source locating in azimuth θ, at Doppler ν and in range bin c τ/2
If the radar receives signal on antenna array, each antenna is collecting sr (t) delayed by the
time shift T = n d sin θ/c depending on its spatial position n d (n ∈ [0, Ns ]) on the array.
Supposing that the array is non-dispersive (Ns d sin θ << c/B) , the concatenated
Ns × m-observation vector y collected by the radar on the antenna array for a given range bin
c τ/2 and Doppler ν is then:

y = A p ⊗
(

1, e2iπ f0 d sinθ/c , . . . , e2iπ f0 (Ns−1) d sinθ/c
)T

+ b .

28

Propagation Delay Across the Array

T

d

d sinT
wavefront

Signal arrival

T  
dsin T
c

The key element in smart antenna testing is the Delay. As the signal arrival at the
antenna array travels across the different sensors, it encounters a propagation 
delay
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General Formulation of All the Detection Problems
Set of two binary hypotheses

{
H0 : z = b
H1 : z = A p + b , where

• z is a m-vector of data collected in a given measurement support. It can be range support,
spatial support (Imaging), etc.

• The complex amplitude A of the target to detect is considered here deterministic (no
fluctuation)

• The m-vector b represents the additive noise (thermal noise, photon noise, clutter, jam,
etc.) characterized by a known (or unknown) PDF.

• The m-vector p represents the so-called deterministic steering vector: it can be relative to
Doppler, Polarimetry, Interferomety, Wavelength, Spatial, time, joint Angular and Spectral
information (STAP).

The problem here consists in choosing between H1 hypothesis and H0 hypothesis.
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Problem Statement
In a m-vector z, detecting an unknown complex deterministic signal s = A p embedded in an
additive noise y can be written as the following statistical test:

{
Hypothesis H0: z = y zi = yi i = 1, . . . , n
Hypothesis H1: z = s + y zi = yi i = 1, . . . , n

where the zi ’s are n "signal-free" independent secondary data used to estimate the noise
parameters. ⇒ Neyman-Pearson criterion [Kay 93, Kay 98]

Detection test: comparison between the Likelihood Ratio Λ(z) and a detection threshold λ:

Λ(z) =
pz(z/H1)

pz(z/H0)

H1
≷
H0

λ ,

Probability of False Alarm (type-I error): Pfa = P(Λ(z) > λ/H0)

Probability of Detection: Pd = P(Λ(z) > λ/H1) for different Signal-to-Noise Ratios (SNR),
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Pd/Pfa

Pfa = P(Λ(z) > λ/H0) , Pd = P(Λ(z) > λ/H1) .
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False Alarm Regulation Importance

CFAR Property
A detector is said Constant False Alarm Rate (CFAR property) if the PDF of the test is
independent on the noise parameter (mean, covariance, variance, statistic) under H0 hypothesis.
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Real-Valued Multivariate Gaussian distribution

Definition
Let x = (x1, . . . , xm)T be a random vector. The vector x is Gaussian if and only if, for any
sequence a = (a1, . . . am)T ∈ Rm of real numbers, the scalar random variable

z = aT x =

m∑

i=1
ai xi is a Gaussian variable.

We note µ = E(x) its mean and Σ = E
[
(x − µ) (x − µ)

T
]

its covariance matrix.

Its PDF that is noted N (µ,Σ) is given by

px(x) =
1√

(2π)m |Σ|
exp

(
−
(x − µ)T Σ−1 (x − µ)

2

)
.
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Complex-Valued Multivariate Gaussian distribution
Definition
A random vector z = x + jy is complex Gaussian distributed z ∼ CN (µ,Σz , Pz) iif[

x
y

]
∼ N

([
ℜ(µ)
ℑ(µ)

]
,
[
Σx Σxy
Σyx Σy

])
with Σz = E

[
(z − µ)(z − µ)H] = Σx + Σy + j(Σyx − Σxy ) and

Pz = E
[
(z − µ)(z − µ)T ] = Σx − Σy + j(Σyx + Σxy )

Circularity Property

z = x + j y ∈ Cm is circularly symmetric z ∼ CN (µ,Σz) iif z d
= ejφ(z − µ) ∀φ ∈ [0; 2π[.

Notably, Σx = Σy and Σyx = Σxy = 0 ⇔ Σz = 2Σx and Pz = 0.

pz(z) =
1

πm|Σz |
exp

(
−(z − µ)HΣ−1

z (z − µ)
)
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Noise distribution
Central limit theorem
Let x1, x2, . . . , xn be a sequence of random scalar i.i.d. variable with
zero-mean and variance σ, then

√
n xn

a.s.→
n→∞ N

(
0,σ2) with xn =

x1 + x2 + . . .+ xn
n .

A Gaussian/Normal random variable has the largest entropy among all ran-
dom variables of equal variance.

Scalar speckle noise (Goodman 1976)

z =

n∑

i=1
ai exp jφi ⇒ z ∼ CN (0,σ2), p(z) = 1

2πσ2 exp
(
−

|z |2
2σ2

)
.

