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Radar and Imaging Sensors
RADAR = RAdio Detection And Ranging

• emits and receives electromagnetic waves,
• detects the presence of targets,
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General Introduction
Background on Radar, Array Processing, ...

Background on Signal Processing
Motivations for more robust detection schemes

Radar Background
Array Processing - Space Time Adaptive Processing (STAP)
SAR Image Processing
Hyperspectral Image Processing

Background on SAR and Radar Imaging

Radar Imaging allows to build more and more precise images :
Current use of very high bandwidth and long integration time (high 
azimuth bandwidth) : Very high spatial resolution (< 10cm), 
Application to surveillance (detection, change detection), 
classification, 3D reconstruction, EM analysis, … 
Due to the growing complexity of the scene (non stationarity, non-
Gaussianity), need to derive new procedures to exploit these 
images.
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Radar/SAR Imaging

Radar Imaging [Mensa, 1981, Soumekh, 1994, Soumekh, 1999] allows to build more and more
precise images:

• Current use of very high spectral bandwidth and very high angular bandwidth leading to
very high spatial resolution,

• Application to monitoring (detection, change detection), classification, 3D reconstruction,
EM analysis, etc.

These applications require some physical diversity to reach good performances.
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2.2. La Détection et l’Estimation pour le Radar
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(a) �AMF (y,MSCM )
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(b) �P�AMF (y,RPSCM )
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(c) �(y,MFP )
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(d) �P�ANMF (y,RPFP )

Figure 2.33 – Résultats de détection Doppler-azimut dans une case distance pour 10 cibles de vitesse
di�érentes

2.2.8.2 STAP à Rang Réduit

Une manière de n’utiliser que peu de données secondaires est de faire appel aux techniques dites de
rang réduit qui exploitent le fait que la matrice de covariance des données STAP possède des valeurs
propres séparant l’espace signal (le fouillis) de l’espace bruit (bruit thermique). Connaissant la géomé-
trie de visée, il est également possible de déterminer, à l’avance (règle de Brennan), quel sera le rang
de chaque sous-espace. En projetant sur l’espace orthogonal au fouillis, on peut ainsi le rejeter. Cette
projection nécessite alors au moins autant de données secondaires que la taille de l’espace fouillis, soit en
fait nettement moins que la la taille de la matrice. Cette approche a été appliquée dans [T5] pour les
détecteurs AMF construits avec les matrices de projection � basées sur la covariance SCM et PSCM.

Les figures (Fig. 2.35) et (Fig. 2.36) présentent ainsi les résultats de détection (données CELAR) dans
une case distance d’une cible dans la direction azimutale 0 deg et de vitesse 4m/s cible pour les deux
détecteurs AMF et PAMF. La détection se fait premièrement avec un ensemble de K = 200 données
secondaires de taille m = 256 bien au dessus du rang de Brennan du fouillis donné par r = 46. On
s’assure ainsi une détection avec moins de 3 dB de pertes par rapport au traitement optimum. La persy-
métrie n’apporte dans ce cas que peu d’amélioration par rapport aux détecteurs classiques, les résultats
du PAMF sont donc très similaires à ceux de l’AMF (cf. (Fig. 2.35)). La figure (Fig. 2.36) présente les
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Problem Setting

• Frequently used portfolio allocation processes require the estimation of the covariance
matrix of the assets returns
(e.g. Global Minimum Variance [Maillard 10, Clarke 12], Maximum Variety [Fideas Capital] or Most
Diversified Portfolio [Choueifaty 08], Mean-Variance [Markovitz 52], etc.)

æ The Sample Covariance Matrix (SCM) - optimal under the Normal assumption - is the
mostly used estimator, but, financial time series of returns might exhibit outliers,

æ The field of robust estimation intends to deal with outliers ([Maronna 76, Tyler 87]),
æ Hybrid robust shrinkage covariance matrix estimates have also been proposed building

estimators upon Tyler’s robust M-estimator ([Chen 11, Ollila 14, Pascal 14]),
æ Recent works based on Random Matrix Theory (RMT) have also considered robust

estimation in the large dimensional regime ([Yang 15]).

• A way to mitigate covariance matrix estimation errors is to identify the most informative
asset part and then to filter the noisy part of the data

æ Standard statistical methods like the principal component analysis may fail in
distinguishing informative factors from the noisy ones,

æ RMT helps in finding a solution for filtering noise, even though the single market factor
still prevails in the described cleaning method that is not completely satisfactory as they
implicitly assumes homogeneous and uncorrelated series ([Laloux 99 and 00, Potters 05]),

∆ To fill this gap, the most up-to-date RMT-based model order selection [Vinogradova 13,
Terreaux 17] methods used in Signal Processing can be applied in estimating the number
of uncorrelated statistical factors embedded in a given multi-factor model.

We propose in this paper...

... a new process for estimating and denoising covariance matrix
that leads to improved global portfolio performances
(reduced Draw-Down, increased Sharpe Ratio, etc.).

æ Asset returns are modelled as a multi-factor model ([Jay 11, Darolles 13]),
æ An up-to-date Model Order Selection method is used to estimate the number of factors,
æ It can be easily applied in many Signal Processing applications like in radar and sonar

(Direction of Arrival, Source Localization, Space Time Adaptive Processing, Date of
Arrival, Spectral Analysis (AR, ARMA), etc), Hyperspectral images (Unmixing).

Assets returns Model

Let {rt}tœ[1,N ] be N observations of the m assets returns, modelled as a K-factor model. For
each observation date t, we then have:

rt =
KX

k=1
ft,k —k + Ô

·tC1/2 nt , t œ [1, N ] ,

or, written more compactly: R = BF + C1/2 NT1/2, where
• R = [r1, r2, . . . , rN ] œ Rm◊N are the observations,
• B = (—1, . . . ,—K) œ Rm◊K is an unknown mixing matrix of coe�cients (or beta) that

define the proportion of the K factors in each asset,
• F = (f1, . . . , fN) œ RK◊N is an unknown matrix of the K common returns,
• T = diag(·1, . . . , ·N) œ R+N◊N is a diagonal matrix unknown containing random texture,
• N œ Rm◊N is a white Gaussian noise (E

h
nT
t nt

i
= 1), independent of the K factors,

• C œ Rm◊m is an unknown Toeplitz scatter matrix (Tr(C) = m).

Theoretical Results [Terreaux 17]

Robust Consistent Estimation for C

Let M̂FP = m

N

NX

t=1

rt rTt
rTt M̂≠1

FP rt
be the scatter matrix Tyler M-estimator of R.

As m,N æ Œ such that m/N æ c œ]0,Œ[, we have���T
h
M̂FP

i
≠ C

��� a.s.≠≠æ 0,

where T [·] is the Toeplitz rectification operator: (T [X])ij = 1
m

mX

k=1
Xk,k+|i≠j| .

A consistent estimator Ĉ of the background scatter matrix C characterizing the background
noise is therefore defined through observations R as Ĉ = T

h
M̂FP

i
.

=∆ The observations R can now be whitened through Ĉ≠1/2 R

Behavior of whitened data

Let Rw =
⇣
T

h
M̂FP

i⌘≠1/2
R be the whitened data and ŴFP be the Tyler M-estimator of

Rw. As m,N æ Œ such that m/N æ c œ]0,Œ[, if Rw does not contain any factor, then:
����ŴFP ≠ 1

N
NNT

����
a.s.≠≠æ 0 .

• Without factors, the spectral distribution of the whitened data scatter matrix of Rw

follows a Marchenko-Pastur distribution (same spectral distribution of unobservable
covariance matrix of N) characterized by its support

h
(1 ≠ Ô

c)2
, (1 +

Ô
c)2i,

• All eigenvalues greater than ⁄̄ = (1 +
Ô
c)2 can be considered as significant factors.

Estimation of K the number of factors

Let (⁄k)kœ[1,m] be the sorted eigenvalues of ŴFP , then: K̂ = argmax
k

⇣
⁄k > ⁄̄

⌘
.

Illustration: estimating the correct number of factors

Estimating K is really a challenging problem for many applications where informative signal
is embedded in correlated noise. Below, we show how our process allows to detect the K = 3
sources embedded in non-Gaussian and strongly correlated noise.
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Fig. 1. Eigenvalue distributions. Left: SCM of observations. Middle: Tyler covariance matrix of observations. Right: Tyler covariance matrix of observations
after whitening process. K-distributed case with shape parameter � = 0.5, � = 0.8, m = 100, N = 1000 (c = 0.1), K = 3, log(�̄) = log(1.7325).

”variance”-free and really reflects the true structure of the
underlying process without power pollution. When the sources
are present in the observations {rt }, the use of this estimator
may lead to whiten the observations and to destroy the main
information concentrated in the K factors.

When the noise is assumed white distributed, several meth-
ods, based on the RMT have been proposed [33] to extract
information of interest from the received signals. One can
cite for instance the number of embedded sources estimation
[34], the problem of radar detection [35], signal subspace
estimation [36]. However, when the additive noise is corre-
lated, some RMT methods require the estimation of a specific
threshold which has no explicit expression and can be very
difficult to obtain [19], [37] while the others assume that the
covariance matrix is known and use it, through some source-
free secondary data, to whiten the signal. According to the
following consistency theorem found and proved in [20], [21],
[22], recent works have proposed to solve the problem through
a biased Toeplitz estimate of �Ctyl , let’s say �Ctyl = T

��Ctyl

�
:

Consistency theorem. Under the RMT regime assumption, ie
that N,m � �, and the ratio c = m/N � c > 0, we have the
following spectral convergence:���T ��Ctyl

�
� C

��� a.s.�� 0. (4)

This powerful theorem says that it is possible to estimate
the covariance matrix of the correlated noise even if the
observations contain the sources or information to be retrieved.
According to this result, the first step is then to whiten
the observations using �Ctyl . The whitened observations are
defined as rw,t = �C�1/2

tyl
rt .

Given the set of N whitened observations
�
rw,t

�
and given

the Tyler’s covariance matrix �̂w of these whitened returns,
recent work [22] has shown that this whitening process allows
us to consider that the eigenvalues distribution of �w has
to fit the predicted bounded distribution of Marčenko-Pastur
[38] except for a finite number of eigenvalues if any source
is still present and powerful enough to be detected outside
the upper bound of the Marčenko-Pastur distribution given by

�̄ =
�
1 +

�
c
�2.

Figure 1 compares the eigenvalues distribution of the SCM
Ĉscm = R RT /N , Ĉtyl and �̂w for K = 3 sources of in-
formation embedded in non-Gaussian correlated K-distributed
noise. If no whitening operation is made before applying the
Marčenko-Pastur boundary properties of the eigenvalues, then
there is no chance to detect any of the sources. After whitening
process, the only detected sources above the Marčenko-Pastur
threshold correspond to the K sources. As a matter of fact,
there is no need anymore to adapt the value of the threshold
value regarding the distribution of �t and the estimated value
of IE[�] [22]. The robust Tyler M-estimator is ”�-free”, i.e. it
does not depend anymore of the distribution of �t .

Once the K largest eigenvalues larger than �̄ are detected,
we set the m�K lowest ones to

�
Tr

�
�̂w

�
��m

k=K+1 �k

�
/(m�

K), and then build back the de-noised covariance matrix to be
used in (2) (or in any other objective function).

V. APPLICATION

This section is devoted to show the improvement of such
a process when applied to the Maximum Variety Portfolio
process. This allocation process (denoted as ”Variety Max”
in the following) is the one designed and used by Fideas
Capital for allocating their portfolios. The investment universe
consists of m = 40 baskets of European equity stocks rep-
resenting twenty-one industry subsectors (e.g. transportation,
materials, media...), thirteen countries (e.g. Sweden, France,
Netherlands,...) and six factor-based indices (e.g. momentum,
quality, growth, ...). Using baskets instead of single stocks
allows to reduce the idiosyncratic risks and the number of
assets to be considered. We observe the prices of these assets
on a daily basis from June 2000, the 19th to January 2018
the 29th. The daily prices are close prices, i.e. the price being
fixed before the financial marketplaces close at the end of each
weekday.

The portfolios weights are computed as follows: every four
weeks, we estimate the covariance matrix of the assets using
the past one year of returns and we run the optimisation
procedure in order to get the vector of weights that maximises

Figure 1:Eigenvalue distributions. Left: R RT/N , Sample Covariance Matrix of observations. Middle: M̂FP , Tyler covariance matrix
of observations. Right: ŴFP , Tyler covariance matrix of observations after whitening process. K-distributed case with shape parameter
‹ = 0.5, fl = 0.8, m = 100, N = 1000, K = 3.

Maximum Variety Portfolio

One way to quantify the degree of diversification of a portfolio invested in m assets with pro-
portions w = [w1, . . . , wm]T is to maximize the Variety Ratio of the portfolio:

wú
vr = argmax

w

wT s
(wT � w)1/2 ,

where � = E
h
R RT

i
is the m ◊ m covariance matrix of the m assets returns R and where

s is the m-vector of the square roots of the diagonal element of �, ie si =
Ô

�ii, i œ [1,m],
representing the standard deviation of the returns of the m assets.

Application

The investment universe consists of m = 40 baskets of European equity stocks representing
twenty-one industry subsectors (e.g. transportation, materials, etc.), thirteen countries (e.g.
Sweden, France, etc.) and six factor-based indices (e.g. momentum, quality, growth, etc.)
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Table 1:Some performance numbers.
Variety Max Annualised Annualised Ratio Maximum

Portfolios Return Volatility (Return / Volatility) Drawdown
RMT Tyler Whitened 9.71% 12.9% 0.75 50.41%

SCM 8.51% 13.80% 0.62 55.02%
Benchmark 4.92% 15.19% 0.32 58.36%

Selected EigenValues - RMT FP W

May01 Feb04 Nov06 Aug09 May12 Feb15 Nov17
0

10

20

30

40

0

1

2

3

4

5

6

7

8

9

10

Figure 3:Left - Middle: dynamic weights as a stacked area chart. Right: values of selected eigenvalues (left) and their number (right).

.
Conclusion

• Asset returns have been modelled as a multi-factor model embedded in a correlated elliptical
and symmetric noise, allowing to account for non-Gaussian and non correlated noise,

• Given this model setup, the most informative assets have been separated from the noise
subspace using a "Toeplitzified" robust and consistent Tyler-M estimator and the Random
Matrix Theory applied on the whitened covariance matrix estimate,

• As an illustration, applied to the Maximum Variety Portfolios, our process leads to
improved performance with respect to a classical approach.

Conf. EUSIPCO 2018 | This research was both conducted within the "Construction of factorial indexes and allocation" under the aegis of the Europlace Institut of Finance, a joint initiative with Fideas Capital and was partly funded by the French DGA | Roma, 5 Sept. 2018

Méthodes basées sur la 
loi gaussienne

Méthodes basées sur 
les lois CES

Méthodes basées sur 
les lois CES et la théorie 
des Matrices Aléatoires

Detection maps ISAR Image SAR Image SAR Classification
• but also: estimates parameters (range, radial velocity, angles of presentation, acceleration, amplitude (related to Radar

Cross Section), etc.),
• images, classifies, recognizes.

Note: Almost all the conventional Statistical Signal Processing methodologies and background
modeling tools are based on the Gaussian hypothesis (standard conditions).
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Radar and Imaging Sensors - New challenges
Positioning: facing the new non-standard conditions

• Complex Environments: ground, dynamic environments (sea, ionosphere), heterogeneous, non-Gaussian,
reverberating.

• Complex targets: small RCS, extended targets, fluctuating, dispersive, anisotropic, off-grid targets.
• Sensor Diversity: temporal, spatial, polarimetric, interferometric, spectral.
• Improvement of sensor resolution: spatial, spectral, angular.
• Outliers, jamming
• Increase of the dimension and the size of signals to analyze.
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Application des ondelettes à l’imagerie SAR Polarimétrique

Conclusions - Perspectives
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Les réflecteurs ont un comportement différent 
selon la fréquence et la direction d’illumination

?! R̂

Dense Airborne/Ground Traffic

Inhomogeneous Terrain/Clutter
Large Discretes/Urban Clutter

Real-World Clutter!

Hétérogénéité de 
l’environnement

Grande dimension, 
Grand nombre de 

données
Comportement non-stationnaire 

des cibles et des fonds
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Applications and Results in Radar ...
Conclusions and Perspectives

Surveillance Radar
STAP Applications
MIMO-STAP
SAR Imaging
Hyperspectral Imaging

Mono-Channel SAR Images
For mono-channel SAR Images, each pixel of the spatial image is only characterized by a
complex amplitude and we don’t have directly access to this diversity. Moreover,

• very high resolution SAR images are more and more complex, detailed, heterogeneous,
• the spatial statistic of SAR images may be not at all Gaussian !
• SAR pixels may be dispersive (or colored) and anisotropic.

8

The SAR images are more and more complex, detailed, heterogeneous,  
The SAR pixels are colored and anisotropic 
The spatial statistic of SAR images is not at all Gaussian ! 

How to use in an adaptive detector the dispersive and anisotropic information of SAR pixels ? 
How to derive Multivariate Adaptive detectors (AMF, Kelly, ANMF) on a monodimensionnal SAR 
image without multi-channels like polarimetry, interferometry, multi-passes SAR images ? 

How to enhance the performance of these Gaussian detectors in non-Gaussian environment ? 

res < 0.5m 
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Challenging Problems Related to SAR Processing
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(a) dépression 30°(passe 7) (b) dépression 50°(passe 15)
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Scatterers have different behavior with regards to the frequency 

True Physical Behavior of Scatterers in SAR Imaging
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� = 3.cm (première agilité)

Analyse polarimétrique d’images SAR par ondelettes - 9/27

elevation 30°                                            elevation 50°       

Scatterers have different behavior with regards to the frequency 

True Physical Behavior of Scatterers in SAR Imaging

Non-Gaussianity Spectral diversity

Challenging Problems
• How to retrieve, how to exploit this diversity (dispersive and anisotropic information) from

mono-channel SAR image ?
• How to derive Multivariate Adaptive Detectors on a mono-channel complex SAR image ?
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Figure 4.21: Columns from left to right: The HSI dataset used for the real experiments, the groundtruth
of the Buddingtonite target pixels
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Figure 4.22: Plot of the Buddingtonite target samples taken from the online ASTER Spectral library.

4.4.1 Real experiments for the detection strategy in Chapter 2

Figure 4.23 depicts the detection of the Buddingtonite targets in (At C)T . The Buddingtonite
targets are detected with very little false alarms!

Figure 4.23: The detection in (At C)T (we exhibit the mean power in dB over the 186 bands) for the
detection strategy in Chapter 2
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Environments
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Non-Stationary Targets 
and Environments Curse of Dimensionality
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Motivations and General Introduction
Tutorial Description

Radar and Imaging Sensors
Radar and Imaging Sensors - New challenges
Applicative Context
Methodological Context

Applicative Context

Why covariance estimation?

Portfolio selection Classification/Clustering

PCA
Radar detection

Graphical models

Gaussian graphical model

n-dimensional Gaussian vector

x = (x1, . . . , xn) ⇠ N (0,⌃)

xi, xj are conditionally independent (given the rest of x) if

(⌃�1)ij = 0

modeled as undirected graph with n nodes; arc i, j is absent if (⌃�1)ij = 0

1

2

34

5
⌃�1 =

2
66664

• • 0 • •
• • • 0 •
0 • • • 0
• 0 • • 0
• • 0 0 •

3
77775

13/44

Big Data 
 Recognition 
 Classification, Clustering 
 Dimension Reduction 
 Machine Learning, Deep Learning 
 Graphes Analysis 
 Learning Techniques  

Air, ground, sea Surveillance  
 Radar Detection, Space-Time Adaptive Processing 
 Synthetic Aperture Radar 
 Sources Localization 
 Interferometric, Polarimetric Classification 
 Change Detection, Infrastructure Monitoring 
 Anomaly Detection in Hyperspectral Imaging 
 MIMO Radar 
 Tracking

Finance 
 Time Series  
 Portofolio Optimization 
 Risk Management 
 Classification 
 Prediction
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Motivations and General Introduction
Tutorial Description

Radar and Imaging Sensors
Radar and Imaging Sensors - New challenges
Applicative Context
Methodological Context

Methodological Context
Goals: Improvement of sensors performance and their processing

• To model thanks statistics the variability of the unknown environment and data,
• To estimate the spectral properties of the environment (ionosphere, sea, wind through forest, etc.),
• To elaborate estimators and detectors that are robust and adaptive to these environments,
• To regulate the False Alarm on these heterogeneous, non-stationary, non-Gaussian environments,
• To improve the classification, the clustering techniques.