The Galton board
(top), Random
walk (bottom)

This explains why the Gaussian distribution is often used to model
the in-phase return of a large number of i.i.d. backscatterers in a radar resolution cell.
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Link Between Covariance Matrix and Power Spectral Density 1/2

The Power Spectral Density Φ(f ) characterizes, in a given range bin, the spectral (Doppler)
fluctuations of a process z = (z0, . . . , zm−1)T collected from pulse to pulse.

Modèles de Densité Spectrale de 
Puissance

Φ( f ) =Φ0 exp

 
�( f � f0)2

2σ2f c

!

Φ( f ) =Φ0
1

1+

✓
f
f0

◆n

� 1
2Tr

 f  1
2Tr

� λ
4Tr

 v λ
4Tr

pour {
Fonction d’Autocorrélation

ρ(τ) =
Z +∞

�∞
Φ( f )e2iπ f τ

Matrice de Covariance M =

0
BBBB@

ρ0 ρ1 . . . ρN�1
... ... ... ...
ρk ρk+1 . . .ρN�k�1
... ... ... ...

ρN�1ρN�2. . . ρ0

1
CCCCA

FLUCTUATIONS TEMPORELLES DU FOUILLIS

11

[Billingsley 1993]

• Examples of some PSD models with −1/(2 Tr ) ≤ f ≤ 1/(2 Tr ):

Φ(f ) = Φ0 exp
(
−
(f − fc )2

2σ2
f

)
, Φ(f ) = Φ0

1 +

( f
fc

)n ,

• Autocorrelation function (Wiener-Khintchine Theorem):

ρ(τ) =

∫+∞
−∞ Φ(f ) exp (2i π f τ) df .

• Covariance Matrix: Σ = E
[
z zH
]
=

 ρ(0) . . . ρ((m − 1)Tr )
...

. . .
...

ρ((m − 1)Tr ) . . . ρ(0)

 .
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Link Between Covariance Matrix and Power Spectral Density 2/2

Examples of PSD and their associated covariance matrices:
• Φ(f ) = N0 ∈ R+ that corresponds to a white noise leads to the CM equal to Σ = N0 B I,

where B is the bandwidth of the receiver and I is the identity matrix.
• The exponential PSD Φ(f ) = P0 exp (−α|f |), with α ∈ R+ corresponds to the CM equal

to
{
ρ(k Tr) = 2αP0

(
α2 + 4π2(k Tr )2)−1/2}

k∈[0,m−1]

• For any 0 ≤ |ρ0| ≤ 1, the practical covariance model Σi,j =
{
ρ
|i−j|
0

}
i,j∈[1,m−1]

leads to the

PSD |Φ(f )| =
∣∣∣∣1 − ρ0 exp (2iπfmTr )

1 − ρ0 exp (2iπfTr )

∣∣∣∣ .

• Exercise: How to generate simulated (Matlab) random Gaussian vectors z with a given
covariance matrix Σi,j =

{
ρ
|i−j|
0

}
i,j∈[1,m−1]

?
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General Detection Theory
When some parameters (noise, target) are unknown:

• GLRT Detection test: comparison between the Generalized Likelihood Ratio Λ(z) and a
detection threshold λ:

Λ(z) =
max
θ

max
µ

pz/H1(z,θ,µ)

max
µ

pz/H0(z,µ)
H1
≷
H0

λ ,

where θ and µ represent respectively the unknown target parameter vector and the unknown
noise parameter vector.

CFAR Property
A GLRT detector is said Constant False Alarm Rate (CFAR property) if the PDF of the GLRT
test is independent on the noise parameter (mean, covariance, variance, statistic) under H0
hypothesis.
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General Estimation Theory: unknown deterministic parameters
• Maximum Likelihood Estimation (MLE) scheme: maximize the PDF with respect to the

unknown parameter. Ex for noise parameter µ:
µ̂ = argmax

µ
pz/H0(z,µ) .

Example: Suppose n target-free i.i.d. m-vectors {zi }i=1,n where zi ∼ CN (0m,Σ) where Σ is an
unknown covariance matrix. The MLE Ŝn is set by solving

δ

δΣ
log

n∏

i=1
pz(zi ,Σ) =

δ

δΣ−1

(
n log

∣∣Σ−1∣∣− N∑

i=1
zH

i Σ−1 zi

)
= 0 .

Recalling that δ

δΣ−1 log
∣∣Σ−1∣∣ = ΣT and δ

δΣ−1
(
zH

i Σ−1 zi
)
=
(
zi zH

i
)T , we obtain:

Sample Covariance Matrix: MLE of the Gaussian problem

Ŝn =
1
n

n∑

i=1
zi zH

i .
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Modeling Homogeneous Gaussian Noise/Clutter
Problem to solve in Gaussian environment

{
H0: z = y zi = yi i = 1, . . . , n
H1: z = s + y zi = yi i = 1, . . . , n

where s = A p, y and yi ∼ CN (0m,Σ), i.e. pz(z) =
1

πm |Σ|
exp

(
−zH Σ−1 z

)
Goal: to choose the best hypothesis while minimizing the risk of being wrong (False Alarm)
from an observation vector z

=⇒ All is known for Gaussian assumption!