Methods: Statistical Signal Processing
• Robust Estimation Techniques of spectral and statistic characteristics of the environment and targets:

adaptivity, statistic learning, cognitive, maximal exploitation of the a priori,
• Optimal Detection Schemes (Likelihood, Bayesian) for stealthy targets embedded in these complex

environments,
• Exploitation of emerging statistical Signal Processing techniques: Minimal Estimation Bounds,

Time-Frequency Analysis, Random Matrix Theory, Clustering, Compressive Sensing, Artificial Intelligence,
Riemannian and Differential Geometry, etc.
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Motivations and General Introduction
Tutorial Description

Plan

1 Motivations and General Introduction
Radar and Imaging Sensors
Radar and Imaging Sensors - New challenges
Applicative Context
Methodological Context

2 Tutorial Description
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Motivations and General Introduction
Tutorial Description

General Introduction
Survey on

• Background on conventional Gaussian statistical modeling: Radar modeling, Random
Noise Modeling, Maximum Likelihood Estimation, Detection Schemes, etc.

• Recent methodologies on more recent robust estimation and detection schemes: Complex
Elliptically Symmetric distributions, M-Estimators,

• If time left: more advanced techniques: Robust COMET (RCOMET), Random Matrix
Theory, Robust Low-Rank modeling, Riemannian Geometry, etc.

Two Main Parts
• Part A: Background on Statistical Processing for Radar, Array Processing, SAR and

Hyperspectral Imaging,
• Part B: Recent Methodologies on Robust Estimation and Detection in non-Gaussian

Environment - Applications and Results in Radar, STAP and Array Processing, SAR
Imaging, Hyperspectral Imaging
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Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Contents

Part A:
Background on Statistical Processing for Radar, Array Processing, SAR and Hyperspectral
Imaging,
Part B:
Recent Methodologies on Robust Estimation and Detection in non-Gaussian Environment
- Applications and Results in Radar, STAP and Array Processing, SAR Imaging,
Hyperspectral Imaging

J.-P. Ovarlez T03 Tutorial - Conference Radar 2024 1 / 85



Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
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Part A

Background on Statistical Processing for Radar,
Array Processing, SAR and Hyperspectral Imaging
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Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Part A: Contents

1 Radar basis

2 Conventional Radar and Imaging Processing

3 Some Background on Detection Theory

4 Motivations for more robust detection schemes
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Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Parameter Estimation
Noise and Clutter in Radar

Outline

1 Radar basis
Parameter Estimation
Noise and Clutter in Radar

2 Conventional Radar and Imaging Processing
Range-Doppler Radar Processing
Array and Space-Time Adaptive Processing
SAR Image Processing
Hyperspectral Image Processing

3 Some Background on Detection Theory
Problem Statement
Modeling Homogeneous Gaussian Noise/Clutter
Examples of Detector Derivations
Synthesis of CFAR Detection Schemes Under Gaussian Noise

4 Motivations for more robust detection schemes
Examples of Gaussian Hypothesis Failure
Need of Better Approaches
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Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Parameter Estimation
Noise and Clutter in Radar

Parameter Estimation - Range Measurement
Electromagnetic wave propagates with speed light c. The two-way propagation delay up to the
distance D is τ =

2 D
c

• Radar emitted signal: se(t) = u(t) exp (2i π f0 t) where f0 is the carrier frequency, and
u(.) the baseband signal,

• Radar received signal: sr (t) = α se(t − τ) + b(t) where α is the backscattering amplitude
of the target and b(.) is an additive noise.

sr (t) = α se

(
t − 2 D

c

)
+ b(t) .
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Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Parameter Estimation
Noise and Clutter in Radar

Parameter Estimation - Velocity Measurement
Let us consider an illuminated moving target located for time t at range D(t) = D0 + v t where
v is the radial target velocity.

If τ(t) is the two-way delay of the received signal at time t, the signal has been reflected at
time t − τ(t)/2 and the range D(t) has to verify the following equation:

c τ(t) = 2 D
(

t − τ(t)
2

)
.

We obtain τ(t) = 2 D0 + v t
c + v and the model relative to signal return is:

sr (t) = α se

(
c − v
c + v t − 2 D0

c + v

)
+ b(t) .

The moving target is characterized in the signal return by a time-shift-compression/dilation of
the emitted signal: action of Affine Group.
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Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Parameter Estimation
Noise and Clutter in Radar

Parameter Estimation - Velocity Measurement
Under the so-called narrow-band assumptions:

• f0 >> B, where B is the bandwidth of baseband signal u(.),
• v << c,
• 2 B T << c/v ,

We have: sr (t) = α se

(
c − v
c + v t − 2 D0

c + v

)
+ b(t) ,

= α exp (i ϕ) u
(

t − 2 D0
c

)
exp (2i π f0 t) exp

(
−2i π 2 v

c f0 t
)
+ b(t) .

sr (t) = α ′ se

(
t − 2 D0

c

)
exp (−2i π fd t) + b(t) .

where |α ′| = |α| and where fd =
2 v
c f0 is called the Doppler frequency corresponding to moving

target. The moving target is so characterized in the signal return by a time-shift/frequency
shift of the emitted signal: action of Heisenberg Group .
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Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Parameter Estimation
Noise and Clutter in Radar

Distance criterion - Ambiguity function and Matched Filter
One of the most important problem arising in radar theory is to separate targets in range and
Doppler spaces. A L2(R) distance R between two signals X and Y can be defined:

R2 =

∫+∞
−∞ |X (t) − Y (t)|2 dt .

Minimizing this distance leads to maximize the inner product between X and Y (also known as
Matched Filter): ∫+∞

−∞ X (t)Y ∗(t) dt .

According to the physical transformation of X , we obtain the so-called Ambiguity functions
[Woodward 53, Kelly 65]:

• Example: Y (t) = X (t − τ) e2i πν t : A(τ,ν) =
∫+∞
−∞ X (t)X∗(t − τ) e−2i πν t dt ,

• Example: Y (t) = 1√a X
(
a−1 t − b)

)
: A(a, b) = 1√a

∫+∞
−∞ X (t)X∗ (a−1 t − b)

)
dt .
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Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Parameter Estimation
Noise and Clutter in Radar

Link with the so-called Matched Filter and Pulse Compression
Let us consider a linear time-invariant filter of impulse response h(t). The filter input x(t) consists of a pulse
signal g(t) corrupted by additive zero mean white noise w(t) (with Power Spectral Density Φw (f ) = N0/2).
The output is y(t) = g0(t) + n(t), the signal and noise components of the input x(t) for 0 ≤ t ≤ T .

Deriving the matched filter (1/8)
n A basic problem that often arises in the study of communication systems is 

that of detecting a pulse transmitted over a channel that is corrupted by 
channel noise (i.e. AWGN)

n Let us consider a received model, involving a linear time-invariant (LTI) filter 
of impulse response h(t).

n The filter input x(t) consists of a pulse signal g(t) corrupted by additive 
channel noise w(t) of zero mean and power spectral density No/2.

n The resulting output y(t) is composed of go(t) and n(t), the signal and noise 
components of the input x(t), respectively.

)()()(
0),()()(

tntgty
Tttwtgtx

o +=
££+=

LTI filter of impulse
response 

h(t)
∑

White noise 
w(t)

Signal

g(t)
y(t)x(t) y(T)

Sample at 
time t = TLinear receiver

SNR =
|g0(T )|2

σ2n
=

|g0(T )|2

E [n2(t)]
,

where |g0(T )|2 is the power of the filtered signal g(t) at t =

T , and σ2
n = E

[
n2(t)

]
is the power of the filtered noise.

Since |g0(t)|2 =

∣∣∣∫ G(f )H(f )ej2πft df
∣∣∣2 and σ2

n = Rn(0) where Rn(τ) =
∫ N0

2
|H(f )|2 e2iπf τ df , the final

expression for the output SNR is:

SNR =

∣∣∣∫ H(f )G(f )ej2πfT df
∣∣∣2

N0
2

∫
|H(f )|2 df

≤
2

N0

∫
|G(f )|2 df .

The SNR output is maximized only for the particular impulse response h(t) that verifies:
H(f ) = k G∗(f ) e−2iπfT , ∀k ∈ C, or h(t) = k g∗(T − t) .
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Motivations for more robust detection schemes

Parameter Estimation
Noise and Clutter in Radar

Range resolution
Let us suppose N targets with amplitude {αi }i∈[1,N] located in range space at distance{

di =
c τi
2

}
i∈[1,N]

. The received signal sr (t) is:

sr (t) =
N∑

i=1
αi se(t − τi)

t→f
=⇒ Sr (f ) =

N∑

i=1
αi Se(f ) e−2i π f τi .

The radar processing leads to evaluate for all τ, the following expression:

R(τ) =

∫+∞
−∞ sr (t) s∗

e (t − τ) dt t→f
=⇒ R(τ) =

N∑

i=1
αi

∫+∞
−∞ |Se(f )|2 e2i π f (τ−τi) df .

• When Se(f ) = 1 for f ∈] −∞,+∞[, R(τ) =

N∑

i=1
αi δ(τ− τi) ,

• When Se(f ) = 1 for f ∈ [−B/2,+B/2], R(τ) =

N∑

i=1
αi

sin (πB (τ− τi))

πB (τ− τi)
.
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Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Parameter Estimation
Noise and Clutter in Radar

Range resolution

Chapitre 1. Principe de l’Imagerie SAR

• Simulation à 2 réflecteurs en bande X.

On montre ci-après, une série de simulations décrivant le pouvoir de résolution pour une
bande B d’émission donnée.

Le signal d’émission a un spectre fréquentiel de forme parfaitement rectangulaire. On se situe
en bande X : La largeur de bande est B = 1.2 Ghz et la fréquence centrale est fc = 9.5 Ghz.

Par conséquent, la distance �x séparant les 2 réflecteurs doit être plus grande que
c/2B = 12.5 cm pour que les réflecteurs soient résolus en distance radiale comme le montre les
figures (1.12) (a), (b) et (c).
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Fig. 1.12 – Les points séparés d’au moins �x = 12 cm sont résolus en distance.

14

Figure: Here: δD = 0.125 m and B = 1.2 109 Hz

The range resolution δD (so-called Range Bin) is proportional to the inverse of the emitted
signal bandwidth B:

δD =
c
2

1
B .
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Velocity resolution

Let us suppose N targets with amplitude {αi }i∈[1,N] with Doppler
{
νi =

2 vi
c f0

}

i∈[1,N]

. The

received signal Sr (f ) is:

Sr (f ) =
N∑

i=1
αi Se(f − νi)

f →t
=⇒ sr (t) =

N∑

i=1
αi se(t) e2i πνi t .

The radar processing leads to evaluate for all ν, the following expression:

R(ν) =

∫+∞
−∞ Sr (f ) S∗

e (f − ν) df t−f
=⇒ R(ν) =

N∑

i=1
αi

∫+∞
−∞ |se(t)|2 e−2i π t (ν−νi) dt .

The velocity resolution δV (so-called Doppler Bin) is proportional to the inverse of the emitted
signal duration (or integration time) T :

δV =
c

2 f0
1
T .
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Joint range and Velocity resolution
Let us suppose N targets with amplitude {αi }i∈[1,N] moving at velocity {vi }i∈[1,N] and located in
range space at distance

{
di =

c τi
2

}
i∈[1,N]

. The received signal Sr (f ) is:

sr (t) =
N∑

i=1
αi se(t − τi) e2i πνi t .

The radar processing (Matched Filter) leads to evaluate for all (τ,ν), the following expression:

R(τ,ν) =
∫+∞
−∞ sr (t) s∗

e (t − τ) e−2i πν t dt .

This last equation is the superposition of the ambiguity functions [Rihaczek 1969] centered at
{(τi ,νi)}i∈[1,N]

R(τ,ν) =
N∑

i=1
αi A(τ− τi ,ν− νi) .

J.-P. Ovarlez T03 Tutorial - Conference Radar 2024 13 / 85



Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Parameter Estimation
Noise and Clutter in Radar

Some examples of Ambiguity Functions
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JUIN 1995
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Fig. 3.3 – Diagramme d’ambiguïté d’un code à fréquence instantanée non-linéaire de type hamming de durée T = 1 et de largeur
de bande B = 64
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• Best radar waveforms are those which look like a thumbtack form (A(τ,ν) = δ(τ) δ(ν))
but they definitely don’t exist :-)

• Range and Doppler sidelobes can be troublesome for high density targets detection
because of their superposition at different ranges and Doppler [Rihaczek 1969].
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Link with Minimal Bounds (Cramer Rao bounds)
• Let us define the second order moments (centered) of the signal

σ2
t =

∫+∞
−∞ t2 |se(t)|2 dt ≈ T 2, σ2

f =

∫+∞
−∞ f 2 |Se(f )|2 df ≈ B2 and the modulation index

m =
−1
2π Im

∫+∞
−∞ t se(t)

ds∗
e (t)
dt dt. Under white Gaussian noise with variance σ2, range

and doppler accuracies are given by the following Cramer-Rao Bounds [Kay 93, Kay 98]:

E
[
(ν− ν̂)2] = σ2

4π2 α2
σ2

f
σ2

f σ
2
t − (m − t0 f0)2 ≥ σ2

4π2 α2
1
σ2

t
, (1)

E
[
(τ− τ̂)2] = σ2

4π2 α2
σ2

t
σ2

f σ
2
t − (m − t0 f0)2 ≥ σ2

4π2 α2
1
σ2

f
, (2)

E [(ν− ν̂)(τ− τ̂)] =
σ2

4π2 α2 . m − t0 f0
σ2

f σ
2
t − (m − t0 f0)2 (3)

• Radar uses to emit signal characterized with high time-bandwidth product B T .
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Noise and Clutter in Radar

Thermal noise
Thermal noise for most radars corresponds to additive complex white Gaussian noise
CN (0m, Im). This noise is generated by electronic devices in radar receivers.

What is the clutter?
Clutter refers to radio frequency (RF) echoes returned from targets which are uninteresting to
the radar operators and interfere with the observation of useful signals.
Such targets include natural objects such as ground, sea, precipitations (rain, snow or hail),
sand storms, animals (especially birds), atmospheric turbulence, and other atmospheric effects,
such as ionosphere reflections and meteor trails.
Clutter may also be returned from man-made objects such as buildings and, intentionally, by
radar countermeasures such as chaff.
A statistical model for the clutter is necessary: can we consider the clutter as Gaussian process,
non-Gaussian process, iid, correlated, stationary ????
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Noise and Clutter in Radar

/ 186

EXAMPLES OF RADAR CLUTTER

29

C1 – RADAR FUNDAMENTALS – Page 29
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Clutter : echoes due to interaction with environnement 
Ground clutter (soil, sea, forest,..) , surface clutter
rain, volumic clutter

Clutter is characterized by its reflectivity
(σoo) in m2/ m2  for surfaces
(σoo) in m2/ m3   for volumes

How to mitigate the clutter effect on detection
Cancellation by coherent soustraction of successive pulses
Doppler processing (echoes are concentrated around 0 Hz, for a groundbased radar)
STAP (Space time Adaptive Processing) for airborne radar

In some cases, the clutter is used by the radar
SAR imaging systems (Synthetic Aperture Radar) – ground or sea clutter
Weather radar – rain / ice / « air» clutter

Radar clutter - definition
PropagationPropagation

C1 – RADAR FUNDAMENTALS – Page 30
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Radar clutter - example

Example of clutter map for different azimuth resolutions

resolution 3° resolution 1°

Antenna pattern has a strong impact on clutter return

PropagationPropagation
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Range-Doppler Radar Processing
• The cross-correlation operation is closely related to the so-called Matched Filter (filter

which maximizes the SNR at its output). This is also known as the pulse compression
processing. This matched filter offers the gain B T on the noise power σ2,

• The Doppler resolution is inversely proportional to the integration time. For monostatic
radar (both emission and reception on the same antenna), radar prefers to cut off this long
integration time into m pulses of duration T with Pulse Repetition Frequency (PRF)
Fr = 1/Tr (total integration time m Tr ):

s(t) =
m−1∑

k=0
se(t − k Tr ) .

Considering the signal return sr (t), the radar processing consists in evaluating:

R(τ,ν) =
∫+∞
−∞ sr (t) s∗(t−τ) e−2i πν t dt =

m−1∑

n=0
e−2i πν n Tr

∫Tr

0
sr (u+ n Tr ) s∗

e (u−τ)����XXXXe−2i πν u du .

Neglecting the Doppler into the pulse duration leads to adapting the processing to the
0-Doppler: missing high-speed targets, bias in range estimation due to the ambiguity.
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Range-Doppler Radar Processing
When supposing non migrating target and neglecting the Doppler variation in the pulse, we can
rewrite the processing as:

R(τ,ν) =
m−1∑

n=0
e−2i πν n Tr

∫Tr

0
sr (u + n Tr + τ) s∗

e (u) du
︸ ︷︷ ︸

zn(τ)

= pH z ,

where z = (z0(τ), z1(τ), . . . , zm−1(τ))
T and p =

(
1, e2i πν Tr , . . . , e2i πν (m−1) Tr

)T .

• For each range bin c τ/2 (time Tr can be sampled at resolution δτ = 1/B) on the range support [D1, D2]
of the analyzed swath, compute zn(τ) corresponding to the time correlation between received signal and
emitted pulse se(t) at time n Tr ,

• For each range bin c τ/2, compute the Discrete Fourier Transform (pH z) over the m coefficients
{zn(τ)}n∈[0,m−1] to characterize Doppler spectrum in the spectral support ν ∈ [0, 1/Tr ].
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Range-Doppler Radar Processing
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Fig. 5.4 – Sortie de traitement distance-vitesse idéal dans le cas de deux cibles pour deux codes radar et un cas de détection
(S/B=28dB) : 40 impulsions de durée τ = 10 µs, de période Tr = 40 µs (ambiguïté vitesse 750 m/s, ambiguïté distance 6 km,

résolution distance 5.88m, résolution vitesse 18.75 m/s).

THE FRENCH AEROSPACE LAB

Example of the so-called Range-Doppler map of the processing data.
• Coherent Doppler processing brings an improvement of m on the Doppler resolution with regards to the

one pulse processing (δν = 1/(m Tr )) as well as a gain m in SNR.
• Range resolution does not change. Always related by the pulse bandwidth,
• Appearance of the range ambiguities at ranges c k Tr/2,
• Appearance of the Doppler ambiguities at Doppler frequency k/Tr .
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Array and Space-Time Adaptive Processing
Source locating in azimuth θ, at Doppler ν and in range bin c τ/2
If the radar receives a signal on an antenna array, each antenna is collecting sr (t) delayed by
the time shift T = n d sin θ/c depending on its spatial position n d (n ∈ [0, Ns ]) on the array.
Supposing that the array is non-dispersive (Ns d sin θ << c/B) , the concatenated
Ns × m-observation vector y collected by the radar on the antenna array for a given range bin
c τ/2 and Doppler ν is then:

y = A p ⊗
(

1, e2iπ f0 d sinθ/c , . . . , e2iπ f0 (Ns−1) d sin θ/c
)T

+ b .

28

Propagation Delay Across the Array

T

d

d sinT
wavefront

Signal arrival

T  
dsin T
c

The key element in smart antenna testing is the Delay. As the signal arrival at the
antenna array travels across the different sensors, it encounters a propagation 
delay
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Background on SAR and Radar Imaging

Radar Imaging allows to build more and more precise images :
Current use of very high bandwidth and long integration time (high 
azimuth bandwidth) : Very high spatial resolution (< 10cm), 
Application to surveillance (detection, change detection), 
classification, 3D reconstruction, EM analysis, … 
Due to the growing complexity of the scene (non stationarity, non-
Gaussianity), need to derive new procedures to exploit these 
images.

2

ONERA RAMSES Image

ONERA RAMSES Image

R
A

M
SE

S 
Im

ag
e

ONERA ISAR Image

Radar/SAR Imaging

Radar Imaging [Mensa 81, Soumekh 94, 99] allows to build more and more complex images:
• Current use of very high spectral bandwidth and very high angular bandwidth leading to

very high spatial resolution,
• Application to monitoring (detection, change detection), classification, 3D reconstruction,

EM analysis, etc.

These applications require some physical diversity to reach good performances.
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Detection in monochannel SAR Images
Examples of Conventional Detection Schemes in Mono-Channel 
SAR Images

6

 Global thresholding (Gaussian hypothesis)

|xi|2 > �

 Local thresholding (Gaussian hypothesis)
|xi|2

1

N

NX

k 6=i

|xk|2
> �

Pfa = 10�2

 Statistics-based thresholding (K-distribution)

px(x) =
2

x�(⌫) �(L)

✓
L⌫ x
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◆(L+⌫)/2

KL�⌫
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 MLE estimation of parameters, determination of local threshold

DEMR-BFR-RT-1-1.0 – 41 –
30/04/2010
Lot 1: Analyse théorique du signal
BFR et émulations

SANS MENTION
DE PROTECTION

ponctuels assez brillants. La zone rouge sélectionnée de l’image 4.18 contient un bateau de location ONERA.

Fig. 4.17 – Image ME0110, Bande X, Polar Hh, Incidence 3 deg, slant.

Fig. 4.18 – Image ME0111, Bande X, Polar Hh, Incidence 3 deg, slant

Fig. 4.19 – Zoom de l’Image ME0111, Bande X, Polar Hh, Incidence 3 deg, slant

4.3.3.1. Analyse de l’image ME0110

• Analyse 1
Nous analysons ici la portion d’image [50..2260], [12131..16397] de l’image me0110_XHh_03deg_pa-

nor_slc. Hormis les deux gros tankers très visible, nous analysons la partie de droite en rouge sur la figure 4.21
et présentée à la figure 4.22. Les deux images de la figure 4.22 sont les images SAR seuillées pour les PFA

� = N
⇣
P

�1/N
fa � 1

⌘

� = � log(Pfa)

local threshold

Conventionnal SAR detection framework on a monodimensionnal SAR image mainly consists in 
locally thesholding the amplitude of the SAR image.  

Conventional SAR detection framework on a mono-channel SAR image mainly consists in
locally comparing the complex amplitude of pixel xi . In Gaussian homogeneous environment:

• Global thresholding Λ(xi) = |xi |2
H1
≷
H0

λ, leads to λ = −σ2 log Pfa,

• Local thresholding Λ(xi) =
|xi |2

1
N

N∑

k ̸=i
|xk |

2

H1
≷
H0

λ leads to λ = N
(

P−1/N
fa − 1

)
.

• Statistic-based thresholding (other distributions): Λ(xi) = g(xi)
H1
≷
H0

λ leads to λ = f (Pfa).

Detection scheme on mono-channel SAR image only consists in thresholding the intensity pixel
of the image.
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Multi-Channel SAR Images
Multi-channel SAR images automatically propose this diversity through:

• polarimetric channels (POLSAR), interferometric channels (INSAR), polarimetric and
interferometric channels (POLINSAR),

• multi-temporal, multi-bands, multi-passes SAR Image, etc.

4

For multichannel SAR Images, each pixel of the spatial image is associated to a vector of 
informations: 
 - polarimetric channels (POLSAR), 
 - interferometric channels (INSAR), 
 - polarimetric and interferometric channels (POLINSAR), 
 - Multi-temporal, multi-passes SAR Image,  
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Analysis of the structures displacement in  
Shangai with multi-temporal SAR images  

(@Telespazio)

Estimation of the height 
in POLINSAR images

EM behavior of the terrain  
in POLSAR images

Almost all the conventional techniques of detection, parameters estimation and classification in 
multichannel SAR images are based on the multivariate Gaussian statistic with additional 
hypotheses of stationarity and homogeneity. 

Examples: estimation of the polarimetric covariance matrix, interferometric coherency matrix 

Examples of Applications in Multi-Channel SAR Image

Almost all the conventional techniques of detection, parameters estimation, speckle filtering
techniques, classification in multi-channel SAR images (e.g. polarimetric covariance matrix,
interferometric coherency matrix) are based on the multivariate statistic.
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Hyperspectral Imaging (HSI)

Figure 1. Color rendering of self test hyperspectral image.

 

 

Figure 2. Screenshot of home page for Target Detection Blind Test website. 
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Hyperspectral Imaging (HSI)
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• Anomaly Detection
To detect all that is "different" from the background (Mahalanobis distance) - No
information (steering vector p) about the targets of interest available. [Frontera 16].

• "Pure" Detection
To detect targets characterized by a given spectral signature p - Regulation of False Alarm
[Frontera-Pons 17].
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Detection and Steering vector modeling
Many detection problems can be viewed as a "simple" problem of detection of the information
vector p characterizing the target:
Radar

p can model range information, Doppler frequency, direction of arrival, joint content of all these
informations (STAP), multi-band, etc.

SAR
p can model polarimetric, interferometric, joint polarimetric and interferometric informations, multi-band,
sub-look and sub-band behavior, etc.

Hyperspectral
p can model any material characterized by its given spectral signature (spectroscopy).
p can be also unknown (Anomaly detection)

We can then develop adaptive multivariate detection schemes using modeling the so-called
target information steering vector p
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General Formulation of All the Detection Problems
Set of two binary hypotheses

{
H0 : z = b
H1 : z = A p + b , where

• z is a m-vector of data collected in a given measurement support. It can be range support,
spatial support (Imaging), etc.

• The complex amplitude A of the target to detect is considered here deterministic (no
fluctuation)

• The m-vector b represents the additive noise (thermal noise, photon noise, clutter, jam,
etc.) characterized by a known (or unknown) PDF.

• The m-vector p represents the so-called deterministic steering vector: it can be relative to
Doppler, Polarimetry, Interferomety, Wavelength, Spatial, time, joint Angular and Spectral
information (STAP).

The problem here consists in choosing between H1 hypothesis and H0 hypothesis.
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Problem Statement
In a m-vector z, detecting an unknown complex deterministic signal s = A p embedded in an
additive noise y can be written as the following statistical test:

{
Hypothesis H0: z = y zi = yi i = 1, . . . , n
Hypothesis H1: z = s + y zi = yi i = 1, . . . , n

where the zi ’s are n "signal-free" independent secondary data used to estimate the noise
parameters. ⇒ Neyman-Pearson criterion [Kay 93, Kay 98]

Detection test: comparison between the Likelihood Ratio Λ(z) and a detection threshold λ:

Λ(z) =
pz(z/H1)

pz(z/H0)

H1
≷
H0

λ ,

Probability of False Alarm (type-I error): Pfa = P(Λ(z) > λ/H0)

Probability of Detection: Pd = P(Λ(z) > λ/H1) for different Signal-to-Noise Ratios (SNR),
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Pd/Pfa

Pfa = P(Λ(z) > λ/H0) , Pd = P(Λ(z) > λ/H1) .
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False Alarm Regulation Importance

CFAR Property
A detector is said Constant False Alarm Rate (CFAR property) if the PDF of the test is
independent on the noise parameter (mean, covariance, variance, statistic) under H0 hypothesis.
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Multivariate Gaussian distribution
Definition
Let x = (x1, . . . , xm)T be a random vector. The vector x is Gaussian if and only if, for any
sequence a = (a1, . . . am)T ∈ Rm of real numbers, the scalar random variable

z = aT x =

m∑

i=1
ai xi is a Gaussian variable.

We note µ = E(x) its mean and Σ = E
[
(x − µ) (x − µ)

T
]

its covariance matrix.

Its PDF that is noted N (µ,Σ) is given by

px(x) =
1√

(2π)m |Σ|
exp

(
−
(x − µ)T Σ−1 (x − µ)

2

)
.

The covariance matrix is modeling the correlation existing withing the components of the
observation vector x

J.-P. Ovarlez T03 Tutorial - Conference Radar 2024 38 / 85



Radar basis
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detection schemes

Problem Statement
Modeling Homogeneous Gaussian Noise/Clutter
Examples of Detector Derivations
Synthesis of CFAR Detection Schemes Under Gaussian Noise

Complex Gaussian distribution
Definition
A random vector z = x + jy is complex Gaussian distributed z ∼ CN (µ,Σz , Pz) iif[

x
y

]
∼ N

([
ℜ(µ)
ℑ(µ)

]
,
[
Σx Σxy
Σyx Σy

])
with Σz = E

[
(z − µ)(z − µ)H] = Σx + Σy + j(Σyx − Σxy ) and

Pz = E
[
(z − µ)(z − µ)T ] = Σx − Σy + j(Σyx + Σxy )

Circularity Property

z = x + j y ∈ Cm is circularly symmetric z ∼ CN (µ,Σz) iif z d
= ejφ(z − µ) ∀φ ∈ [0; 2π[.

Notably, Σx = Σy and Σyx = Σxy = 0 ⇔ Σz = 2Σx and Pz = 0.

pz(z) =
1

πm|Σz |
exp

(
−(z − µ)HΣ−1

z (z − µ)
)
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Noise distribution
Central limit theorem
Let x1, x2, . . . , xn be a sequence of random variable i.i.d. with finite mean
µ and variance σ, then

√
n xn

a.s.→
n→∞ N

(
0,σ2) with xn =

x1 + x2 + . . .+ xn
n .

A Gaussian/Normal random variable has the largest entropy among all ran-
dom variables of equal variance.

Speckle noise (Goodman 1976)

z =

n∑

i=1
ai exp jφi ⇒ z ∼ CN (0,σ2), p(z) = 1

2πσ2 exp
(
−

|z |2
2σ2

)
.

The Galton board
(top), Random
walk (bottom)

This explains why the Gaussian distribution is often used to model
the in-phase return of a large number of i.i.d. backscatterers in a radar resolution cell.
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Link Between Covariance Matrix and Power Spectral Density 1/2

The Power Spectral Density Φ(f ) characterizes, in a given range bin, the spectral (Doppler)
fluctuations of a process z = (z0, . . . , zm−1)T collected from pulse to pulse.

Modèles de Densité Spectrale de 
Puissance

Φ( f ) =Φ0 exp

 
�( f � f0)2

2σ2f c

!

Φ( f ) =Φ0
1

1+

✓
f
f0

◆n

� 1
2Tr

 f  1
2Tr

� λ
4Tr

 v λ
4Tr

pour {
Fonction d’Autocorrélation

ρ(τ) =
Z +∞

�∞
Φ( f )e2iπ f τ

Matrice de Covariance M =

0
BBBB@

ρ0 ρ1 . . . ρN�1
... ... ... ...
ρk ρk+1 . . .ρN�k�1
... ... ... ...

ρN�1ρN�2. . . ρ0

1
CCCCA

FLUCTUATIONS TEMPORELLES DU FOUILLIS

11

[Billingsley 1993]

• Examples of some PSD models with −1/(2 Tr ) ≤ f ≤ 1/(2 Tr ):

Φ(f ) = Φ0 exp
(
−
(f − fc )2

2σ2
f

)
, Φ(f ) = Φ0

1 +

( f
fc

)n ,

• Autocorrelation function (Wiener-Khintchine Theorem):

ρ(τ) =

∫+∞
−∞ Φ(f ) exp (2i π f τ) df .

• Covariance Matrix: Σ = E
[
z zH
]
=

 ρ(0) . . . ρ((m − 1)Tr )
...

. . .
...

ρ((m − 1)Tr ) . . . ρ(0)

 .
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Link Between Covariance Matrix and Power Spectral Density 2/2

Examples of PSD modeling and their associated covariance matrices:

• Φ(f ) = N0 ∈ R+ that corresponds to a white noise leads to the CM equal to Σ = N0 B I,
where B is the bandwidth of the receiver and I is the identity matrix.

• The exponential PSD Φ(f ) = P0 exp (−α|f |), with α ∈ R+ corresponds to the CM equal
to

{
ρ(k Tr) = 2αP0

(
α2 + 4π2(k Tr )2)−1/2}

k∈[0,m−1]

• For any 0 ≤ |ρ0| ≤ 1, the practical covariance model Σi,j =
{
ρ
|i−j|
0

}
i,j∈[1,m−1]

leads to the

PSD |Φ(f )| =
∣∣∣∣1 − ρ0 exp (2iπfmTr )

1 − ρ0 exp (2iπfTr )

∣∣∣∣ .
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General Detection Theory
When some parameters (noise, target) are unknown:

• GLRT Detection test: comparison between the Generalized Likelihood Ratio Λ(z) and a
detection threshold λ:

Λ(z) =
max
θ

max
µ

pz/H1(z,θ,µ)

max
µ

pz/H0(z,µ)
H1
≷
H0

λ ,

where θ and µ represent respectively the unknown target parameter vector and the unknown
noise parameter vector.

CFAR Property
A GLRT detector is said Constant False Alarm Rate (CFAR property) if the PDF of the GLRT
test is independent on the noise parameter (mean, covariance, variance, statistic) under H0
hypothesis.
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General Estimation Theory: unknown deterministic parameters
• Maximum Likelihood Estimation (MLE) scheme: maximize the PDF with respect to the

unknown parameter. Ex for noise parameter µ:
µ̂ = argmax

µ
pz/H0(z,µ) .

Example: Suppose n target-free i.i.d. m-vectors {zi }i=1,n where zi ∼ CN (0m,Σ) where Σ is an
unknown covariance matrix. The MLE Ŝn is set by solving

δ

δΣ
log

n∏

i=1
pz(zi ,Σ) =

δ

δΣ−1

(
n log

∣∣Σ−1∣∣− N∑

i=1
zH

i Σ−1 zi

)
= 0 .

Recalling that δ

δΣ−1 log
∣∣Σ−1∣∣ = ΣT and δ

δΣ−1
(
zH

i Σ−1 zi
)
=
(
zi zH

i
)T , we obtain:

Sample Covariance Matrix: MLE of the Gaussian problem

Ŝn =
1
n

n∑

i=1
zi zH

i .
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Modeling Homogeneous Gaussian Noise/Clutter

Problem to solve in Gaussian environment
{

H0: z = y zi = yi i = 1, . . . , n
H1: z = s + y zi = yi i = 1, . . . , n

where s = A p, y and yi ∼ CN (0m,Σ), i.e. pz(z) =
1

πm |Σ|
exp

(
−zH Σ−1 z

)
Goal: to choose the best hypothesis while minimizing the risk of being wrong (False Alarm)
from an observation vector z

=⇒ All is known for Gaussian assumption!

Sample Covariance Matrix (SCM)

When Σ is unknown, the Gaussian environment is modeled through the SCM: Ŝn =
1
n

n∑

i=1
zi zH

i .
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Properties of the SCM in homogeneous Gaussian noise/clutter
environment

Properties of the SCM
Simple Covariance Matrix estimator,
Very tractable,
Wishart distributed,
Well-known statistical properties: unbiased and efficient.

Then,
√

n vec
(

Ŝn − Σ
)

d−→ CN (0m2 , C, P),

where C = (Σ∗ ⊗ Σ)
P = (Σ∗ ⊗ Σ) Km2,m2 .

where Km,m is the m × m commutation matrix transforming any m-vector vec (A) into
vec
(
AT ).
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Under Gaussian assumptions CN (0m,Σ), the Sample Covariance Matrix (SCM) is the most
likely covariance matrix estimate (MLE) and is the empirical mean of the cross-correlation of n
m-vectors zk :

Ŝn =
1
n

n∑

k=1
zk zH

k .

This estimate is unbiased, efficient, Wishart distributed,
n can represent any samples support called the secondary data: in time, spatial, angular
domain, zk a vector of any information collected in any domain:

in Radar Detection, it can represent the time returns collected in a given range bin of
interest, n is here the range bin support
in Array Processing, it can represent the spatial information collected by the antenna array
at a given time, n is here the time support,
in Space-Time Adaptive Processing, it can represent the joint spatial and time information
collected in a given range bin of interest, n is here the range bin support,
in SAR or Hyperspectral imaging, it can represent the polarimetric and/or interferometric,
or spectral information collected for a given pixel of the spatial image, n is here the spatial
support.
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Example 0 - Detection Schemes in Range Doppler map
In a scalar measurement z, detecting an unknown complex deterministic signal s embedded in an
additive noise y can be written as the following statistical test:

{
Hypothesis H0: z = y , zi = yi i = 1, . . . , n
Hypothesis H1: z = s + y , zi = yi i = 1, . . . , n

where the zi ’s are n "signal-free" independent secondary data used to estimate the noise
parameters. ⇒ Neyman-Pearson criterion [Kay 93, Kay 98]

Conventional detection framework on a mono-channel radar data mainly consists of locally comparing
the complex amplitude of pixel z. In Gaussian homogeneous environment, i.e. y ∼ CN (0,σ2):

• Known power σ2: global thresholding → Λ(z) = |z |2
H1
≷
H0

λ, leads to λ = −σ2 log Pfa ,

• Unknown power σ2: local thresholding → Λ(z) = |z |2

1
N

N∑

k ̸=i
|zk |

2

H1
≷
H0

λ leads to λ = N
(

P−1/N
fa − 1

)
.

The detection scheme only consists of thresholding the intensity of each map pixel.
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Example 1 - Detection Schemes in Gaussian Noise

Problem under study:
{

Hypothesis H0: z = b
Hypothesis H1: z = A p + b ,

where A ̸= 0 is a known complex scalar amplitude, p is the known steering vector and
b ∼ CN (0m,Σ) with known covariance matrix Σ. The probability density functions of the
received m-vector z under each hypothesis are given by:

pz/H0(z) =
1

πm |Σ|
exp

(
−zH Σ−1z

)
pz/H1(z, A) = 1

πm |Σ|
exp

(
−(z − A p)H Σ−1(z − A p)

)
.

The Log-Likelihood function log
pz/H1(z)
pz/H0(z)

can be simplified as: Λ(z) = Re
(
pH Σ−1 z

) H1
≷
H0

λ .

The statistic of the test becomes:

Λ(z) ∼ N
(
0, pH Σ−1 p

)
under H0 and Λ(z) ∼ N

(
Re
(
AH pH Σ−1 p

)
, pH Σ−1 p

)
under H1
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Example 2 - Matched Filter (1)

Problem under study:
{

Hypothesis H0: z = b ,
Hypothesis H1: z = A p + b ,

where A is unknown complex scalar amplitude, p is the known steering vector and
b ∼ CN (0m,Σ) with known covariance matrix Σ. The probability density functions of the
received m-vector z under each hypothesis are given by:

pz/H0(z) =
1

πm |Σ|
exp

(
−zH Σ−1z

)
, pz/H1(z, A) = 1

πm |Σ|
exp

(
−(z − A p)H Σ−1(z − A p)

)
.

Maximizing pz/H1(z, A) with respect to A leads to the MLE Â: Â =
pH Σ−1 z
pH Σ−1 p

. Replacing it in
the Log-Likelihood Ratio test, we obtain the well-known Matched Filter:

ΛMF (z) = log
max

A
pz/H1(z, A)

pz/H0(z)
=

∣∣pH Σ−1 z
∣∣2

pH Σ−1 p
H1
≷
H0

λ .
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Example 2 - Matched Filter - Derivation of Performances (2)

Let SNR = |A|2 pH Σ−1 p be the Signal to Noise Ratio of the target to be detected.
Under H0 hypothesis, z ∼ CN (0m,Σ) and ΛMF (z) ∼

1
2 χ2(2). We have:

Pfa = P (ΛMF (z) > λMF/H0) =

∫+∞
λMF

e−u du = exp (−λMF ) ,

λMF = − log Pfa .