Sample Covariance Matrix (SCM)

When Σ is unknown, the Gaussian environment is modeled through the SCM: Ŝn =
1
n

n∑

i=1
zi zH

i .
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Properties of the SCM in homogeneous Gaussian noise/clutter
environment

Properties of the SCM
Simple Covariance Matrix estimator,
Very tractable,
Wishart distributed,
Well-known statistical properties: unbiased and efficient.

Then,
√

n vec
(

Ŝn − Σ
)

d−→ CN (0m2 , C, P),

where C = (Σ∗ ⊗ Σ)
P = (Σ∗ ⊗ Σ) Km2,m2 .

where Km,m is the m × m commutation matrix transforming any m-vector vec (A) into
vec
(
AT ).
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Under Gaussian assumptions CN (0m,Σ), the Sample Covariance Matrix (SCM) is the most
likely covariance matrix estimate (MLE) and is the empirical mean of the cross-correlation of n
m-vectors zk :

Ŝn =
1
n

n∑

k=1
zk zH

k .

This estimate is unbiased, efficient, Wishart distributed,
n can represent any samples support called the secondary data: in time, spatial, angular
domain, zk a vector of any information collected in any domain:

in Radar Detection, it can represent the time returns collected in a given range bin of
interest, n is here the range bin support
in Array Processing, it can represent the spatial information collected by the antenna array
at a given time, n is here the time support,
in Space Time Adaptive Processing, it can represent the joint spatial and time information
collected in a given range bin of interest, n is here the range bin support,
in SAR or Hyperspectral imaging, it can represent the polarimetric and/or interferometric,
or spectral information collected for a given pixel of the spatial image, n is here the spatial
support.
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Example 0 - Detection Schemes in Range Doppler map
In a scalar measurement z, detecting an unknown complex deterministic signal s embedded in an
additive noise y can be written as the following statistical test:

{
Hypothesis H0: z = y , zi = yi i = 1, . . . , n
Hypothesis H1: z = s + y , zi = yi i = 1, . . . , n

where the zi ’s are n "signal-free" independent secondary data used to estimate the noise
parameters. ⇒ Neyman-Pearson criterion [Kay 93, Kay 98]

Conventional detection framework on a mono-channel radar data mainly consists of locally comparing
the complex amplitude of pixel z. In Gaussian homogeneous environment, i.e. y ∼ CN (0,σ2):

• Known power σ2: global thresholding → Λ(z) = |z |2
H1
≷
H0

λ, leads to λ = −σ2 log Pfa ,

• Unknown power σ2: local thresholding → Λ(z) = |z |2

1
N

N∑

k ̸=i
|zk |

2

H1
≷
H0

λ leads to λ = N
(

P−1/N
fa − 1

)
.

The detection scheme only consists of thresholding the intensity of each map pixel.
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Example 1 - Detection Schemes in Gaussian Noise

Problem under study:
{

Hypothesis H0: z = b
Hypothesis H1: z = A p + b ,

where A ̸= 0 is a known complex scalar amplitude, p is the known steering vector and
b ∼ CN (0m,Σ) with known covariance matrix Σ. The probability density functions of the
received m-vector z under each hypothesis are given by:

pz/H0(z) =
1

πm |Σ|
exp

(
−zH Σ−1z

)
pz/H1(z, A) = 1

πm |Σ|
exp

(
−(z − A p)H Σ−1(z − A p)

)
.

The Log-Likelihood function log
pz/H1(z)
pz/H0(z)

can be simplified as: Λ(z) = Re
(
pH Σ−1 z

) H1
≷
H0

λ .

The statistic of the test becomes:

Λ(z) ∼ N
(
0, pH Σ−1 p

)
under H0 and Λ(z) ∼ N

(
Re
(
AH pH Σ−1 p

)
, pH Σ−1 p

)
under H1
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Example 2 - Matched Filter (1)

Problem under study:
{

Hypothesis H0: z = b ,
Hypothesis H1: z = A p + b ,

where A is unknown complex scalar amplitude, p is the known steering vector and
b ∼ CN (0m,Σ) with known covariance matrix Σ. The probability density functions of the
received m-vector z under each hypothesis are given by:

pz/H0(z) =
1

πm |Σ|
exp

(
−zH Σ−1z

)
, pz/H1(z, A) = 1

πm |Σ|
exp

(
−(z − A p)H Σ−1(z − A p)

)
.

Maximizing pz/H1(z, A) with respect to A leads to the MLE Â: Â =
pH Σ−1 z
pH Σ−1 p

. Replacing it in
the Log-Likelihood Ratio test, we obtain the well-known Matched Filter:

ΛMF (z) = log
max

A
pz/H1(z, A)

pz/H0(z)
=

∣∣pH Σ−1 z
∣∣2

pH Σ−1 p
H1
≷
H0

λ .

J.-P. Ovarlez Radar Autumn School 2024 46 / 79



Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Problem Statement
Modeling Homogeneous Gaussian Noise/Clutter
Examples of Detector Derivations
Synthesis of CFAR Detection Schemes Under Gaussian Noise

Example 2 - Matched Filter - Derivation of Performances (2)
Let SNR = |A|2 pH Σ−1 p be the Signal to Noise Ratio of the target to be detected.
Under H0 hypothesis, z ∼ CN (0m,Σ) and ΛMF (z) ∼

1
2 χ2(2). We have:

Pfa = P (ΛMF (z) > λMF/H0) =

∫+∞
λMF

e−u du = exp (−λMF ) ,

λMF = − log Pfa .

Under H1 hypothesis, z ∼ CN (A p,Σ) and ΛMF (z, Â) ∼ 1
2 χ2 (2, 2 SNR). We have:

Pd = P
(
ΛMF (z, Â) > λMF/H1

)
= 1 − Fχ2(2,δ) (2 λMF ) ,

where Fχ2(2,δ)(.) is the cumulative χ2(2, δ) density function with non-centrality parameter
δ = 2 SNR = 2 A2 pH Σ−1 p.
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Example 3 - Normalized Matched Filter (1)

Problem under study:
{

Hypothesis H0: z = b ,
Hypothesis H1: z = A p + b ,

where A is unknown complex scalar amplitude, p is the known steering vector and
b ∼ CN (0m,σ2 Σ) with known covariance matrix Σ but unknown variance σ2. The probability
density functions of the received m-vector z under each hypothesis are given by:

pz/H0(z,σ2) =
1

πm σ2 m |Σ|
exp

(
−

zH Σ−1z
σ2

)
pz/H1(z, A) = 1

πm σ2 m |Σ|
exp

(
−
(z − A p)H Σ−1(z − A p)

σ2

)
.

• Maximizing pz/H0(z,σ2) with respect to σ2 leads to the MLE: σ̂2 =
zH Σ−1z

m .
• Maximizing pz/H1(z,σ2, A) with respect to σ2 and with respect to A leads to the MLEs:

σ̂2 =
1
m

(
zH Σ−1z −

∣∣pH Σ−1 z
∣∣2

pH Σ−1 p

)
and Â =

pH Σ−1 z
pH Σ−1 p

.
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Example 3 - Normalized Matched Filter (2)
Replacing it in the Log-Likelihood Ratio test, we obtain the well-known Normalized Matched
Filter:

ΛNMF (z) = log
max

A
max
σ2

pz/H1(z,σ2, A)

max
σ2

pz/H0(z,σ2)
=

∣∣pH Σ−1 z
∣∣2(

pH Σ−1 p
) (

zH Σ−1 z
) H1
≷
H0

λNMF .

We can note that the NMF is invariant with respect to a change scale for p, z or Σ. Let
SNR = |A|2 pH Σ−1 p be the Signal to Noise Ratio of the target to be detected. Under H0
hypothesis, z ∼ CN (0m,σ2 Σ) and Λ(z) ∼ β(1, m − 1). We have:

Pfa = P (ΛNMF (z) > λNMF/H0) = (1 − λNMF )
m−1 ,

λ = 1 − P1/(m−1)
fa .

We can note that the threshold λNMF does not depend on unknown variance σ2. The test is
CFAR under H0 hypothesis.
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MF and NMF Probability of Detection
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Example 4 - Kelly and Adaptive Matched Filter (1)
Problem under study:

{
Hypothesis H0: z = b , zi = bi , i = 1, . . . , n ,
Hypothesis H1: z = A p + b , zi = bi , i = 1, . . . , n .

where the zi ’s are n "signal-free" independent secondary data used to estimate the noise
parameters, where A is unknown complex scalar amplitude, p is the known steering vector and
b ∼ CN (0m,Σ) with unknown covariance matrix Σ. The probability density function of the
received m-vector z under hypothesis H0 is given by:

pz,{zk }k ,Σ/H0(z) =
1

πm (n+1) |Σ|
n+1 exp

(
−Tr

(
Σ−1

(
z zH +

n∑

k=1
zk zH

k

)))
.

With formulas δ log |Σ−1|

δΣ−1 = ΣT and
δ tr

(
Σ−1 B

)
δΣ−1 = BT , we obtain:

argmax
Σ

pz,{zk }k ,Σ/H0(z) =
1

n + 1

(
z zH +

n∑

k=1
zk zH

k

)
.
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Example 4 - Kelly and Adaptive Matched Filter (2)
The probability density function of the received m-vector z under hypothesis H1 is given by:

pz,{zk }k ,Σ,A/H1(z) =
1

πm (n+1) |Σ|
n+1 exp

(
−Tr

(
Σ−1

(
(z − A p) (z − A p)H

+

n∑

k=1
zk zH

k

)))
.

By denoting S =

n∑

k=1
zk zH

k , we obtain argmax
Σ

pz,{zk }k ,Σ,A/H1(z) =
(z − A p) (z − A p)H

+ S
n + 1

and replacing these two expressions in the Generalized Log Likekihood Gatio leads to:

Λ(z) =
∣∣z zH + S

∣∣
min

A

∣∣∣(z − A p) (z − A p)H
+ S
∣∣∣

H1
≷
H0

λ .