Under H1 hypothesis, z ∼ CN (A p,Σ) and ΛMF (z, Â) ∼ 1
2 χ2 (2, 2 SNR). We have:

Pd = P
(
ΛMF (z, Â) > λMF/H1

)
= 1 − Fχ2(2,δ) (2 λMF ) ,

where Fχ2(2,δ)(.) is the cumulative χ2(2, δ) density function with non-centrality parameter
δ = 2 SNR = 2 A2 pH Σ−1 p.
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Example 3 - Normalized Matched Filter (1)

Problem under study:
{

Hypothesis H0: z = b ,
Hypothesis H1: z = A p + b ,

where A is unknown complex scalar amplitude, p is the known steering vector and
b ∼ CN (0m,σ2 Σ) with known covariance matrix Σ but unknown variance σ2. The probability
density functions of the received m-vector z under each hypothesis are given by:

pz/H0(z,σ2) =
1

πm σ2 m |Σ|
exp

(
−

zH Σ−1z
σ2

)
pz/H1(z, A) = 1

πm σ2 m |Σ|
exp

(
−
(z − A p)H Σ−1(z − A p)

σ2

)
.

• Maximizing pz/H0(z,σ2) with respect to σ2 leads to the MLE: σ̂2 =
zH Σ−1z

m .
• Maximizing pz/H1(z,σ2, A) with respect to σ2 and with respect to A leads to the MLEs:

σ̂2 =
1
m

(
zH Σ−1z −

∣∣pH Σ−1 z
∣∣2

pH Σ−1 p

)
and Â =

pH Σ−1 z
pH Σ−1 p

.
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Example 3 - Normalized Matched Filter (2)
Replacing it in the Log-Likelihood Ratio test, we obtain the well-known Normalized Matched
Filter:

ΛNMF (z) = log
max

A
max
σ2

pz/H1(z,σ2, A)

max
σ2

pz/H0(z,σ2)
=

∣∣pH Σ−1 z
∣∣2(

pH Σ−1 p
) (

zH Σ−1 z
) H1
≷
H0

λNMF .

We can note that the NMF is invariant with respect to a change scale for p, z or Σ. Let
SNR = |A|2 pH Σ−1 p be the Signal to Noise Ratio of the target to be detected. Under H0
hypothesis, z ∼ CN (0m,σ2 Σ) and Λ(z) ∼ β(1, m − 1). We have:

Pfa = P (ΛNMF (z) > λNMF/H0) = (1 − λNMF )
m−1 ,

λ = 1 − P1/(m−1)
fa .

We can note that the threshold λNMF does not depend on unknown variance σ2. The test is
CFAR under H0 hypothesis.
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MF and NMF False Alarm regulation
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MF and NMF Probability of Detection
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Example 4 - Kelly and Adaptive Matched Filter (1)

Problem under study:
{

Hypothesis H0: z = b , zi = bi , i = 1, . . . , n ,
Hypothesis H1: z = A p + b , zi = bi , i = 1, . . . , n .

where the zi ’s are n "signal-free" independent secondary data used to estimate the noise
parameters, where A is unknown complex scalar amplitude, p is the known steering vector and
b ∼ CN (0m,Σ) with unknown covariance matrix Σ. The probability density function of the
received m-vector z under hypothesis H0 is given by:

pz,{zk }k ,Σ/H0(z) =
1

πm (n+1) |Σ|
n+1 exp

(
−Tr

(
Σ−1

(
z zH +

n∑

k=1
zk zH

k

)))
.

With formulas δ log |Σ−1|

δΣ−1 = ΣT and
δ Tr

(
Σ−1 B

)
δΣ−1 = BT , we obtain:

argmax
Σ

pz,{zk }k ,Σ/H0(z) =
1

n + 1

(
z zH +

n∑

k=1
zk zH

k

)
.
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Example 4 - Kelly and Adaptive Matched Filter (2)
The probability density function of the received m-vector z under hypothesis H1 is given by:

pz,{zk }k ,Σ,A/H1(z) =
1

πm (n+1) |Σ|
n+1 exp

(
−Tr

(
Σ−1

(
(z − A p) (z − A p)H

+

n∑

k=1
zk zH

k

)))
.

By denoting S =

n∑

k=1
zk zH

k , we obtain argmax
Σ

pz,{zk }k ,Σ,A/H1(z) =
(z − A p) (z − A p)H

+ S
n + 1

and replacing these two expressions in the Generalized Log Likekihood Gatio leads to:

Λ(z) =
∣∣z zH + S

∣∣
min

A

∣∣∣(z − A p) (z − A p)H
+ S
∣∣∣

H1
≷
H0

λ .

If we note zs = S−1/2 z and ps = S−1/2 p, we have:∣∣∣(z − A p) (z − A p)H
+ S
∣∣∣ = |S|

∣∣∣(zs − A ps) (zs − A ps)
H
+ Im

∣∣∣ = |S|
(
||zs − A ps ||

2 + 1
)

and min
A

|S|
(

∥zs − A ps∥2
+ 1
)
= |S|

(∥∥P⊥
ps zs

∥∥2
+ 1
)

where P⊥
ps = Im − ps pH

s /pH
s ps .
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Example 4 - Kelly and Adaptive Matched Filter (3)
We obtain the following Generalized Likelihood Ratio test, known as the so-called Kelly’s test
[Kelly 86]:

ΛKelly (z) =
∣∣pH S−1 z

∣∣2
(pH S−1 p) (1 + zH S−1 z)

H1
≷
H0

λKelly where S =

n∑

k=1
zk zH

k .

This detector has good properties but is often (usually) replaced by a simpler one (so-called
two-step), the Adaptive Matched Filter [Robey 92]:

ΛAMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2
pH Ŝ−1

n p

H1
≷
H0

λAMF where Ŝn =
1
n

n∑

k=1
zk zH

k .

The covariance matrix estimate Ŝn =
1
n S is the empirical covariance matrix of the secondary

data {zk }k∈[1,n] and is called Sample Covariance Matrix estimate.
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Example 5 - Adaptive Normalized Matched Filter (1)
Detection in quasi-homogeneous Gaussian Noise: Problem under study:{

Hypothesis H0: z = b , zi = bi , i = 1, . . . , n ,
Hypothesis H1: z = A p + b , zi = bi , i = 1, . . . , n ,

where the zi ’s are n "signal-free" independent secondary data used to estimate the noise
parameters, where A is unknown complex scalar amplitude, p is the known steering vector,
where bi ∼ CN (0m,Σ) and b ∼ CN (0m,σ2 Σ) with unknown covariance matrix Σ and unknown
variance σ2. The PDF under each hypothesis is given by [Bandiera 09]:

pz,{zk }k ,Σ/H0(z) =
1

πm (n+1) |Σ|
n+1 exp

(
−zH Σ−1 z +

n∑

k=1
zH

k Σ−1zk

)
,

pz,{zk }k ,Σ,σ2,A/H1(z) =
1

πm (n+1) σ2 m |Σ|
n+1 exp

(
−
(z − A p)H Σ−1 (z − A p)

σ2 +

n∑

k=1
zH

k Σ−1zk

)
.
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Example 5 - Adaptive Normalized Matched Filter (2)
The corresponding detector [Scharf 94, Kraut 99] is homogeneous of degree 0 with the
variables p, Ŝn and z and is named Adaptive Normalized Matched Filter (ANMF):

ΛANMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2(
pH Ŝ−1

n p
) (

zH Ŝ−1
n z

) H1
≷
H0

λANMF where Ŝn =
1
n

n∑

k=1
zk zH

k .

ANMF and Cosine Estimate
This detector is often called a Cosine Estimator as it has the dimension of a cosine squared
between the steering vector p and the observation z:

ΛANMF (z) = cos2 (p̂, z) .

Unlike the AMF which characterizes the power of a scalar product, the ANMF measures an
angle. It is so more sensible to a possible mismatch between p and z ([P. Develter 23]).
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Example 6 - Persymmetric Adaptive Matched Filter (1)

Many applications can result in a clutter covariance matrix that exhibits some particular
structure. For example, radars that use a symmetrically spaced linear array for spatial domain
processing, or a symmetrically spaced pulse train for temporal domain processing.

In these systems, the clutter covariance matrix Σ has the persymmetric property:

Σ = Jm Σ∗ Jm ,

where Jm is the m-dimensional antidiagonal matrix having 1 as non-zero elements.
The signal vector is also persymmetric, i.e. it satisfies: p = Jm p∗.
The persymmetric structure of Σ can be exploited to improve its estimation accuracy
compared to the SCM.
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Example 6 - Persymmetric Adaptive Matched Filter (2)
We can build a two-step AMF built with the persymmetric Maximum Likelihood (ML) estimate
of the clutter covariance matrix instead of the SCM. Problem under study:

{
Hypothesis H0: x = T z = T b , xi = T zi = T bi , i = 1, . . . , n ,
Hypothesis H1: x = T z = A T p + T b , xi = T zi = T bi , i = 1, . . . , n ,

where T is the unitary matrix defined by:

T =





1√
2

(
Im/2 Jm/2
i Im/2 −i Jm/2

)
for m even

1√
2

 I(m−1)/2 0 J(m−1)/2
0

√
2 0

i I(m−1)/2 0 −i J(m−1)/2

 for m odd.

Through this unitary transformation, secondary data xi ∼ CN (0, R) where R = TΣTH is a
real covariance matrix
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Example 6 - Persymmetric Adaptive Matched Filter (3)

Let us now investigate the ML estimate of the real covariance matrix R from the n transformed
secondary data xk . The ML estimate R̂ of real matrix R is unbiased and is given by:

R̂ = Re(R̂n) ,

where Re(.) stands for the real part, and where:

R̂n =
1
n

n∑

k=1
xk xH

k = T Ŝn TH where Ŝn =
1
n

n∑

k=1
zk zH

k .

n R̂ is real Wishart distributed with 2n degrees of freedom with parameter 1
2 R,

This result could be retrieved by the COvariance Matching Estimation Technique
(COMET) procedure [Ottersen 98]!
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Example 6 - Persymmetric Adaptive Matched Filter (4)

The distribution of this new detector under hypothesis H0 can be derived. Replacing R̂ in the
AMF (two-step procedure) leads to the following detection test, called the P-AMF:

ΛPAMF =

∣∣∣sT R̂−1 x
∣∣∣2

sT R̂−1 s

H1
≷
H0

λPAMF ,

where s = T p. In terms of the original data, we have, equivalently:

ΛPAMF =

∣∣∣∣pH TH
[
Re
(

T Ŝn TH
)]−1

T z
∣∣∣∣2

pH TH
[
Re
(

T Ŝn TH
)]−1

T p

H1
≷
H0

λPAMF .

In the ML estimation procedure, taking into account the real structure of R, or equivalently,
the persymmetric structure of Σ, virtually doubles the amount of secondary data.
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Example 6 - Persymmetric Adaptive Matched Filter (5)

Theoretical λ/Pfa relationship: Pfa = 2F1

(
2n − m + 1

2 , 2n − m + 2
2 , 2n + 1

2 ;−λPAMF
n

)
.
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Left figure: Threshold decreasing brought by the P-AMF compared to the AMF for n = 25 and m = 20.
Right figure: Improvement of about 7dB in terms of detection for the PAMF compared to the AMF for
this set of parameters.
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Example 7 - Anomaly Detector (1)

Model :
{

Hypothesis H0: : xi = bi , , i = 1, . . . , n
Hypothesis H1: : xi = αi p + bi , , i = 1, . . . , n

where p,

{αi }i∈[1,n] are unknown and {bi }i ∼ CN (0,Σ). If we note α =

(α1, . . . ,αn)
T and X =

 x1(1) . . . xn(1)
... . . . ...

x1(m) . . . xn(m)

. The RXD GLRT

test (Reed and Yu, 90) is defined as:

Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Reed-Xiaoli Detector

Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Reed-Xiaoli Detector

The RXD [Reed1990] is commonly considered as the benchmark anomaly
detector for hyperspectral data:

⇤(X) =
(X↵T )T (XXT )-1(X↵T )

↵↵T

Taking a particular ↵i = [0 · · · 010 · · · 0]. The sampled version when
assuming non-zero mean Gaussian background yields:

⇤ARXD = (xi - µ̂SMV )T ⌃̂
-1
SCM (xi - µ̂SMV )

H1
?
H0

�

⇤ xi is present in the covariance estimation,

⇤ N secondary data are NOT signal-free,

⇤ Global strategy.

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 40/ 52

secondary data xi

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 40/ 54
ΛRXD(X) =

(
XαT )H (XXH)−1 (XαT )

ααH

Taking a particular α = [0, . . . , 0, 1, 0, . . . , 0]T , a more simple and well-known RXD version
yields (the signal under test xi is present in the covariance estimation!):

ΛRXD(xi) = xH
i Ŝ−1

n xi
H1
≷
H0

λ
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Example 7 - Anomaly Detector (2)

Model :
{

H0 : x = b, , {xi = bi }i , i = 1, . . . , n
H1 : x = αp + b, , {xi = bi }i , i = 1, . . . , n

where {bi }i ∼

CN (0,Σ), α and p are unknown. The Kelly GLRT test (Frontera, 14)
is defined as:

Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Kelly Anomaly Detector
Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Kelly Anomaly Detector

Obtained when deriving the Kelly’s LR w.r.t. the steering vector p.

⇤
(N )

KellyAD ⌃̂,µ̂
= (x - µ̂SMV )T ⌃̂

-1
SCM (x - µ̂SMV )

H1
?
H0

�

Corresponds to the Mahalanobis distance.

Detector distribution under Gaussian hypothesis [Frontera2014]

N - m
m (N + 1)

⇤
(N )

KellyAD ⌃̂,µ̂
⇠ Fm,N-m ,

with Fm,N-m is the non-central F -distribution with m and N - m degrees
of freedom.

⇤ When N ! 1 the distribution tends to a �2.

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 43/ 54

vector under text x

secondary data xi

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 41/ 54

ΛRXD(x) = xH Ŝ−1
n x

H1
≷
H0

λ

that corresponds to the Mahalanobis distance.

The Kelly test is Hotelling T 2 distributed:
n − m

m (n + 1)RXDSCM(c/H0) ∼ Fm,n−m.
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Synthesis of CFAR Detection Schemes Under Gaussian Noise (1)
• Adaptive Matched Filter [Robey 92]:

ΛAMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2
pH Ŝ−1

n p

H1
≷
H0

λAMF

Pfa = 2F1

(
n − m + 1, n − m + 2; n + 1;−λAMF

n

)
,

• Adaptive Kelly Filter [Kelly 86]:

ΛKelly (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2(
pH Ŝ−1

n p
) (

n + zH Ŝ−1
n z

) H1
≷
H0

λKelly

Pfa =

(
1

λKelly
− 1
)n+1−m

,
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Synthesis of CFAR Detection Schemes Under Gaussian Noise (2)
• Adaptive Normalized Matched Filter [Scharf 94, Kraut 99]:

ΛANMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2(
pH Ŝ−1

n p
) (

zH Ŝ−1
n z

) H1
≷
H0

λANMF :

Pfa = (1 − λANMF )
n−m+1

2F1 (n − m + 2, n − m + 1; n + 1; λANMF ) .

Persymmetric Adaptive Matched Filter [Pailloux 09]:

ΛPAMF =

∣∣∣∣pH TH
[
Re
(

T Ŝn TH
)]−1

T z
∣∣∣∣2

pH TH
[
Re
(

T Ŝn TH
)]−1

T p

H1
≷
H0

λPAMF .

Pfa = 2F1

(
2n − m + 1

2 , 2n − m + 2
2 , 2n + 1

2 ;−λPAMF
n

)
.
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The particular case of conventional Range Doppler 1/2

If we assume the noise if white Gaussian with known covariance matrix Σ = σ2 I, then the

conventional detection scheme ΛMF (z) =
∣∣pH Σ−1 z

∣∣2
pH Σ−1 p

H1
≷
H0

λMF leads to the well known
simplified test:

ΛMF (z) =
|p z|2

pH p
H1
≷
H0

σ2 λMF ,

The test consists, for each range bin, in comparing the normalized Discrete Fourier Transform
of the vector z acquired for m pulses to a threshold. The corresponding PFA/threshold
relationship is defined as:

λMF = −σ2 log Pfa .
The conventional Range Doppler algorithm makes implicitly assumption that the noise is white.
In clutter environment, this processing is not optimal and we generally do not known the power
σ2 of the noise.
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The particular case of conventional Range Doppler 2/2
If we assume the noise if Gaussian with unknown covariance matrix, then we have to use the

conventional detection scheme ΛAMF (z) =

∣∣∣pH Ŝ−1
n z

∣∣∣2
pH Ŝ−1

n p

H1
≷
H0

λAMF . For particular white noise

with unknown power σ2, we can build a simplified two-step detection scheme, assuming that

Ŝn = σ̂2 I where σ̂2 =
1
m

m∑

k=1

∣∣pHzk
∣∣2. The new detection test becomes:

ΛAMF (z) = |p z|2
H1
≷
H0

σ̂2 λAMF ,

The test consists, for each range bin, in comparing the normalized Discrete Fourier Transform
of the vector z acquired for m pulses to a adaptive threshold built with secondary data
{zk }k∈[1,m]. The corresponding PFA/threshold relationship is defined as:

λAMF = m
(

P−1/m
fa − 1

)
.

This threshold tends to λMF for large value m of secondary data.
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Examples of Gaussian Hypothesis Failure
High Resolution Radars

• Small number of scatterers in the cell under test - Varying number of scatterers from cell to cell - Central Limit Theorem
non valid ⇒ non-Gaussianity [Jakeman 80]

• No validity of conventional tools based on Gaussian statistics [Farina 87, Gini 00, Jay 02].

Low-Grazing angles Illumination Radar

• Microshadowing ⇒ impulsive clutter [Billingsley 93]
• Transitions of clutter areas, heterogeneity of spatial area under test ⇒ difficulty to set up the detection test λopt and the

Probability of False Alarm depending on the area.

83/90

General Introduction
Background on Radar, Array Processing, ...

Background on Signal Processing
Motivations for more robust detection schemes
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Figure: Failure of the Gaussian detector (�g = - log Pfa): (left) Adjustment of
the detection threshold, (right) K-distributed clutter with same power as the
Gaussian noise

) Bad performance of the conventional Gaussian detector in case of
mis-modeling

) Need/Use of non-Gaussian distributions
) Need/Use of robust estimates
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Low-Grazing angle surveillance Non-Gaussian behavior False Alarm regulation problem
Please refer to [F. Gini, A. Farina and M. S. Greco 2001]
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Examples of Gaussian Hypothesis Failure

The SAR images are more and more complex, detailed, heterogeneous. The spatial statistic of
SAR images is not at all Gaussian,
In polarimetry research field, almost all Non-Coherent Polarimetric Decomposition and
classification techniques [Lee 09, Formont 2012] are generally based on conventional covariance
matrix estimate (covariance or coherency matrix), typically the Sample Covariance Matrix (SCM),
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Examples of Gaussian Hypothesis Failure

7

DETECTION IN HYPERSPECTRAL IMAGES

• ANOMALY DETECTION IN HYPERSPECTRAL IMAGES 
To detect all that is « different » from the background (Mahalanobis distance) - Regulation 
of False Alarm. Application to radiance images. 

• DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES 
To detect (GLRT) targets (characterized by a given spectral signature p) - Regulation of 
False Alarm. Application to reflectance images (after some atmospherical corrections or 
others). 

ground subspace spanned by the columns of B or U Q
[30].