If we note zs = S−1/2 z and ps = S−1/2 p, we have:∣∣∣(z − A p) (z − A p)H
+ S
∣∣∣ = |S|

∣∣∣(zs − A ps) (zs − A ps)
H
+ Im

∣∣∣ = |S|
(
||zs − A ps ||

2 + 1
)

and min
A

|S|
(

∥zs − A ps∥2
+ 1
)
= |S|

(∥∥P⊥
ps zs

∥∥2
+ 1
)

where P⊥
ps = Im − ps pH

s /pH
s ps .
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Example 4 - Kelly and Adaptive Matched Filter (3)
We obtain the following Generalized Likelihood Ratio test, known as the so-called Kelly’s test
[Kelly 86]:

ΛKelly (z) =
∣∣pH S−1 z

∣∣2
(pH S−1 p) (1 + zH S−1 z)

H1
≷
H0

λKelly where S =

n∑

k=1
zk zH

k .

This detector has good properties but is often (usually) replaced by a simpler one (so-called
two-step), the Adaptive Matched Filter [Robey 92]:

ΛAMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2
pH Ŝ−1

n p

H1
≷
H0

λAMF where Ŝn =
1
n

n∑

k=1
zk zH

k .

The covariance matrix estimate Ŝn =
1
n S is the empirical covariance matrix of the secondary

data {zk }k∈[1,n] and is called Sample Covariance Matrix estimate.
J.-P. Ovarlez Radar Autumn School 2024 54 / 79



Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Problem Statement
Modeling Homogeneous Gaussian Noise/Clutter
Examples of Detector Derivations
Synthesis of CFAR Detection Schemes Under Gaussian Noise

Example 5 - Adaptive Normalized Matched Filter (1)
Detection in quasi-homogeneous Gaussian Noise: Problem under study:{

Hypothesis H0: z = b , zi = bi , i = 1, . . . , n ,
Hypothesis H1: z = A p + b , zi = bi , i = 1, . . . , n ,

where the zi ’s are n "signal-free" independent secondary data used to estimate the noise
parameters, where A is unknown complex scalar amplitude, p is the known steering vector,
where bi ∼ CN (0m,Σ) and b ∼ CN (0m,σ2 Σ) with unknown covariance matrix Σ and unknown
variance σ2. The PDF under each hypothesis is given by [Bandiera 09]:

pz,{zk }k ,Σ/H0(z) =
1

πm (n+1) |Σ|
n+1 exp

(
−zH Σ−1 z +

n∑

k=1
zH

k Σ−1zk

)
,

pz,{zk }k ,Σ,σ2,A/H1(z) =
1

πm (n+1) σ2 m |Σ|
n+1 exp

(
−
(z − A p)H Σ−1 (z − A p)

σ2 +

n∑

k=1
zH

k Σ−1zk

)
.
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Example 5 - Adaptive Normalized Matched Filter (2)
The corresponding detector [Scharf 94, Kraut 99] is homogeneous of degree 0 with the
variables p, Ŝn and z and is named Adaptive Normalized Matched Filter (ANMF):

ΛANMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2(
pH Ŝ−1

n p
) (

zH Ŝ−1
n z

) H1
≷
H0

λANMF where Ŝn =
1
n

n∑

k=1
zk zH

k .

ANMF and Cosine Estimate
This detector is often called a Cosine Estimator as it has the dimension of a cosine squared
between the steering vector p and the observation z:

ΛANMF (z) = cos2 (p̂, z) .

Unlike the AMF which characterizes the power of a scalar product, the ANMF measures an
angle. It is so more sensible to a possible mismatch between p and z ([P. Develter 23]).

J.-P. Ovarlez Radar Autumn School 2024 56 / 79



Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Problem Statement
Modeling Homogeneous Gaussian Noise/Clutter
Examples of Detector Derivations
Synthesis of CFAR Detection Schemes Under Gaussian Noise

Example 6 - Persymmetric Adaptive Matched Filter (1)

Many applications can result in a clutter covariance matrix that exhibits some particular
structure. For example, radars use symmetrically spaced linear arrays for spatial domain
processing and symmetrically spaced pulse trains for temporal domain processing.

In these systems, the clutter covariance matrix Σ has the persymmetric property:

Σ = Jm Σ∗ Jm ,

where Jm is the m-dimensional antidiagonal matrix having 1 as non-zero elements.
The signal vector is also persymmetric, i.e. it satisfies: p = Jm p∗.
The persymmetric structure of Σ can be exploited to improve its estimation accuracy
compared to the SCM.
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Example 6 - Persymmetric Adaptive Matched Filter (2)
We can build a two-step AMF with the persymmetric Maximum Likelihood (ML) estimate of
the clutter covariance matrix instead of the SCM. The problem under study is:

{
Hypothesis H0: x = T z = T b , xi = T zi = T bi , i = 1, . . . , n ,
Hypothesis H1: x = T z = A T p + T b , xi = T zi = T bi , i = 1, . . . , n ,

where T is the unitary matrix defined by:

T =





1√
2

(
Im/2 Jm/2
i Im/2 −i Jm/2

)
for m even

1√
2

 I(m−1)/2 0 J(m−1)/2
0

√
2 0

i I(m−1)/2 0 −i J(m−1)/2

 for m odd.