The bar charts in Fig. 11 provide the range of the de-
tection statistic of the target and the maximum value of
the background detection statistics for various back-
grounds. The target-background separation or overlap is
the quantity used to evaluate target visibility enhance-
ment. For example, it can be seen that the ACE detector
performs better than the OSP algorithm for the six data
sets shown.

The expected probability distribution of the detection
statistics under the “target absent” hypothesis can be
compared to the actual statistics using a quantile-quantile
(Q-Q) plot. A Q-Q plot shows the relationship between
the quantiles of the expected distribution and the actual
data. An agreement between the two is illustrated by a
straight line. The Q-Q plots in Fig. 12 illustrate the com-
parison between the experimental detection statistics to
the theoretically predicted ones for the matched filter al-
gorithms. The actual statistics for two different back-
grounds is compared to the normal distribution. A

straight line shown that the postulated model provides a
good fit and therefore can be used to estimate the thresh-
old for CFAR operation.

The previous results dealt with full-pixel or resolved
targets. To evaluate detection performance for subpixel
targets, we have simulated subpixel targets using formula
(3). Subpixel targets were simulated by adding a ran-
domly chosen target pixel from the target pixel set to each
of the background pixels at a constant fraction. The re-
sults shown in Fig. 13, show target-background separa-
bility as a function of the target fill factor a for the ACE
and OSP detectors. Clearly, target visibility improves
with the size of the target. A more detailed comparison of
a large set of detection algorithms is provided in [31]. It
has been shown that taking into consideration target vari-
ability using a subspace model can increase detection per-
formance [32].

When the spectral observation vector x is distributed
as N( , )µ ! , its Mahalanobis distance follows a chi-squared
distribution with L degrees of freedom. By removing the
mean, we obtain the anomaly detector (19). However,
for nonnormal data the distribution of Mahalanobis dis-
tance is not chi-squared. Fig. 14 shows the probability of
false alarm for the three sets shown in Fig. 9 as well as
eight blocks obtained by partitioning this data cube into a
four by two matrix. The figure also shows theoretical pre-
dictions based on a chi-squared and a mixture of two
F-distributions. Evidently, the F-mixture provides a good
description for the body and the tails of the underlying
distribution. We note that if the data follow an elliptical
multivariate t distribution, the Mahalanobis distance fol-
lows a univariate F distribution [33]. The multivariate
normal and t distributions is a special case of the family of
elliptically contoured distributions [33] specified by the
distribution f g T( ) | | {( ) ( )}/x x x= − −− −! !1 2 1µ µ . The
form of function g( ) leads to distributions with heavier
or lighter tails than the normal.

The heavy tails in the univariate distribution of the
Mahalanobis distance imply heavy tails in the multivariate
distribution of the data. Therefore, heavy tails may appear
not only in the quadratic Mahalanobis distance, but in
other linear and quadratic statistics employed in several
widely used [34], [31] target detection techniques.

The family of symmetric α-stable (SαS) distributions
provides a good model for data with impulsive behavior.
They are characterized by a parameterα (characteristic ex-
ponent) that takes values in the range 0 2< ≤α . The value
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! 14. Modeling the statistics of the Mahalanobis distance.
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! 15. Modeling the matched filter output statistics using stable
distributions.

The performance evaluation of
detection algorithms in practice
is challenging due to the
limitations imposed by the
limited amount of target data.

[Manolakis 2002]DSO data 2010

RXD CDF

Bad regulation of False Alarm rate for Anomaly Detector [Reed 1990, Manolakis 2002, Ovarlez
2011, Frontera-Pons 2016] and detectors of targets [Frontera-Pons 2017] in Hyperspectral
Images when they are based on conventional SCM estimate.
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Need of Better Approaches
Need to build alternatives to conventional approaches :

ADAPTIVE DETECTORS AND ESTIMATION OF 
THE COVARIANCE MATRIX

Problem: in practice, the covariance matrix M is unknown and has to be perfectly 
estimated

M̂ ???

Span Single Look Complex − Image 1

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

?! R̂

Dense Airborne/Ground Traffic

Inhomogeneous Terrain/Clutter
Large Discretes/Urban Clutter

Real-World Clutter!

11

⇒ Better Covariance Matrix Estimation

Requirements:
Background modeling: Compound Gaussian, SIRV (K-distribution, Weibull, etc.), CES
(Multidimensional Generalized Gaussian Distributions, etc.),
Estimation procedure: ML-based approaches, M-estimation, LS-based methods, etc.
Adaptive detectors derivation and adaptive performance evaluation.

Some solutions will be proposed in Part B
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End of Part A

Questions?
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Imaging,
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Recent Methodologies on Robust Estimation and Detection in non-Gaussian Environment
- Applications and Results in Radar, STAP and Array Processing, SAR Imaging,
Hyperspectral Imaging.
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Going to Robust Adaptive Detection

ADAPTIVE DETECTORS AND ESTIMATION OF 
THE COVARIANCE MATRIX

Problem: in practice, the covariance matrix M is unknown and has to be perfectly 
estimated

M̂ ???
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11

Generally, some parameters (e.g. second order statistic Σ) are unknown
and cannot be estimated through Gaussian methodology

y︸︷︷︸
Heavy tailed

= yN︸︷︷︸
Gaussian

+ o︸︷︷︸
Non Gaussian⇒ Robust Covariance Matrix Estimation

Requirements:
Background modeling: Spherically Invariant Random Vectors (K-distribution, Weibull, etc.)
[Conte 87, Barnard 96], Compound Gaussian [Conte 98, Sangston 12, 15], Complex Elliptically
Symmetric (Multidimensional Generalized Gaussian Distributions, etc.) [Kelker 70, Frahm 04],
Estimation procedure: ML-based approaches, M-estimation, etc.
Adaptive detectors derivation and adaptive performance evaluation.
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Modeling the Background
Complex Elliptically Symmetric (CES) distributions:
Let z be a complex circular random vector of length m. z has a Complex Elliptically Symmetric (CES)
distribution (CESm (µ,Σ, gz)) if its PDF is [Mahot 12, Ollila 12]:

fz(z) = δ−1
m,g

Γ(m)

πm |Σ|
gz
(
(z − µ)H Σ−1 (z − µ)

)
with δm,g =

∫+∞
0

tm−1gz(t)dt,

where gz : [0,∞) → [0,∞) is the density generator, where µ is the statistical mean (generally known or
= 0m) and Σ is the scatter matrix. In general, E

[
z zH] = αΣ where α is known.

Large class of distributions: Gaussian (gz(z) = exp(−z), SIRV, MGGD (gz(z) = exp (−zα)),
etc. Validated through several experiments [Billingsley 93, Ovarlez 95, Ovarlez 96],
Closed under affine transformations (e.g. matched filter),

Stochastic representation theorem: z =d µ + R A u(k) ,
where the m-vector u(k) is uniformly distributed on the sphere of radius 1, where R ≥ 0,
independent of u(k) and Σ = A AH is a factorization of Σ, where A ∈ Cm×k with k = rank(Σ).
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Example of CES

1 Gaussian Generalized Gaussian t-distribution W -distribution K -distribution
1 CNm CGN m,s,b Ctm,d CWm,s,b CKm,ν

g(t) exp (−t) exp (−ts/b) s, b > 0 (1 + t/d)−(d+m) d > 0 ts−1 exp (−ts/b) s, b > 0
√

t ν−mKν−m
(

2
√
νt
)
ν > 0

δm,g π−m sΓ(m)b−m/s

πmΓ(m/s)
Γ(m + d)
πmdmΓ(d)

sΓ(m)b−(m+s−1)/s

πmΓ((m + s − 1)/s)
2ν

(ν+m)/2

πmΓ(ν)
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Going to Robust Adaptive Detection
Modeling the Background
Robust Estimation
Robust Detection
Robustness of M-estimators

Example of CES

1 Gaussian Generalized Gaussian t-distribution W -distribution K -distribution

1 CNm CGNm,s,b Ctm,d CWm,s,b CKm,ω

g(t) exp (→t) exp (→ts/b) s, b > 0 (1 + t/d)→(d+m) d > 0 ts→1 exp (→ts/b) s, b > 0
↑

t
ω→m

Kω→m
(
2
↑
ωt

)
ω > 0

εm,g ϑ→m s!(m)b→m/s

ϑm!(m/s)

!(m + d)

ϑmdm!(d)

s!(m)b→(m+s→1)/s

ϑm!((m + s → 1)/s)
2
ω(ω+m)/2

ϑm!(ω)

→4 →2 0 2 4
0

0.1

0.2

0.3

x

p.
d.

f.

Gaussian
Student : d= 0.1
Student : d= 0.5
Student : d= 1
Student : d= 5

→4 →2 0 2 4
0

0.1

0.2

0.3

x

p.
d.

f.

Gaussian
Student : d= 0.1
Student : d= 0.5
Student : d= 1
Student : d= 5
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Example of CES

1 Gaussian Generalized Gaussian t-distribution W -distribution K -distribution
1 CNm CGN m,s,b Ctm,d CWm,s,b CKm,ν

g(t) exp (−t) exp (−ts/b) s, b > 0 (1 + t/d)−(d+m) d > 0 ts−1 exp (−ts/b) s, b > 0
√

t ν−mKν−m
(

2
√
νt
)
ν > 0

δm,g π−m sΓ(m)b−m/s

πmΓ(m/s)
Γ(m + d)
πmdmΓ(d)

sΓ(m)b−(m+s−1)/s

πmΓ((m + s − 1)/s)
2ν

(ν+m)/2

πmΓ(ν)
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Example of CES
1 Gaussian Generalized Gaussian t-distribution W -distribution K -distribution
1 CNm CGNm,s,b Ctm,d CWm,s,b CKm,ω

g(t) exp (!t) exp (!ts/b) s, b > 0 (1 + t/d)!(d+m) d > 0 ts!1 exp (!ts/b) s, b > 0
→

t ω!mKω!m
(
2
→
ωt

)
ω > 0

εm,g ϑ!m sϖ(m)b!m/s

ϑmϖ(m/s)
ϖ(m + d)

ϑmdmϖ(d)

sϖ(m)b!(m+s!1)/s

ϑmϖ((m + s ! 1)/s)
2ω

(ω+m)/2

ϑmϖ(ω)

!5 !4 !3 !2 !1 0 1 2 3 4 50

0.1

0.2

0.3

x

p.
d.

f.

Gaussian
Student : d= 0.1
Student : d= 0.5
Student : d= 1
Student : d= 5

!5 !4 !3 !2 !1 0 1 2 3 4 50

0.2

0.4

x

p.
d.

f.

Gaussian
GG : s = 1, b = 1
GG : s = 1, b = 3
GG : s = 2, b = 1
GG : s = 2, b = 3

C. Ren, J.-P. Ovarlez 2023 DSO Tutorial
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Modeling the Background
Spherically Invariant Random Vector: a CES subclass
The m-vector z is a complex Spherically Invariant Random Vector [Yao 73, Jay 02] if its PDF can be
put in the following form:

gz(z) =
1

πm |Σ|

∫∞
0

1
τm exp

(
(z − µ)H Σ−1 (z − µ)

τ

)
pτ(τ) dτ , (1)

where pτ : [0,∞) → [0,∞) is the texture generator.

Large class of distributions: Gaussian (pτ(τ) = δ(τ − 1)), K-distribution (pτ gamma), Weibull
(no closed form), Student-t (pτ inverse gamma), etc.
Main Gaussian Kernel: closed under affine transformations,
The texture random scalar τ is modeling the variation of the power of the Gaussian vector x along
his support (e.g., heterogeneity of the noise along range bins, time, spectral, spatial domain, etc.),
Exploitation of the spectral information using the covariance matrix (scatter matrix) Σ,
Stochastic representation theorem: z =d µ +

√
τA x , where τ ≥ 0 is the texture, independent

of x and x ∼ CN (0m, I).
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Modeling the Background

Compound-Gaussian Distribution
It can be assumed here that the n available secondary data are such that zk =

√
τk xk where

xk ∼ CN (0m,Σ) and where the textures {τk }k∈[1,n] are deterministic and unknown scalar variables to be
estimated.

gzk (z) =
1

πm τm
k |Σ|

exp
(

zH Σ−1 z
τk

)
.

Conditionally to the bin k, the observed vector xk is Gaussian-distributed, i.e. zk ∼ CN (0m, τk Σ),
The covariance matrix represents the spectral distribution of the noise through the support k,
The deterministic texture scalar τ is modeling the variation of the power of the Gaussian vector x
along his support (e.g., heterogeneity of the noise along range bins, time, spectral, spatial
domain, etc.).
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Modeling the Background

Normalization of a CES vector ⇝ same underlying distribution

z ∼ CESm (0,Σ, g) ⇒ za =
z

∥z∥
∼ CAEm (Σ) for z ̸= 0.

Complex Angular Elliptical (CAE) distribution:

☞ Probability density function [Greco & Gini 2013]: f (za;Σ) ∝ |Σ|
−1 (zH

a Σ
−1za

)−m

✓ Free from unknown density generator ⇝ robustness
✗ Scale ambiguity on Σ ⇝ additional constraint required

Scale ambiguity on Σ

⇝ shape matrix: V =
m

Tr (Σ)Σ
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Outline
1 Robust Estimation and Detection

Going to Robust Adaptive Detection
Modeling the Background
Robust Estimation
Robust Detection
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2 Other Refinements
Exploiting Prior Information: Covariance Structure
Low Rank Detectors
Shrinkage of M-estimator
Riemannian manifolds
RMT Theory and M-Estimator based Detectors

RMT key ideas
Radar Detection Schemes for Joint Time and Spatial Correlated Clutter

3 Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
Surveillance Radar against Ground and Sea Clutter
Detection Performance on STAP Data
Detection Performance on SAR Image
Hyperspectral Imaging: Detection and Anomaly Detection
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Estimating the Covariance/Scatter Matrix: Conventional Estimators
Assuming n available SIRV secondary data zk =

√
τk xk where xk ∼ CN (0m,Σ) and where τk scalar

random variable.
The Sample Covariance Matrix (SCM) may be a poor estimate of the Elliptical/SIRV
Scatter/Covariance Matrix because of the texture contamination:

Ŝn =
1
n

n∑
k=1

zk zH
k =

1
n

n∑
k=1

τk xk xH
k ̸=

1
n

n∑
k=1

xk xH
k ,

The Normalized Sample Covariance Matrix (NSCM) may be a good candidate of the Elliptical
SIRV Scatter/Covariance Matrix:

Σ̂NSCM =
1
n

n∑
k=1

zk zH
k

zH
k zk

=
1
n

n∑
k=1

xk xH
k

xH
k xk

,

This estimate does not depend on the texture τk , but it is biased and shares the same
eigenvectors but has different eigenvalues, with the same ordering [Bausson 07].
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Maximum Likelihood Estimate of the Covariance/Scatter Matrix
MLE -estimators:
Example: Suppose n target-free i.i.d. m-vectors {zi }i=1,n where zi ∼ CEm (0m,Σ, gz) where gz(.) is
known and where Σ is an unknown scatter matrix. The MLE Σ̂ is set by solving

δ

δΣ
log

n∏
i=1

gz(zi ) =
δ

δΣ−1

(
n log

∣∣Σ−1∣∣ +
n∑

i=1
log hz

(
zH

i Σ−1 zi
)
)

= 0 .

Recalling that δ

δΣ−1 log
∣∣Σ−1∣∣ = ΣT and δ

δΣ−1 log hz
(
zH

i Σ−1 zi
)
=

g ′ (zi Σ
−1 zH

i
)

g
(
zi Σ

−1 zH
i
) (zi zH

i
)T , we

obtain:
M-Estimator as MLE of the CES problem

Σ̂ =
1
n

n∑
i=1

−g ′
z

(
zH

i Σ̂
−1

zi

)

gz

(
zH

i Σ̂
−1

zi

) zi zH
i .
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Estimating the Covariance/Scatter Matrix

M-estimators:
Let (z1, . . . , zn) be a n-sample ∼ CE (0m,Σ, gz) (Secondary data).

PDF gz(.) specified: MaximumLikelihood-estimator of Σ: Σ̂ =
1
n

n∑
i=1

−g ′
z

(
zH

i Σ̂
−1

zi

)

gz

(
zH

i Σ̂
−1

zi

) zi zH
i ,

PDF gz(.) not specified: M-estimator of Σ: Σ̂ =
1
n

n∑
i=1

u
(

zH
i Σ̂

−1
zi

)
zi zH

i ,

[Maronna 76, Kent 91, Maronna 06, Pascal 08, Mahot 13]
Existence, Uniqueness, Asymptotic Properties,
Convergence of the recursive algorithm, etc.
Several PhD ONERA thesis: [Jay 02, Pascal 06, Mahot 12, Terreaux 18].
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Examples of M-Estimators

SCM:
u(r) = 1

Huber’s M-estimator:

u(r) =
{

K/e if r <= e
K/r if r > e

Tyler:

u(r) = m
r

Huber = mix between SCM and Tyler [Huber 64],
Tyler and SCM are “not" (theoretically) M-estimators,
Tyler is the most robust while SCM is the most efficient.
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Estimating the Covariance Matrix: Tyler’s M-Estimators

Let (z1, . . . , zn) be a n-sample ∼ CEm (0m,Σ, gz(.)) (Secondary data).

Tyler Estimator ([Tyler 87, Gini 02, Pascal 08])

Σ̂FPE =
m
n

n∑
k=1

zk zH
k

zH
k Σ̂

−1
FPE zk

.

The Tyler M-estimator does not depend on the texture (SIRV or CES distributions),

Convergence of the algorithm: Σ̂n+1 = f
(
Σ̂n

)
with f (Σ̂) = m

n

n∑
k=1

zk zH
k

zH
k Σ̂

−1
zk

and Σ̂0 = Im.

Existence, Uniqueness,
Σ̂FPE is the true Maximum Likelihood Estimate when considering textures {τk }k∈[1,n] as unknown
deterministic parameters. In that case, the joint texture estimation leads to

τ̂k =
zH

k Σ̂
−1
FPE zk
m
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Some Weighting Functions of M-estimators310 CHAPTER 8 • Covariance Matrix Estimation in SIRV and Elliptical Processes

10–1

10–2

100

101

j 
(t)

Weighting functions for K-distribution

0 50 100 150 200 250 300 350 400
t

n = 0.01
n = 0.1
n = 0.5
n = 1
n = 10
m/t

Figure 8.3 Plot of the ϕ(.) functions for various shape parameters ν of the K-distribution (m = 8,
µ = 1). Comparison with the FP function ϕ(t) = m/t.

Existence and uniqueness of the FPE have been proven in Reference 49, while the complete
statistical properties of M̂FP have been derived in Reference 55. The convergence of the
following recursive scheme:

Mn+1 = m

K

K∑

k=1

ck c†
k

c†
k M−1

n ck
n ≥ 1, M0 ∈ Cm×m,

whatever the initialization given by any definite positive matrix M0 has also been proven
in Reference 49. Hence, one can choose M0 = M̂SCM given in (8.5) but another candidate
could be simply M0 = Im. For this last choice, the first step of the recursive scheme yields to
M1 = M̂NSCM , that is characterizing at the first step of this algorithm a quite good estimate. Note
that the solution is always defined up to a scaling factor: if M is solution, α M, with any α > 0,
is also solution. The identifiability condition Tr(M) = m helps in defining a unique solution.

The statistical properties of the FPE have been described in Reference 55. The FPE M̂FP
is unbiased and consistent. Its asymptotic distribution is given by

√
K vec(M̂FP − M)

d−→ GCN (0, Λ, Ω),

where Λ and Ω are defined by

Λ = m + 1
m

(
MT ⊗ M − 1

m
vec(M) vec(M)†

)
,

Ω = m + 1
m

(
(MT ⊗ M) Km2 − 1

m
vec(M) vec(M)T

)
.