Through this unitary transformation, secondary data xi ∼ CN (0, R) where R = TΣTH is a
real covariance matrix
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Example 6 - Persymmetric Adaptive Matched Filter (3)

Let us now investigate the ML estimate of the real covariance matrix R from the n transformed
secondary data xk . The ML estimate R̂ of real matrix R is unbiased and is given by:

R̂ = Re(R̂n) ,

where Re(.) stands for the real part, and where:

R̂n =
1
n

n∑

k=1
xk xH

k = T Ŝn TH where Ŝn =
1
n

n∑

k=1
zk zH

k .

n R̂ is real Wishart distributed with 2n degrees of freedom with parameter 1
2 R,

This result could be retrieved by the COMET procedure!
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Example 6 - Persymmetric Adaptive Matched Filter (4)

The distribution of this new detector under hypothesis H0 can be derived. Replacing R̂ in the
AMF (two-step procedure) leads to the following detection test, called the P-AMF:

ΛPAMF =

∣∣∣sT R̂−1 x
∣∣∣2

sT R̂−1 s

H1
≷
H0

λPAMF ,

where s = T p. In terms of the original data, we have, equivalently:

ΛPAMF =

∣∣∣∣pH TH
[
Re
(

T Ŝn TH
)]−1

T z
∣∣∣∣2

pH TH
[
Re
(

T Ŝn TH
)]−1

T p

H1
≷
H0

λPAMF .

In the ML estimation procedure, taking into account the real structure of R, or equivalently,
the persymmetric structure of Σ, virtually doubles the amount of secondary data.
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Example 6 - Persymmetric Adaptive Matched Filter (5)
Theoretical λ/Pfa relationship: Pfa = 2F1

(
2n − m + 1

2 , 2n − m + 2
2 , 2n + 1

2 ;−λPAMF
n

)
.
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Left figure: Threshold decreasing brought by the P-AMF compared to the AMF for n = 25 and m = 20.
Right figure: Improvement of about 7dB in terms of detection for the PAMF compared to the AMF for
this set of parameters.
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Example 7 - Anomaly Detector (1)

Model :
{

Hypothesis H0 : xi = bi , , i = 1, . . . , n
Hypothesis H1 : xi = αi p + bi , , i = 1, . . . , n

where p,

{αi }i∈[1,n] are unknown and {bi }i ∼ CN (0,Σ). If we note α =

(α1, . . . ,αn)
T and X =

 x1(1) . . . xn(1)
... . . . ...

x1(m) . . . xn(m)

. The RXD GLRT

test (Reed and Yu, 90) is defined as:

Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Reed-Xiaoli Detector

Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Reed-Xiaoli Detector

The RXD [Reed1990] is commonly considered as the benchmark anomaly
detector for hyperspectral data:

⇤(X) =
(X↵T )T (XXT )-1(X↵T )

↵↵T

Taking a particular ↵i = [0 · · · 010 · · · 0]. The sampled version when
assuming non-zero mean Gaussian background yields:

⇤ARXD = (xi - µ̂SMV )T ⌃̂
-1
SCM (xi - µ̂SMV )

H1
?
H0

�

⇤ xi is present in the covariance estimation,

⇤ N secondary data are NOT signal-free,

⇤ Global strategy.

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 40/ 52

secondary data xi

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 40/ 54
ΛRXD(X) =

(
XαT )H (XXH)−1 (XαT )

ααH

Taking a particular α = [0, . . . , 0, 1, 0, . . . , 0]T , a more simple and well-known RXD version
yields (the signal under test xi is present in the covariance estimation!):

ΛRXD(xi) = xH
i Ŝ−1

n xi
H1
≷
H0

λ
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Example 7 - Anomaly Detector (2)

Model:
{

H0 : x = b, , {xi = bi }i , i = 1, . . . , n
H1 : x = αp + b, , {xi = bi }i , i = 1, . . . , n

where {bi }i ∼

CN (0,Σ), α and p are unknown. The Kelly GLRT test (Frontera, 14)
is defined as:

Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Kelly Anomaly Detector
Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Kelly Anomaly Detector

Obtained when deriving the Kelly’s LR w.r.t. the steering vector p.

⇤
(N )

KellyAD ⌃̂,µ̂
= (x - µ̂SMV )T ⌃̂

-1
SCM (x - µ̂SMV )

H1
?
H0

�

Corresponds to the Mahalanobis distance.

Detector distribution under Gaussian hypothesis [Frontera2014]

N - m
m (N + 1)

⇤
(N )

KellyAD ⌃̂,µ̂
⇠ Fm,N-m ,

with Fm,N-m is the non-central F -distribution with m and N - m degrees
of freedom.

⇤ When N ! 1 the distribution tends to a �2.

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 43/ 54

vector under text x

secondary data xi

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 41/ 54

ΛRXD(x) = xH Ŝ−1
n x

H1
≷
H0

λ

that corresponds to the Mahalanobis distance.