(8.45)

8.3 • Covariance Matrix Estimation in CES Noise 311

10–1

10–2

100

101

0 50 100 150 200 250 300 350 400
t

j 
(t)

n = 0.01
n = 0.1
n = 0.5
n = 1
n = 10
m/t

Weighting functions for student-t distribution

Figure 8.4 Plot of the ϕ(.) functions for various shape parameters ν of the Student-t (m = 8).
Comparison with the FP function ϕ(t) = m/t.

It is important to note the similitude between (8.45) and (8.31) where σ1 = (m + 1)/m and
σ2 = −(m + 1)/m2 and also between (8.45) and (8.8). The FPE and the NSCM have the same
asymptotic properties: the same asymptotic distribution with the same asymptotic covariance
matrix up to the scalar (m + 1)/m. It means that

√
Kvec(M̂m

SCM − M) and
√

K ′vec(M̂FP − M)
converge exactly toward the same distribution with K ′ = m + 1

m K . For a higher number of sec-
ondary data K , the FPE built with K ′ data behaves like NSCM with K = m

m+1 K ′ data. The
consequence is that all the previous statistical results obtained with the SCM (AMF, ANMF
distributions for example) can be extended to those built with the FPE, but with a higher number
of secondary data.

Example: it is clear that the ANMF detector defined in (8.14) is invariant to any scale factor on
the SCM (for instance, its trace). It means that the two following detectors$ANMF(y, M̂SCM ) and
$ANMF(y, M̂m

SCM ) are both equal and have therefore the same detection/threshold relationship
in Gaussian noise environment:

Pfa = (1 − λANMF)K−m+1
2 F1 (K − m + 2, K − m + 1; K + 1; λANMF). (8.46)

Consequently, the ANMF $ANMF−FP
(

y, M̂FP
)

built with the FPE:

$ANMF−FP(y) =

∣∣∣p† M̂−1
FP y

∣∣∣
2

(
p† M̂−1

FP p
) (

y† M̂−1
FP y

)
H1
>
<
H0

λANMF−FP (8.47)

u(t) = φ(t) =
√
ν

t
Kν−m−1 (4ν t)
Kν−m (4ν t) , u(t) = φ(t) = ν+ 2 m

ν+ 2 t .

We have lim
ν→0

Σ̂ = Σ̂FPE and lim
ν→∞ Σ̂ = Ŝn.
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Asymptotic distribution of complex M-estimators

Using the results of Tyler, we derived the following results [Mahot 2012, Mahot 2013]:

Theorem 1: Asymptotic distribution of Σ̂
√

n vec
(
Σ̂− Σ

)
d−→ CN m2 (0m2 ,C,P) , (2)

where CN is the complex Gaussian distribution, C the CM and P the pseudo CM:
C = σ1 (Σ∗ ⊗ Σ) + σ2 vec (Σ)vec(Σ)H

,

P = σ1 (Σ∗ ⊗ Σ) Km2,m2 + σ2 vec (Σ) vec(Σ)T ,

where Km,m is the m × m commutation matrix transforming any m-vector vec (A) into
vec
(
AT ) and where the constant σ1 and σ1 are completely defined.
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An important property of complex M-estimators
Let Σ̂ an estimate of Hermitian positive-definite matrix Σ that satisfies

√
n
(

vec
(
Σ̂− Σ

))
d−→ CN (0m,C,P) , (3)

with
{

C = ν1 Σ
∗ ⊗ Σ+ ν2 vec(Σ) vec(Σ)H ,

P = ν1 (Σ∗ ⊗ Σ) Km2,m2 + ν2 vec (Σ) vec(Σ)T , where ν1 and ν2 are any real
numbers.

e.g.

SCM M-estimators FPE
ν1 1 σ1 (m + 1)/m
ν2 0 σ2 −(m + 1)/m2

... More accurate More robust
Known asymptotic behavior: Any M-estimator behaves exactly as SCM but with σ1 more
secondary data (σ1 = (m + 1)/m times more for Tyler): It implies that, in Gaussian case,
SCM can be replaced by any M-estimate in previous detectors without changing performance
(finite distance).
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An important property of Tyler estimator
Tyler M-estimator: Σ̂FPE =

m
n

n∑
k=1

zk zH
k

zH
k Σ̂

−1
FPE zk

.

Theorem 2: Asymptotic distribution of Σ̂FPE − Ŝn
√

n
(
Σ̂FPE − Ŝn

)
d−→ CN (0m,CFP ,PFP) ,

where CFP and PFP are defined as

CFP =
1
m
(
ΣT ⊗ Σ

)
+

m − 1
m2 vec (Σ) vec (Σ)H

,

PFP =
1
m
(
ΣT ⊗ Σ

)
Km2,m2 +

m − 1
m2 vec (Σ) vec (Σ)H

.

Conclusion:
(
Σ̂FPE − Ŝn

)
goes faster to 0 than

(
Σ̂FPE − Σ

)
and then Σ̂FPE behavior is

better approximated by the Wishart distribution than by its asymptotic properties!
[Draskovic 2019].
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Tyler covariance matrix and SCM comparison in the presence of outliers
Intro CES 2-Step CD w. CES 1-step CD w. CES Structured CM CD with LR Conclusion

Interest: visual examples with SCM and Tyler

29/86
IEEE RadarConf 2020
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Outline
1 Robust Estimation and Detection

Going to Robust Adaptive Detection
Modeling the Background
Robust Estimation
Robust Detection
Robustness of M-estimators

2 Other Refinements
Exploiting Prior Information: Covariance Structure
Low Rank Detectors
Shrinkage of M-estimator
Riemannian manifolds
RMT Theory and M-Estimator based Detectors

RMT key ideas
Radar Detection Schemes for Joint Time and Spatial Correlated Clutter

3 Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
Surveillance Radar against Ground and Sea Clutter
Detection Performance on STAP Data
Detection Performance on SAR Image
Hyperspectral Imaging: Detection and Anomaly Detection
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An important property of complex M-estimators
Let H(.) be a r -multivariate function on the set of Hermitian positive-definite matrices,
with continuous first partial derivatives and such as H(V) = H(αV) for all α > 0, e.g. the
ANMF statistic, the MUSIC statistic, etc [Mahot 13, Ovarlez 15]:

Theorem 3: (Asymptotic distribution of H(Σ̂))
√

n
(

H
(
Σ̂
)
− H (Σ)

)
d−→ CN (0r ,CH ,PH) , (4)

where CH and PH are defined as

CH = ν1 H ′ (Σ)
(
ΣT ⊗ Σ

)
H ′ (Σ)

H
,

PH = ν1 H ′ (Σ)
(
ΣT ⊗ Σ

)
Km2,m2 H ′ (Σ)

T
,

where H ′ (Σ) =

(
∂H(Σ)

∂vec(Σ)

)
.

H(SCM) and H(M-estimators) share the same asymptotic distribution (differs from ν1)
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Illustration with the two-step GLRT ANMF
Adaptive Normalized Matched Filter detector

H
(
Σ̂
)
= ΛANMF

(
z, Σ̂
)
=

∣∣∣pH Σ̂
−1

z
∣∣∣
2

(
pH Σ̂

−1
p
) (

zH Σ̂
−1

z
)

H1
≷
H0
λANMF ,

where Σ̂ stands for any M-estimators [Conte 95, Kraut 99].
The ANMF is scale-invariant (homogeneous of degree 0), i.e.
∀α, β ∈ R , ΛANMF (α z, β Σ̂) = ΛANMF (z, Σ̂).
Its asymptotic distribution (conditionally to z!) is known [Pascal 15, Ovarlez 15].

√
n
(

H
(
Σ̂
)
− H(Σ)

)
d−→ CN

(
0, 2ν1 H(Σ) (H (Σ) − 1)2) .

Recall for SCM:
√

n
(

H
(

Ŝ
)
− H(Σ)

)
d−→ CN

(
0, 2 H(Σ) (H (Σ) − 1)2) .

It is CFAR w.r.t the covariance/scatter matrix,
It is CFAR w.r.t the texture.
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Illustrations of the Result on the ANMF
Λ = var

(
H
(
Σ̂
)
− H(Σ)

)
. Here Σ̂ = complex Huber’s M-estimator.

Figure 1: Gaussian context, here σ1 = 1.066.
Figure 2: K-distributed clutter (shape parameter: ν = 0.1 and 0.01).
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var(ΛSCM), ν = 0.1

Number of snapshots n

Validation of theorem (even for small n) Interest of the M-estimators
Performances are slightly the same in the Gaussian case but are better in the

non-Gaussian case.
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Illustrations of the Result on Pfa
Figure 1: Gaussian context :

Pfa = (1 − λANMF )
n−m+1

2F1 (n − m + 2, n − m + 1; n + 1; λANMF ) .

Figure 2: K-distributed clutter (shape parameter: ν = 0.1), here σ1 = 1.066 :

Pfa = (1 − λANMF )
n/σ1−m+1

2F1 (n/σ1 − m + 2, n/σ1 − m + 1; n/σ1 + 1; λANMF ) .
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Validation of theorem (even for small n)
Interest of the M-estimators for False Alarm

regulation
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Illustration of the Results on MUltiple Signal Classification (MUSIC)
method

K (known) direction of arrival θk on m antennas
Gaussian stationary narrowband signal with additive noise.
the DoA [Bienvenu 1979, Schmidt 1986] is estimated from n snapshots, using the SCM,
the Huber’s M-estimator and the Tyler’s estimator.

y(t) = A(θ0) s(t) + w(t) .

θ0 = (θ1, θ2, . . . , θK )
T ,

the steering matrix A(θ) = (a (θ1), a(θ2), . . . , a(θK )),
s(t) = (s1(t), s2(t), . . . , sK (t))T signal vector,
w(t) stationary additive noise.

Σ = E
[
y yH] = A(θ0)E

[
s sH] AH(θ0) + σ2 I = ES DS EH

S + σ2 EW EH
W ,

where ES (resp. EW ) are the signal (resp. noise) subspace eigenvectors.
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The MUSIC statistic is
H(Σ) = argmax

θ
γ(θ) where γ(θ) = s(θ)H EW EH

W s(θ),

H(Σ̂) = argmax
θ
γ̂(θ) where γ̂(θ) =

m−K∑
i=1

s(θ)H êi êH
i s(θ) ,

where êi are the eigenvectors of Σ̂.

This function respects the assumptions of Theorem 3!

The Mean Square Error (MSE) between the estimated angle θ̂ and the exact angles θ can then
be computed (case of one source).

A m = 3 uniform linear array (ULA) with half wavelength sensors spacing is used,
Gaussian stationary narrowband signal with DoA 20◦ plus additive noise.
the DoA is estimated from n snapshots, using the SCM, the Huber’s M-estimator and the
Tyler’s estimator.
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Adaptive Robust Detection Schemes ...
Other Refinements

Motivations
CES distributions
M-estimators and Tyler (FP) Estimator
Robustness of M-estimators and ANMF
MUltiple Signal Classification (MUSIC) method
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M
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Huber with �1 n data
Tyler with m+1

m n data

(a) White additive Gaussian noise
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(b) K-distributed additive noise (⌫ = 0.1)

Figure: MSE of ✓̂ vs the number n of observations, with m = 3.

Similar conclusions as for detection can be drawn...
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Figure: MSE of θ̂ for a number n of observations, with m = 3.

Similar conclusions for detection can be drawn...
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Illustration of the ANMF CFAR Properties For CES Noise
False Alarm regulation for ANMF built with Tyler’s estimate
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100
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A

Gaussian
K!distribution
Student!t
Cauchy
Laplace

Detection threshold 

CFAR-texture property for the ANMF with Tyler's est.

Σ estimated, n=40, m=10
Σ known (NMF)

(a) CFAR-texture
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! = 0.99

:etection thresho=7 

CFAR-matrix property for the ANMF with the Tyler's est.

(b) CFAR-matrix

Figure: Illustration of the CFAR properties of the ANMF built with Tyler’s estimator, for a Toeplitz CM whose
(i , j)-entries are ρ|i−j|.
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Properties of ANMF-Tyler Detector on Clutter Transitions

Five K-distributed clutter range transitions: from Gaussian to impulsive noise,
Estimating the covariance matrix with secondary data in a sliding window.
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Properties of ANMF-Tyler Detector on Clutter Transitions
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ANMF-Tyler: The same detection threshold is guaranteed for a chosen Pfa whatever the clutter
area,
ANMF-Tyler: Performance in terms of detection is kept for moderate non-Gaussian clutter and
improved for spiky clutter.
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Surveillance Radar against Ground and Sea Clutter
Detection Performance on STAP Data
Detection Performance on SAR Image
Hyperspectral Imaging: Detection and Anomaly Detection
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Robustness of the M-estimators
Let us suppose that {yi }i=1,n−1 ∼ CN (0m,Σ) and that the last secondary data yn contains
outlier p0:

Sample Covariance Matrix case:

Ŝpol
n =

1
n

n−1∑
k=1

yk yH
k +

1
np0 pH

0 , E
[
Ŝpol

n
]
=

n − 1
n Σ+

1
nE
[
p0 pH

0
]
.

The power of the outlier p0 has a significant impact on the quality of the SCM estimation.

Tyler (or FP) Covariance Matrix case:

Σ̂FPEPol =
m
n

n∑
k=1

yk yH
k

yH
k Σ̂

−1
FPEPol yk

, E
[
Σ̂FPEPol

]
= Σ+

m + 1
n

[
E
[

p0 pH
0

pH
0 Σ−1 p0

]
−

1
m Σ

]
.

The power of the outlier p0 has no significant impact on the quality of the Tyler estimate.
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Robustness of M-estimators
Gaussian vectors yk polluted by outliers

Ŝn =
1
n

n∑
k=1

yk yH
k , Σ̂FPE =

m
n

n∑
k=1

yk yH
k

yH
k Σ̂

−1
FPE yk

.

ROBUSTNESS OF THE ESTIMATION OF 
COVARIANCE MATRIX
ROBUST ESTIMATION OF COVARIANCE MATRIX
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         m = 10, n = 200               m = 10, n = 200       

Plot of the error (dB) between the covariance matrix estimated with and without outliers.
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Robustness of ANMF: Impact on detection performance
Same target yk = p0 (SNR 20dB) than those in the cell under test in the reference cells

(case of convoy for example)
IMPACT ON DETECTION PERFORMANCE
IMPACT ON DETECTION

18
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Contaminated FP

The SCM can whiten the target to detect. The ANMF built with FPE is more robust.
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Motivations
The estimation of Σ does not take into account any prior knowledge of the covariance matrix:

How to improve detection performance by exploiting prior information on Σ ?
Toeplitz: [Burg 82] for estimation,
known rank r < m (ex: subspace detector) [Kirsteins 94, Haimovich 96, Rangaswamy 03],
Persymmetry: [Nitzberg 80] for estimation, [Cai 92] for detection in Gaussian case, [De
Maio 03, Conte 03, Pailloux 11] in non-Gaussian noise.
Shrinkage: when the number n of available secondary data does guarantee the inversion of
the covariance matrix estimate (n < m). [Abramovich 07, Chen 11, Abramovich 13,
Besson 13, Couillet 14, Wiesel 14, Pascal 14]
In high dimension regime, some RMT-based results [Couillet 11, 14, 15] for detection
schemes
COvariance Matching Estimation techniques (COMET) [Ottersten 98] and its robust
versions SESAME and RCOMET [Meriaux 19, 20]
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Covariance Matrix Convex Structure

Problem setup:
☞ N i.i.d., m-dimensional, centered CES distributed observations:

∀ n = 1, . . . ,N zn ∼ CESm (0,Re, g) ⇝ pZ (zn;Re)

☞ Re ∈ S: convex subset of Hermitian matrices
☞ There exists a one-to-one differentiable mapping θ 7→ R (θ) from Sθ ⊂ RP to S

☞ Unknown parameter of interest: θ with exact value θe and Re = R (θe)

Working hypothesis:
☞ True distribution unknown in practice ⇒ g unknown

☞ Assumed model: CESm (0,R (θ) , gmod) ⇝ fZ (zn;θ)
with gmod(t) possibly different from g(t) for all t ∈ R+
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SESAME Algorithm
SESAME (StructurEd ScAtter Matrix Estimator): two-step procedure

1 Unstructured estimate of R
R̂m =

1
N

N∑
n=1

umod
(

zH
n R̂−1

m zn
)

znzH
n ,

2 Projection on the subset S

θ̂ = argmin
θ

JR̂m,R̂(θ) with,

JR̂m,R̂(θ) = κ1Tr
([

R̂−1
(

R̂m − R(θ)
)]2)

+ κ2
[
Tr
(

R̂−1
(

R̂m − R(θ)
))]2

,

where

 κ1 = κ2 + 1 =
E
[
ψ2

mod

(
∥ζ∥2

2

)]

m(m + 1) with ζ ∼ CESm (0, I, gmod) and ψmod(s) = sumod(s)

R̂ any consistent estimator of Re, up to a scale factor, e.g., R̂m

Strictly convex in R (θ) + one-to-one mapping ⇒ unique solution for θ.
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SESAME asymptotic performance

Theorem
[Mériaux et al., 2019] Let θ̂N be the SESAME estimate based on N i.i.d. observations,
zn ∼ CESm (0,Re, g) but with an assumed model of CESm (0,R (µ) , gmod). Then, we obtain

☞ the consistency: θ̂N
P→ θc such that Rc ≜R (θc) = σ−1R (θe)

☞ the asymptotic distribution:
√

N
(
θ̂N − θc

)
L→ N (0, Γθ)

with


Γθ = (κ1C + κ2D)−1 (β1C + β2D) (κ1C + κ2D)−1 ,

C = J (θc)
H (R−T

c ⊗ R−1
c
)

J (θc) , D = J (θc)
H vec

(
R−1

c
)

vec
(
R−1

c
)H J (θc)

β1 = σ1κ
2
1, β2 = σ1κ2 (2κ1 + mκ2) + σ2 (κ1 + mκ2)

2
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Structured shape matrix estimator in CAE framework
RCOMET: Robust COvariance Matching Estimation Technique(

α̂, θ̂
)
= argmin

α,θ

Tr
((

R̂FPE − αR(θ)
)

R̂−1
(

R̂FPE − αR(θ)
)

R̂−1
)
,

where α > 0 and R̂ refers to any consistent estimator of Re up to a scale factor, e.g.,
R̂ = R̂FPE.
Convex problem w.r.t. αR(θ) + one-to-one mapping ⇒ unique solution for θ
Theorem (Mériaux et al., 2017, Mériaux et al., 2019)

Let θ̂ the RCOMET estimate of θe based on N i.i.d. observations, yn ∼ Um (R(θe)). θ̂ is
consistent, asymptotically efficient, and Gaussian:

√
N
(
θ̂− θe

)
L→ N (0,CRBCAE)

with CRBCAE =
m + 1

m
CRBG, where CRBG = CRB on θ of the problem zn ∼ CN (0, αeR(θe))
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Recursive RCOMET
In the same way, we can define Recursive RCOMET

A recursive procedure naturally follows

for k = 1, . . . ,Nit, θ̂
(k)

= argmin
α,θ

Tr
[{(

R̂FPE − αR (θ)
)

R
(
θ̂k−1

)−1}2]

such that Tr
[
R
(
θ̂k
)]

= m

Leading to R-RCOMET estimate: θ̂R-RCOMET = θ̂
(Nit).

Same asymptotic properties as RCOMET, but the asymptotic regime is reached faster
(numerical ascertainment).

A more elaborated stopping rule in practice, e.g., a combination of k ≤ Nit and∥∥∥θ̂k − θ̂k−1

∥∥∥ ≤ εtol

∥∥∥θ̂k−1

∥∥∥.
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Using Persymmetry Property
Under persymmetric considerations (ex: symmetrically spaced linear array, symmetrically
spaced pulse train, etc.), the Hermitian covariance matrix Σ verifies Σ = Jm Σ∗ Jm, where Jm is
the m-dimensional antidiagonal matrix having one as non-zero elements. If the unitary matrix
T is defined by:

T =



1√
2

(
Im/2 Jm/2
i Im/2 −i Jm/2

)
for m even

1√
2




I(m−1)/2 0 J(m−1)/2
0

√
2 0

i I(m−1)/2 0 −i J(m−1)/2


 for m odd ,

(5)

then:
• s = T p is a real vector (if p is centrosymmetric, i.e. p = Jm p∗),
• R = TΣTH is a real symmetric matrix.
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Equivalent Detection Problem
Using previous transformation T, the original problem can be reformulated as:

Original Problem T Equivalent Problem{
H0 : y = c, c1, . . . , cn
H1 : y = A p + c, c1, . . . , cn

−→ {
H0 : z = n, n1, . . . ,nn
H1 : z = A s + n, n1, . . . ,nn

where
z = T y ∈ Cm,
n =

√
τ x and nk =

√
τk xk with x, xk ∼ CN (0m,R) where R is an unknown real

symmetric matrix,
s = T p is a real vector.

The main motivation for introducing the transformed data is that the original persymmetric
complex covariance matrix of the Gaussian speckle Σ is transformed through T onto a real
covariance matrix R.
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The Persymmetric FP Covariance Matrix Estimate
From the estimate R̂FP of the real covariance matrix R, solution of the following equation:

R̂ =
m
n

n∑
k=1

nk nH
k

nH
k R̂−1 nk

,

The persymmetric Fixed-Point Covariance Matrix Estimate has been first empirically defined as:

R̂PFP = Re(R̂FP) .

Statistical performance of R̂PFP [Pailloux 08, 10 and 11]:
• R̂PFP is a consistent and unbiased estimate of R when n tends to infinity,
• Its asymptotic distribution is the same as the asymptotic distribution of a real Wishart

matrix with 2 n m/(m + 1) 2 n degrees of freedom,
• RCOMET technique [Mériaux 19 and 20] gives exactly the same result for persymmetric

structure.
R̂PFP estimate can be considered as the true Maximum Likelihood Estimate.
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The Persymmetric Adaptive Normalized Matched Filter
The resulting P-ANMF for the transformed problem is based on the PFP estimate and can be
defined as:

Λ
(

R̂PFP
)
=

∣∣∣sT R̂−1
PFP z

∣∣∣
2

(
sT R̂−1

PFP s
)(

zH R̂−1
PFP z

)
H1
≷
H0

λ.

Properties:
Λ(R̂PFP) is texture-CFAR,
Λ(R̂PFP) is matrix-CFAR,
The use of PFP estimate in the ANMF allows to virtually double the number n of
secondary data and improve the performance of the ANMF detector built with the FP
matrix estimate.

Λ
(

R̂PFP
)

is SIRV-CFAR and is called the P-ANMF.

More recent works can be found in [Mériaux 19 and 20]
J.-P. Ovarlez T03 Tutorial - Conference Radar 2024 50 / 133



Robust Estimation and Detection
Other Refinements

Applications and Results in Radar ...

Exploiting Prior Information: Covariance Structure
Low Rank Detectors
Shrinkage of M-estimator
Riemannian manifolds
RMT Theory and M-Estimator based Detectors

Outline
1 Robust Estimation and Detection

Going to Robust Adaptive Detection
Modeling the Background
Robust Estimation
Robust Detection
Robustness of M-estimators

2 Other Refinements
Exploiting Prior Information: Covariance Structure
Low Rank Detectors
Shrinkage of M-estimator
Riemannian manifolds
RMT Theory and M-Estimator based Detectors

RMT key ideas
Radar Detection Schemes for Joint Time and Spatial Correlated Clutter

3 Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
Surveillance Radar against Ground and Sea Clutter
Detection Performance on STAP Data
Detection Performance on SAR Image
Hyperspectral Imaging: Detection and Anomaly Detection

J.-P. Ovarlez T03 Tutorial - Conference Radar 2024 51 / 133



Robust Estimation and Detection
Other Refinements

Applications and Results in Radar ...

Exploiting Prior Information: Covariance Structure
Low Rank Detectors
Shrinkage of M-estimator
Riemannian manifolds
RMT Theory and M-Estimator based Detectors

Conventional Low-Rank Detectors
Principle of Low-Rank Matched Filter approaches found, for example, in [Kirsteins 94]
(Principal Component Inverse) and [Haimovich 96] (Eigencanceler) and [Rangaswamy 04].
Let suppose that the rank r of clutter covariance matrix Σ is known:

Example of sidelooking STAP with M pulses measurements and N sensors,
r = N + (M − 1)β (Brennan’s rule) where β = 2 v Tr/d .

The idea is to project the data onto the orthogonal subspace of the clutter.

Ŝn =
1
n

n∑
k=1

yk yH
k = (Ur U0)

(
Σr 0
0 Σ0

)
(Ur U0)

H
,

If we denote by Π̂SCM = Ur UH
r the projector onto the clutter subspace, the Low-Rank ANMF

detector is given by:
ΛLR−ANMF−SCM(z) =

∣∣∣pH
(

I − Π̂SCM
)

z
∣∣∣
2

(
pH
(

I − Π̂SCM
)

p
)(

zH
(

I − Π̂SCM
)

z
)

H1
≷
H0

λ .
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Extended Low-Rank Detectors
In the case of heterogeneous and non-Gaussian clutter, we know that ŜSCM or ΠSCM are not
good estimates. If we denote the Normalized Sample Covariance Matrix by:

ΣNSCM =
m
n

n∑
k=1

yk yH
k

yH
k yk

= (Ur U0)

(
Σr 0
0 Σ0

)
(Ur U0)

H

[Ginolhac 12 and 13] proved that ΠNSCM = Ur UH
r is a consistent estimate projector onto the

clutter subspace. We can define the extended Low-Rank ANMF-NSCM:

ΛLR−ANMF−NSCM(y) =

∣∣∣pH
(

I − Π̂NSCM
)

z
∣∣∣
2

(
pH
(

I − Π̂NSCM
)

p
)(

zH
(

I − Π̂NSCM
)

z
)

H1
≷
H0

λ .

This detector is found to be texture-CFAR and is asymptotically Σ-CFAR. Moreover, he has
another nice robustness property when outliers and targets are present in the secondary data.
The Normalized Sample Covariance Matrix is a good candidate for the adaptive version of
Rangaswami’s Low-Rank Matched Filter and Low-Rank Normalized Matched Filter.
More recent works can be found in [Breloy 15, Sun 16, Breloy 16, Ginolhac 16].J.-P. Ovarlez T03 Tutorial - Conference Radar 2024 53 / 133
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Shrinkage of Tyler’s estimators

Case of a few observations or under-sampling n < m: matrix is not invertible ⇒ Problem when
using M-estimators or Tyler’s estimator!

Chen estimator [Chen 11]

ΣC = (1 − β)
m
n

n∑
i=1

z zH

zH Σ−1
C zi

+ β I

subject to the constraint Tr (ΣC ) = m and for β ∈ (0, 1].

Originally introduced in [Abramovich 07],
Existence, uniqueness and algorithm convergence proved in [Chen 11],
Active research [Abramovich 13, Besson 13, Couillet 14, Wiesel 14, Pascal 14]
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Shrinkage Tyler’s estimators

Pascal estimator [Pascal 14]

ΣP = (1 − β)
m
n

n∑
i=1

z zH

zH Σ−1
P z

+ β I

subject to the no trace constraint but for β ∈ (β̄, 1], where β̄ := max(0, 1 − n/m).

ΣP (naturally) verifies Tr
(
Σ−1

P
)
= m for all β ∈ (0, 1],

Existence, uniqueness and algorithm convergence proved,
The main challenge is to find the optimal β! [Couillet 14].
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Riemannian Geometry
Hermitian covariance matrices are definite-positive and belong to a Riemannian
manifold: conventional Euclidean space is not at all adapted to this space,
for characterizing the barycenter of covariance matrices; for example, in K-means
classification, the arithmetical mean is not recommended. Please see the H/α SAR
polarimetric classification application.

Euclidean mean (arithmetic)

arg min
M∈P(m)

n∑
i=1

d(M,Mi)
2, where d (M,Mi) = ∥M − Mi∥F

Riemannian mean (geometric)

arg min
M∈P(m)

n∑
i=1

d (M,Mi)
2
, where d(M,Mi) = ?
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Riemannian Geometry

Euclidean Geometry Riemannian Geometry
The mean Mω in the Euclidean sense of n given
positive-definite Hermitian matrices M1, . . . ,Mn in P(p)
is defined as:

Mω = argmin
Mω∈P(m)

n∑
k=1

∥Mk − Mω∥2
F

leading to Mω =
1
n

n∑
k=1

Mn.

The mean Mω in the Riemannian sense of n given
positive-definite Hermitian matrices M1, . . . ,Mn in P(p)
is defined as:

Mω = argmin
Mω∈P(m)

n∑
k=1

∥∥log
(

M−1
k Mω

)∥∥2
F

leading to Mω such that 1
n

n∑
k=1

log
(

M−1
n Mω

)
= 0.
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Some RMT-based results for detection schemes
The RMT (ex: [Couillet]) allows 1) to understand the statistical behavior of expressions
involving estimate of large covariance matrices (ex: quadratic forms, ratios of the quadratic
forms, SNIR Loss, performances of detection tests as ANMF, LR-ANMF, etc.) and 2) to
correct it. The corrected results are often valid at a finite distance (practical m,N values).

Sources localisation applications [F. Pascal, R. Couillet, etc.]: the based-RMT Music
algorithm (G-Music) is known to have higher performance than conventional algorithms
when using all the eigenvalues of the covariance matrix.
MIMO-STAP: the goal of A. Combernoux’s PHD thesis [Combernoux] was to
analyze/improve the detection and filtering performances of low-rank detectors.
Adaptive Radar Detection: when secondary data are correlated [Couillet].
Hyperspectral Anomaly Detection - Unmixing: the goal of E. Terreaux PhD thesis
[Terreaux] is to better analyse the rank of the anomalies space (model order selection) in
Hyperspectral Imaging (high dimensional problem) for heterogeneous, correlated
non-Gaussian environment.
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RMT key ideas (1)
Let {yi }i∈[1,N] be independent and distributed according to CN (0m,M). The Maximum
Likelihood Estimate of M is the Sample Covariance Matrix given by

M̂ =
1
N

N∑
i=1

yi yH
i =

1
N Y YH .

Asymptotic Regime
If N → ∞, then the strong law of large numbers says (or equivalently, in spectral norm):

∥∥∥M̂ − M
∥∥∥ a.s.−−→ 0 .

Random Matrix Regime

No longer valid if m, N → ∞ with m/N → c ∈ [0,∞[:
∥∥∥M̂ − M

∥∥∥↛ 0,
For practical large m, N with m ≃ N, it can lead to dramatically wrong conclusions (even
m = N/100).
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RMT key ideas (2)

Let {ni }i∈[1,N] be distributed according to CN
(
0m,C = σ2 Im

)
. We analyze the eigenvalues

distribution of Ĉ =
1
N

N∑
i=1

ni nH
i =

1
N N NH where c = m/N ∈ [0,∞[

Random Matrix Regime
The distribution of the eigenvalues of Ĉ tends almost surely toward the Marcenko-Pastur
distribution

p(x) =
(

1 −
1
c

)

+

δ(x) + 1
2π c x

√
(x − λ−)+ (λ+ − x)+ ,

where λ− = σ2 (1 −
√c
)2 and λ+ = σ2 (1 +

√c
)2.

Not restricted to Gaussian statistics !
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RMT Examples (1): classical asymptotic regime
N = 1000, m = 10, c = 0.01 N = 10000, m = 100, c = 0.01
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Eigenvalues support for white Gaussian noise (σ2 = 1, C = σ2 Im).
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RMT Examples (2): same RMT regime
N = 100, m = 95, c = 0.95 N = 1000, m = 950, c = 0.95
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Eigenvalues support for white Gaussian noise (σ2 = 1, C = σ2 Im).
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RMT Examples (3): from where does the RMT regime start?

N = 10, m = 4 N = 25, m = 10 N = 1000, m = 400
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Eigenvalues support for white Gaussian noise (σ2 = 1, C = σ2 Im) and c = 0.4.
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Key ideas (3)
The behavior of the spectral measure brings information about the vast majority of the
eigenvalues but is not affected by some individual eigenvalues behavior (like sources !).
Whatever the perturbations (sources), the spectral measure converges toward the
Marcenko-Pastur distribution.

N = 100, m = 80, c = 0.8 N = 1000, m = 800, c = 0.8
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SCM eigenvalues support for white Gaussian noise (σ2 = 1, C = σ2 Im) and sources.
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Source Detection with RMT
We consider N observations

{
yk =

√
θ u + nk

}
k∈[1,N]

with ∥u∥ = 1. If the power θ of the

source is large enough, then the limit of λmax

(
1
N Y YH

)
is strictly larger than the right edge

of the bulk.
if θ ≤ σ2 √c, then

λmax

(
1
N Y YH

)
a.s.−→

N,m→∞ σ2 (1 +
√

c
)2
,

if θ ≥ σ2 √c, then

λmax

(
1
N Y YH

)
a.s.−→

N,m→∞ σ2 (1 + θ)
(

1 +
c
θ

)
≥ σ2 (1 +

√
c
)2
.

Above the threshold σ2 √c, λmax

(
1
N Y YH

)
asymptotically separates from the bulk.
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Source Detection with RMT
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Radar Detection Schemes for Joint Time and Spatial Correlated Clutter

Motivations: Adaptive radar detection and estimation schemes are often based on the
independence of the secondary data used for building estimators and detectors. This
independence allows to build Likelihood functions.

Example: estimating a covariance matrix M
With a given set of n independent m-dimensional vectors {yi }i∈[1,n] distributed according to
CN (0m,M), the corresponding Likelihood function Λ can be built as

Λ (y1, y2, . . . , yn | M) =

n∏
i=1

p(yi) =
n∏

i=1

1
πm |M|

exp
(
−yH

i M−1 yi
)
.

The Maximum Likelihood Estimate M̂ of M is the zero of the partial derivative of
Λ (y1, y2, . . . , yn | M) with respect to M leading to the well known SCM.
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Motivations
In many radar and imagery applications, data {yi }i∈[1,n] can be viewed as a joint spatial and
temporal process:

For high-resolution radar, the sea clutter is jointly spatially and temporally correlated,

Sea clutter spatial correlation, IPIX radar [Greco].
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Motivations

In multichannel (polarimetric, interferometric or multi-temporal) SAR imaging, the
multivariate vector characterizing each spatial pixel of the image is correlated over the
channels. Still, it can also be strongly correlated with those of neighborhood pixels,
When a radar signal with bandwidth B is oversampled (Fe = k B, k > 1), the associated
range bins can be spatially correlated and the measurements are not independent anymore.

In the radar community, one generally supposes that the vectors of information collected over
spatial support are identically and independently distributed.
This problem could be, for example, addressed using Multidimensional Space-time ARMA
modeling.

This work aims to relax this hypothesis through the use
of recent Random Matrix Theory results.
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Problem formulation
Detection of a complex signal corrupted by an additive Gaussian noise c ∼ CN (0m,M) in a
N-dimensional complex observation vector y:{

H0 : y = c yi = ci i = 1, . . . , n
H1 : y = α p + c yi = ci i = 1, . . . , n ,

where p is a perfectly known complex steering vector, α is the unknown signal amplitude and
where the ci ∼ CN (0m,M) are n signal-free non independent measurements. The covariance
matrix M characterizes the temporal or spectral correlation within the components of the noise
vectors.
To model the spatial dependency between the secondary data, from the Gaussian assumption
on ci , we may write the m × n-matrix C = [c1, . . . , cn] under the following form:

C = M1/2 X T1/2,

where M ∈ Cm×m and T ∈ Cm×n are both nonnegative definite, X is standard Gaussian
CN (0m, Im), and where T satisfies the normalization 1

n tr(T) = 1.
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Problem formulation

The matrix T is considered Toeplitz, i.e., for all i , j , Ti,j = t|i−j| for t0 = 1 and tk ∈ C, and

positive definite. Besides,
n−1∑
k=0

|tk | <∞.

Example: m = 2, n = 3

C =

(
1 ρ
ρ 1

)1/2

︸ ︷︷ ︸
Temporal correlation

(
x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

)

︸ ︷︷ ︸
Temporal or Spectral Measurements




t0 t1 t2
t1 t0 t1
t2 t1 t0




1/2

︸ ︷︷ ︸
Spatial correlation

.
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Some RMT results
Proposition: Consistent Estimation for T [Couillet, 15]
As m, n → ∞ such that m/n → c ∈ [0,∞[, and for every β < 1,

mβ

∥∥∥∥T
[

1
m CH C

]
−

(
1
m tr M

)
T
∥∥∥∥

F

a.s.−−→ 0 ,

where T [·] is the Toeplitzification operator: (T [X])ij =
1
n

n∑
k=1

Xk,k+|i−j|.

Up to a constant, a consistent estimator T̂ of the spatial covariance T characterizing data
{ci }i∈[1,n] is therefore defined as T̂ ∝ T

[ 1
m CH C

]
and the associated time whitened sample

covariance matrix estimate M̂ of M is defined as M̂ ∝ 1
n C T̂−1 CH .

This technique has been extended in the framework of robust M-estimators.
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Gaussian and non-Gaussian scenarios
Simulated Data: joint spatial and time correlated Gaussian or K-distributed (ν = 0.5) data
characterized by m = 10 pulses, n = 20 secondary data where:
M =

(
ρ
|i−j|
M

)
i,j∈[1,m]

, T =
(
ρ
|i−j|
T

)
i,j∈[1,n]

with ρM = 0.5, ρT = 0.9.

To evaluate the detection performance of the ΛANMF test statistic, we have compared three
approaches:

• M is unknown but T is assumed to be known: the covariance estimate M̂ is either given
by 1

nC T−1 CH (SCM) or the Tyler’s estimate of the true spatial-whitened data C T−1/2,
• T is assumed to be unknown and is estimated through T̂ ∝ T

[ 1
m CH C

]
: the covariance

estimate M̂ is either given by 1
n C T̂−1 CH (SCM) or the Tyler’s estimate of the

spatial-whitened data C T̂−1/2,
• the classical approach that does not take into account the space correlation: the

covariance estimate M̂ is either given by 1
nC CH (SCM) or Tyler’s estimate of the data C.
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False Alarm Regulation - Gaussian Case
ANMF-SCM ANMF-Tyler
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P
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"Pfa-threshold" relationship with space correlation - Gaussian case - ANMF-SCM

Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)
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P
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"Pfa-threshold" relationship with space correlation - Gaussian case - ANMF-Tyler

Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)

Same False Alarm Regulation performance for ANMF-SCM and ANMF-Tyler (Gaussian case)
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Associated Detection Performance - Gaussian Case
ANMF-SCM ANMF-Tyler
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Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)

• Same Probability of Detection performance.
• Around 3dB gain improvement with RMT whitening procedure

J.-P. Ovarlez T03 Tutorial - Conference Radar 2024 78 / 133



Robust Estimation and Detection
Other Refinements

Applications and Results in Radar ...