The Kelly test is Hotelling T 2 distributed:
n − m

m (n + 1)RXDSCM(c/H0) ∼ Fm,n−m.
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Synthesis of CFAR Detection Schemes Under Gaussian Noise (1)
• Adaptive Matched Filter [Robey 92]:

ΛAMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2
pH Ŝ−1

n p

H1
≷
H0

λAMF

Pfa = 2F1

(
n − m + 1, n − m + 2; n + 1;−λAMF

n

)
,

• Adaptive Kelly Filter [Kelly 86]:

ΛKelly (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2(
pH Ŝ−1

n p
) (

n + zH Ŝ−1
n z

) H1
≷
H0

λKelly

Pfa =

(
1

λKelly
− 1
)n+1−m

,
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Synthesis of CFAR Detection Schemes Under Gaussian Noise (2)
• Adaptive Normalized Matched Filter [Scharf 94, Kraut 99]:

ΛANMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2(
pH Ŝ−1

n p
) (

zH Ŝ−1
n z

) H1
≷
H0

λANMF :

Pfa = (1 − λANMF )
n−m+1

2F1 (n − m + 2, n − m + 1; n + 1; λANMF ) .

Persymmetric Adaptive Matched Filter [Pailloux 09]:

ΛPAMF =

∣∣∣∣pH TH
[
Re
(

T Ŝn TH
)]−1

T z
∣∣∣∣2

pH TH
[
Re
(

T Ŝn TH
)]−1

T p

H1
≷
H0

λPAMF .

Pfa = 2F1

(
2n − m + 1

2 , 2n − m + 2
2 , 2n + 1

2 ;−λPAMF
n

)
.
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The particular case of conventional Range Doppler 1/2

If we assume the noise if white Gaussian with known covariance matrix Σ = σ2 I, then the

conventional detection scheme ΛMF (z) =
∣∣pH Σ−1 z

∣∣2
pH Σ−1 p

H1
≷
H0

λMF leads to the well known
simplified test:

ΛMF (z) =
|p z|2

pH p
H1
≷
H0

σ2 λMF ,

The test consists, for each range bin, in comparing the normalized Discrete Fourier Transform
of the vector z acquired for m pulses to a threshold. The corresponding PFA/threshold
relationship is defined as:

λMF = −σ2 log Pfa .
The conventional Range Doppler algorithm makes implicitly assumption that the noise is white.
In clutter environment, this processing is not optimal and we generally do not known the power
σ2 of the noise.
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The particular case of conventional Range Doppler 2/2
If we assume the noise if Gaussian with unknown covariance matrix, then we have to use the

conventional detection scheme ΛAMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2
pH Ŝ−1

n p

H1
≷
H0

λAMF . For particular white noise

with unknown power σ2, we can build a simplified two-step detection scheme, assuming that

Ŝn = σ̂2 I where σ̂2 =
1
m

m∑

k=1

∣∣pHzk
∣∣2. The new detection test becomes:

ΛAMF (z) = |p z|2
H1
≷
H0

σ̂2 λAMF ,

The test consists, for each range bin, in comparing the normalized Discrete Fourier Transform
of the vector z acquired for m pulses to a adaptive threshold built with secondary data
{zk }k∈[1,m]. The corresponding PFA/threshold relationship is defined as:

λAMF = m
(

P−1/m
fa − 1

)
.

This threshold tends to λMF for large value m of secondary data.
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Examples of Gaussian Hypothesis Failure
High Resolution Radars

• Small number of scatterers in the cell under test - Varying number of scatterers from cell to cell - Central Limit Theorem
non valid ⇒ non-Gaussianity [Jakeman 80]

• No validity of conventional tools based on Gaussian statistics [Farina 87, Gini 00, Jay 02].

Low-Grazing angles Illumination Radar

• Microshadowing ⇒ impulsive clutter [Billingsley 93]
• Transitions of clutter areas, heterogeneity of spatial area under test ⇒ difficulty to set up the detection test λopt and the

Probability of False Alarm depending on the area.

83/90

General Introduction
Background on Radar, Array Processing, ...

Background on Signal Processing
Motivations for more robust detection schemes
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Figure: Failure of the Gaussian detector (�g = - log Pfa): (left) Adjustment of
the detection threshold, (right) K-distributed clutter with same power as the
Gaussian noise

) Bad performance of the conventional Gaussian detector in case of
mis-modeling

) Need/Use of non-Gaussian distributions
) Need/Use of robust estimates

Jean-Philippe Ovarlez 2019 Radar Tutorial 83 / 90

Low-Grazing angle surveillance Non-Gaussian behavior False Alarm regulation problem
Please refer to [F. Gini, A. Farina and M. S. Greco 2001]
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Examples of Gaussian Hypothesis Failure

The SAR images are more and more complex, detailed, heterogeneous. The spatial statistic of
SAR images is not at all Gaussian,
In polarimetry research field, almost all Non-Coherent Polarimetric Decomposition and
classification techniques [Lee 09, Formont 2012] are generally based on conventional covariance
matrix estimate (covariance or coherency matrix), typically the Sample Covariance Matrix (SCM),
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Examples of Gaussian Hypothesis Failure

7

DETECTION IN HYPERSPECTRAL IMAGES

• ANOMALY DETECTION IN HYPERSPECTRAL IMAGES 
To detect all that is « different » from the background (Mahalanobis distance) - Regulation 
of False Alarm. Application to radiance images. 

• DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES 
To detect (GLRT) targets (characterized by a given spectral signature p) - Regulation of 
False Alarm. Application to reflectance images (after some atmospherical corrections or 
others). 

ground subspace spanned by the columns of B or U Q
[30].

The bar charts in Fig. 11 provide the range of the de-
tection statistic of the target and the maximum value of
the background detection statistics for various back-
grounds. The target-background separation or overlap is
the quantity used to evaluate target visibility enhance-
ment. For example, it can be seen that the ACE detector
performs better than the OSP algorithm for the six data
sets shown.

The expected probability distribution of the detection
statistics under the “target absent” hypothesis can be
compared to the actual statistics using a quantile-quantile
(Q-Q) plot. A Q-Q plot shows the relationship between
the quantiles of the expected distribution and the actual
data. An agreement between the two is illustrated by a
straight line. The Q-Q plots in Fig. 12 illustrate the com-
parison between the experimental detection statistics to
the theoretically predicted ones for the matched filter al-
gorithms. The actual statistics for two different back-
grounds is compared to the normal distribution. A

straight line shown that the postulated model provides a
good fit and therefore can be used to estimate the thresh-
old for CFAR operation.

The previous results dealt with full-pixel or resolved
targets. To evaluate detection performance for subpixel
targets, we have simulated subpixel targets using formula
(3). Subpixel targets were simulated by adding a ran-
domly chosen target pixel from the target pixel set to each
of the background pixels at a constant fraction. The re-
sults shown in Fig. 13, show target-background separa-
bility as a function of the target fill factor a for the ACE
and OSP detectors. Clearly, target visibility improves
with the size of the target. A more detailed comparison of
a large set of detection algorithms is provided in [31]. It
has been shown that taking into consideration target vari-
ability using a subspace model can increase detection per-
formance [32].

When the spectral observation vector x is distributed
as N( , )µ ! , its Mahalanobis distance follows a chi-squared
distribution with L degrees of freedom. By removing the
mean, we obtain the anomaly detector (19). However,
for nonnormal data the distribution of Mahalanobis dis-
tance is not chi-squared. Fig. 14 shows the probability of
false alarm for the three sets shown in Fig. 9 as well as
eight blocks obtained by partitioning this data cube into a
four by two matrix. The figure also shows theoretical pre-
dictions based on a chi-squared and a mixture of two
F-distributions. Evidently, the F-mixture provides a good
description for the body and the tails of the underlying
distribution. We note that if the data follow an elliptical
multivariate t distribution, the Mahalanobis distance fol-
lows a univariate F distribution [33]. The multivariate
normal and t distributions is a special case of the family of
elliptically contoured distributions [33] specified by the
distribution f g T( ) | | {( ) ( )}/x x x= − −− −! !1 2 1µ µ . The
form of function g( ) leads to distributions with heavier
or lighter tails than the normal.

The heavy tails in the univariate distribution of the
Mahalanobis distance imply heavy tails in the multivariate
distribution of the data. Therefore, heavy tails may appear
not only in the quadratic Mahalanobis distance, but in
other linear and quadratic statistics employed in several
widely used [34], [31] target detection techniques.

The family of symmetric α-stable (SαS) distributions
provides a good model for data with impulsive behavior.
They are characterized by a parameterα (characteristic ex-
ponent) that takes values in the range 0 2< ≤α . The value
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! 14. Modeling the statistics of the Mahalanobis distance.

10−5

0 100 200 300 400 500 600 700 800 900 1000

10−4

10−3

10 2−

10−1

100

Threshold

Pr
ob

ab
ilit

y 
of

 F
al

se
 A

la
rm

Class 2
Mixed

Class 9
α = 1.96

α = 1.95
Trees

GrassNormal ( = 2)α α = 1.99
α = 1.98

α = 1.97

! 15. Modeling the matched filter output statistics using stable
distributions.

The performance evaluation of
detection algorithms in practice
is challenging due to the
limitations imposed by the
limited amount of target data.

[Manolakis 2002]DSO data 2010

RXD CDF

Bad regulation of False Alarm rate for Anomaly Detector [Reed 1990, Manolakis 2002, Ovarlez
2011, Frontera-Pons 2016] and detectors of targets [Frontera-Pons 2017] in Hyperspectral
Images when they are based on conventional SCM estimate.
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Need of Better Approaches
Need to build alternatives to conventional approaches:

ADAPTIVE DETECTORS AND ESTIMATION OF 
THE COVARIANCE MATRIX

Problem: in practice, the covariance matrix M is unknown and has to be perfectly 
estimated

M̂ ???

Span Single Look Complex − Image 1

50 100 150 200 250 300 350 400 450 500

50

100
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200
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500

?! R̂

Dense Airborne/Ground Traffic

Inhomogeneous Terrain/Clutter
Large Discretes/Urban Clutter

Real-World Clutter!

11

⇒ Better Covariance Matrix Estimation

Requirements:
Background modeling: Compound Gaussian, SIRV (K-distribution, Weibull, etc.), CES
(Multidimensional Generalized Gaussian Distributions, etc.),
Estimation procedure: ML-based approaches, M-estimation, LS-based methods, etc.
Adaptive detectors derivation and adaptive performance evaluation.

Some solutions will be proposed in Radar 2024 Tutorial on Robust Estimation and Detection
Schemes in non-Standard Conditions for Radar, Array Processing and Imaging
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