Exploiting Prior Information: Covariance Structure
Low Rank Detectors
Shrinkage of M-estimator
Riemannian manifolds
RMT Theory and M-Estimator based Detectors

False Alarm Regulation - K-distributed Case
ANMF-SCM ANMF-Tyler
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"Pfa-threshold" relationship with space correlation - K-dist (nu=0.5) - ANMF-SCM
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(K = 20)
(K = 20)

(K = 20)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Detection threshold 6

10-5

10-4

10-3

10-2

10-1

100

P
fa

"Pfa-threshold" relationship with space correlation - K-dist (nu=0.5) - ANMF-Tyler

Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)

• Better False Alarm regulation performance for ANMF-FP (Non-Gaussian case).
• Better False Alarm regulation with RMT whitening procedure
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Associated Detection Performance - K-distributed Case
ANMF-SCM ANMF-Tyler
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Optimal, T known (N = 20)
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Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)

• Better performances in terms of Probability of Detection performance for ANMF-Tyler.
• Around 3dB gain improvement with RMT whitening procedure
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Outline
1 Robust Estimation and Detection

Going to Robust Adaptive Detection
Modeling the Background
Robust Estimation
Robust Detection
Robustness of M-estimators

2 Other Refinements
Exploiting Prior Information: Covariance Structure
Low Rank Detectors
Shrinkage of M-estimator
Riemannian manifolds
RMT Theory and M-Estimator based Detectors

RMT key ideas
Radar Detection Schemes for Joint Time and Spatial Correlated Clutter

3 Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
Surveillance Radar against Ground and Sea Clutter
Detection Performance on STAP Data
Detection Performance on SAR Image
Hyperspectral Imaging: Detection and Anomaly Detection
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False Alarm Regulation on THALES Ground Clutter
Data Description

"Range-azimuth" map from ground clutter data collected by radar from THALES Air
Defense, placed 13 meters above ground and illuminating area at a low grazing angle.
Ground clutter complex echoes collected in 868 range bins for 70 different azimuth angles
and for m = 8 pulses.
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False Alarm Regulation on THALES Ground Clutter
Data processing

Rectangular CFAR mask 5 × 5 for 0 ≤ k ≤ m different steering vectors pk .

pk =




1
exp

(
2iπ(k−1)

m

)

exp
(

2iπ(k−1)2
m

)

...
exp

(
2iπ(k−1) (m−1)

m

)




For each z, computation of associated detectors ΛANMF (Σ̂Tyler ) and ΛANMF (Σ̂NSCM)

Mask moving all over the map.
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False Alarm Regulation on THALES Ground ClutterANMF CFAR PFA REGULATION ON THALES RADAR 
DATA

Application : Adaptive Detection Performances of the GLRT-LQ on

radar data
Clutter map
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Azimut/range bins map Relationship "Pfa-threshold"

The set of parameters ism = 8 pulses and N = 24 secondary data .

THEORY AND REALITY PERFECTLY CORRESPOND.

NSCM

Theoretical

FP

True M

30

Figure: ANMF with Tyler’s M-estimate - False alarm regulation for p0 = (1 . . . 1)T .

Black curve fits red curve until PFA = 10−3 [Ovarlez et al. 16].
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False Alarm Regulation on THALES Ground ClutterTraitement STAP et modélisation SIRV 27
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Figure 7. Courbes de régulation de fausse alarme et de performance de détec-
tion sur les données de THALES (seuil de détection ⌘ = (1 � �)�m en fonc-
tion de la probabilité de fausse alarme) pour les détecteurs ⇤ANMF (cMFP , x) et
⇤ANMF�PFP (cMFP , x). Cas Pfa = 10�2, m = 8 et K = 8
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Figure 8. Courbes de régulation de fausse alarme et de performance de détec-
tion sur les données de THALES (seuil de détection ⌘ = (1 � �)�m en fonc-
tion de la probabilité de fausse alarme) pour les détecteurs ⇤ANMF (cMFP , x) et
⇤ANMF�PFP (cMFP , x). Cas Pfa = 10�2, m = 8 et K = 20

de l’ONERA. Dix cibles artificielles dans la même case distance (case 255) mais à
des vitesses différentes ont ainsi été ajoutées dans les données synthétisées. La dimen-
sion des vecteurs STAP est ici de m = M N = 256 alors que le nombre de données
secondaires est K = 410. La règle de Brennan (m > 2 K) et qui garantit, dans le
cas gaussien, une perte maximale de 3 dB, n’est pas respectée. L’utilisation de la pro-
priété de persymétrie permet ainsi d’utiliser virtuellement 2 K données secondaires et
on peut remarquer que les détecteurs persymétriques AMF-SCM et ANMF-PFP amé-
liorent les résultats. La figure ?? présente la carte Doppler-distance d’un des capteurs
(simple transformation de Fourier des données acquises au cours du temps sur un seul
capteur) des données contenues dans la case distance.

Persymmetric Tyler-ANMF and Tyler ANMF on THALES dataset - m = 8, n = 8
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Figure 8. Courbes de régulation de fausse alarme et de performance de détec-
tion sur les données de THALES (seuil de détection ⌘ = (1 � �)�m en fonc-
tion de la probabilité de fausse alarme) pour les détecteurs ⇤ANMF (cMFP , x) et
⇤ANMF�PFP (cMFP , x). Cas Pfa = 10�2, m = 8 et K = 20

de l’ONERA. Dix cibles artificielles dans la même case distance (case 255) mais à
des vitesses différentes ont ainsi été ajoutées dans les données synthétisées. La dimen-
sion des vecteurs STAP est ici de m = M N = 256 alors que le nombre de données
secondaires est K = 410. La règle de Brennan (m > 2 K) et qui garantit, dans le
cas gaussien, une perte maximale de 3 dB, n’est pas respectée. L’utilisation de la pro-
priété de persymétrie permet ainsi d’utiliser virtuellement 2 K données secondaires et
on peut remarquer que les détecteurs persymétriques AMF-SCM et ANMF-PFP amé-
liorent les résultats. La figure ?? présente la carte Doppler-distance d’un des capteurs
(simple transformation de Fourier des données acquises au cours du temps sur un seul
capteur) des données contenues dans la case distance.

Persymmetric Tyler-ANMF and Tyler ANMF on THALES dataset - m = 8, n = 20
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Detection Performance on THALES Sea Clutter

Non-Stationary and Heterogeneous THALES Sea clutter
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Detection in very Heterogeneous Environment

Simulation: Spatially and Spectrally Heterogeneous Strong Clutter

ANMF_PSCM Detection                  ANMF-PFP Detection
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Detection Performance on STAP Data

Problem
Using joint spatial and time measurements, estimate the position (angle) and the Doppler
frequency (speed) of the target⇒ use of the ANMF with a particular steering vector [Ovarlez 2011]

Data parameters: experimental clutter with synthetic target
X-Band ≃ 109 Hz, wavelength λ = 0.03m, flight speed v =100m/s, distance to the scene
30km, 5 deg of incidence, PRF (Pulse Repetition Frequency) of 1 kHz, inter-sensor distance
d = 0.3m, 12 trials with n = 410 range bins, M = 64 pulses and N = 4 sensors.

• This means observations of size m = N M = 256 while n ≤ 410!
• Clutter more or less homogeneous BUT some targets (outliers) could be present in the

secondary data
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No target is present in the secondary data - homogeneous noise
STAP AMF+SCM, data 3, burst 6, range bin 255
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STAP ANMF−FP, Essai 3, burst 6, range bin 255
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AMF detector with the SCM ANMF detector with Tyler’s estimate.
Doppler-angle map for the range bin 255 with n = 404 secondary data and m = 256.

(targets and guard cells are removed)
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Two targets (4m/s and -4m/s) are present in the secondary data - homogeneous noise
STAP AMF+SCM, data 3, burst 6, range bin 255
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AMF detector with the SCM ANMF detector with Tyler’s estimate.
Doppler-angle map for the range bin 255 with n = 404 secondary data and m = 256

(guard cells are removed)
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Detection Performance on STAP Data
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N=4       M=64       K=404 N=4       M=64       K=404
Figure: Doppler-angle map for the range bin 255 with n = 404 secondary data, m = 256 [Pailloux 10].
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Extended Low Rank Detectors [Ginolhac 11, 12 and 13]

Simulations  

No target-contamination, Target at 4 m/s, 0 deg 
Rank 45  

 
LR-AMF based on the SCM LR-AMF based on the NSCM 

STAP DATA ANALYSIS: Influence of the quality of 
the secondary dataSimulations  

No target-contamination, Target at 4 m/s, 0 deg 
 

AMF based based on the SCM 

 Only one target detection 
!

 Non contaminated secondary data

N=4       M=64       K=408 
!

K < 2MN, K > 2r

Classical STAP

Low Rank AMF with SCM Low Rank ANMF with NSCM

Target in the CUT

37

N = 4, M = 64, n = 408

n < 2M N , n > 2 r

Figure: Doppler-angle map for the range bin 255 with n = 100 < m secondary data and m = 256.
(guard cells are removed)
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Extended Low Rank Detectors [Ginolhac 11, 12 and 13]

Simulations  

Target-contamination, Target at 4 m/s, 0 deg 
Rank 45  

LR-AMF based on the SCM LR-AMF based on the NSCM 

Simulations  

Target-contamination, Target at 4 m/s, 0 deg 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Only one target (4m/s) in the CUT 
!

 Contaminated secondary data  
(two targets at 4m/s and -4m/s)

Classical STAP

Low Rank ANMF with NSCMLow Rank AMF with SCM

N=4       M=64       K=410 
!

K < 2MN, K > 2r
Target in the CUT

Whitened 
target

Target sidelobe

STAP DATA ANALYSIS: Influence of the quality of 
the secondary data
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 Only one target (4m/s) in the CUT 
N = 4, M = 64, n = 410

n < 2M N , n > 2 r

N = 4, M = 64, n = 410

n < 2M N , n > 2 r

Figure: Doppler-angle map for the range bin 255 with n = 100 < m secondary data and m = 256.
(guard cells are removed)
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Outline
1 Robust Estimation and Detection

Going to Robust Adaptive Detection
Modeling the Background
Robust Estimation
Robust Detection
Robustness of M-estimators

2 Other Refinements
Exploiting Prior Information: Covariance Structure
Low Rank Detectors
Shrinkage of M-estimator
Riemannian manifolds
RMT Theory and M-Estimator based Detectors

RMT key ideas
Radar Detection Schemes for Joint Time and Spatial Correlated Clutter

3 Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
Surveillance Radar against Ground and Sea Clutter
Detection Performance on STAP Data
Detection Performance on SAR Image
Hyperspectral Imaging: Detection and Anomaly Detection
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Background on SAR and Radar Imaging

Radar Imaging allows to build more and more precise images :
Current use of very high bandwidth and long integration time (high 
azimuth bandwidth) : Very high spatial resolution (< 10cm), 
Application to surveillance (detection, change detection), 
classification, 3D reconstruction, EM analysis, … 
Due to the growing complexity of the scene (non stationarity, non-
Gaussianity), need to derive new procedures to exploit these 
images.

2

ONERA RAMSES Image

ONERA RAMSES Image

R
A

M
SE

S 
Im

ag
e

ONERA ISAR Image

Radar/SAR Imaging

Radar Imaging allows to build more and more precise images:
• Current use of very high spectral bandwidth and very high angular bandwidth leading to

very high spatial resolution,
• Application to monitoring (detection, change detection), classification, 3D reconstruction,

EM analysis, etc.
These applications require some physical diversity to achieve good performance.
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Multi-Channel SAR Images
Multi-channel SAR images automatically propose this diversity through:

• polarimetric channels (POLSAR), interferometric channels (INSAR), polarimetric and interferometric channels
(POLINSAR),

• multi-temporal, multi-passes SAR Image, etc.

4

For multichannel SAR Images, each pixel of the spatial image is associated to a vector of 
informations: 
 - polarimetric channels (POLSAR), 
 - interferometric channels (INSAR), 
 - polarimetric and interferometric channels (POLINSAR), 
 - Multi-temporal, multi-passes SAR Image,  

Cross−range Y, meters
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Pauli Decomposition
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−100
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100
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300

Analysis of the structures displacement in  
Shangai with multi-temporal SAR images  

(@Telespazio)

Estimation of the height 
in POLINSAR images

EM behavior of the terrain  
in POLSAR images

Almost all the conventional techniques of detection, parameters estimation and classification in 
multichannel SAR images are based on the multivariate Gaussian statistic with additional 
hypotheses of stationarity and homogeneity. 

Examples: estimation of the polarimetric covariance matrix, interferometric coherency matrix 

Examples of Applications in Multi-Channel SAR Image

Almost all the conventional techniques of detection, parameters estimation, speckle filtering
techniques, and classification in multi-channel SAR images (e.g., polarimetric covariance
matrix, interferometric coherency matrix) are based on the multivariate statistic.
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Mono-Channel SAR Images
For mono-channel SAR Images, each pixel of the spatial image is only characterized by a
complex amplitude, and we don’t have direct access to this diversity. Moreover,

• very high-resolution SAR images are more and more complex, detailed, heterogeneous,
• the spatial statistic of SAR images may be not at all Gaussian !
• SAR pixels may be dispersive (or colored) and anisotropic.

8

The SAR images are more and more complex, detailed, heterogeneous,  
The SAR pixels are colored and anisotropic 
The spatial statistic of SAR images is not at all Gaussian ! 

How to use in an adaptive detector the dispersive and anisotropic information of SAR pixels ? 
How to derive Multivariate Adaptive detectors (AMF, Kelly, ANMF) on a monodimensionnal SAR 
image without multi-channels like polarimetry, interferometry, multi-passes SAR images ? 

How to enhance the performance of these Gaussian detectors in non-Gaussian environment ? 

res < 0.5m 

@ONERA SETHI 

Challenging Problems Related to SAR Processing

5

Sub-band 1      Sub-band 2     Sub-band 3

Introduction
Imagerie Classique

Imagerie Radar par Ondelettes
Application des ondelettes à l’imagerie SAR Polarimétrique

Conclusions - Perspectives

Hypothèses et Principe Généraux
Mise en défaut de l’imagerie classique

Campagne SPA3 2004 - vol 2 - cap 320 - bande X

(a) dépression 30°(passe 7) (b) dépression 50°(passe 15)

Rouge : � = 3.4cm (dernière agilité) - Vert : � = 3.2cm (agilité centrale) - Bleu :
� = 3.cm (première agilité)

Analyse polarimétrique d’images SAR par ondelettes - 9/27

elevation 30°                                            elevation 50°       

Scatterers have different behavior with regards to the frequency 

True Physical Behavior of Scatterers in SAR Imaging
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Sub-band 1      Sub-band 2     Sub-band 3

Introduction
Imagerie Classique

Imagerie Radar par Ondelettes
Application des ondelettes à l’imagerie SAR Polarimétrique

Conclusions - Perspectives

Hypothèses et Principe Généraux
Mise en défaut de l’imagerie classique

Campagne SPA3 2004 - vol 2 - cap 320 - bande X

(a) dépression 30°(passe 7) (b) dépression 50°(passe 15)

Rouge : � = 3.4cm (dernière agilité) - Vert : � = 3.2cm (agilité centrale) - Bleu :
� = 3.cm (première agilité)

Analyse polarimétrique d’images SAR par ondelettes - 9/27

elevation 30°                                            elevation 50°       

Scatterers have different behavior with regards to the frequency 

True Physical Behavior of Scatterers in SAR Imaging

Non-Gaussianity Spectral diversity

Challenging Problems
• How to retrieve how to exploit this diversity (dispersive and anisotropic information) from

mono-channel SAR image?
• How to derive Multivariate Adaptive Detectors on a mono-channel complex SAR image?
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Conventional Principle of Radar/SAR Imaging
Conventional Fourier Imaging (laboratory, SAR, ISAR):

• Assumptions of white and isotropic bright points
• It does not exploit the potential non-stationarities or diversities

of the scatterers

Cross range

R
a
n
g
e

Angle

F
r
e
q
u
e
n
c
y

• Hypothesis of bright points modeling: all the scatterers localized in x and characterized by the complex spatial amplitude
distribution I(x) have the same behavior for any wave vector k =

2 f
c

(cos θ, sin θ)
T . After some processing, the

backscattering coefficient H(k) acquired by the radar is related to the SAR image I(x) through:

H(k) =

∫
Dx

I(x) exp
(
−2 i π kT x

)
dx

• The SAR image I(x) is then obtained through the Inverse Fourier Transform:

I(x) =

∫
Dk

H(k) exp
(

2 i π kT x
)

dk

This model loses all information relative to frequency f and angle θ. Hence, spectral and
angular diversities are lost.
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Time-Frequency Distributions for SAR Imaging - Key Idea
Time-frequency distributions are generally devoted to non-stationary time signals analysis (e.g.,
spectral components varying with time). They can be easily extended in 2D.
Key idea: In the context of SAR Imaging, Time-Frequency Analysis allows:

• to highlight the coloration and anisotropy properties of monodimensional SAR scatterers,
• to characterize each pixel of the complex SAR image with a vector of information related

to angular or/and frequency behaviors.

LTFD analysis and the physical group theory (Heisenberg or affine group) allow us to construct
hyperimages [Bertrand 91, Bertrand 94, Bertrand 96] through:

Ĩ(r0, k0) =< H(.), Ψr0,k0(.) >=

∫
Dk

H(k)Ψ∗
r0,k0(k) dk ,

where Ψr0,k0(k) is a family of wavelet bases (Gabor, wavelet) generated from a mother wavelet
ϕ(f , θ) through the chosen physical group of transformation (translations, scale in frequency,
etc.) and where Dk is the spectral/angular support of the wavelet Ψ.
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Highlighting the Spectral and Angular Behaviors of Scatterers
Some examples of synthetic hyperimages Ĩ(r0, k0):
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Example of theoretical 
model of isotropic and 

white scatterers

Example of theoretical 
model of anisotropic and 

colored scatterers

Comparison Between the Two Models
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Example of theoretical 
model of isotropic and 

white scatterers

Example of theoretical 
model of anisotropic and 

colored scatterers

Comparison Between the Two Models

Isotropic and white scatterers. Anisotropic and colored scatterers.

• An isotropic and white scatterer is mainly located on a pixel of SAR image,
• An anisotropic and colored scatterer may naturally spread out in the spatial domain.
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From Mono-Channel to Multi-Channel SAR Image
Example of Nf = 3 sub-bands and Nθ = 3 sub-looks image decomposition:

Fig. 2: Example of decomposition with Nk, N✓ = 3, 3

kmax�kmin and the range of angles is of size ⇥ = ✓max�✓min.
We can define the function �l,m(k, ✓):

�l,m(k, ✓) =

⇢
1 if (k, ✓) 2 �l,m

0 otherwhise
(5)

with

�l,m =


kmin +

(l � 1)

Nk
, kmin +

l

Nk

�

[

✓min +

(m � 1)⇥

N✓
, ✓min +

m⇥

N✓

�
.

(6)

�l,m is a moving window on H to select a range of
angles and frequencies. The size of the window determines
the number of sub-bands Nk and sub-angles N✓. A sub-image
can be computed by means of an IFT2 on �l,m ⇥ H:

Wl,m(r) =

Z 2⇡

0

d✓

Z +1

0

k H(k, ✓) �l,m(k, ✓) e+j2⇡kT r dk

(7)
The figure 2 shows an example of decomposition for a SAR

image. We can interpret it as a multivariate image. Indeed, for
each pixel, we can associate a p = Nk ⇥ N✓ vector of data i
corresponding to the value of the pixel in each of the Wl,m

images: i = [W1,1(x, y), W1,2(x, y), ... , WNk,N✓
(x, t)]

T .

In practice, the image obtained must be decimated
according to the incertitude principle: the support of the
window being more limited in angular and frequency than

the whole image, its spatial power of resolution is impacted.
Consequently the image is decimated by a factor N✓ in the
azimuth direction and Nk in the range direction.

This approach allows to retrieve a diversity that was lost
during the construction of the single look monovariate image.
It is relevant in our problem of change detection as it constitute
a diversity that can be exploited in the algorithms presented
in the introduction. We can assume that a change in the scene
implies that the angular and spectral behaviour of the reflectors
varies as well. This allows in theory a more precise detection
of a change than working on the amplitude alone.

IV. SIMULATIONS

This section describes simulations done on monovariate
SAR images. It presents the results obtained using the de-
composition presented in section III and compares then to the
classic monovariate algorithm.

A. DataSet

Figure 3 shows a SAR Image of static aircraft
available from Sandia National Laboratories
(http://www.sandia.gov/radar/complex_data/). This image
was used in the following simulations. For all simulations
presented here, we chose Nk = 5 and N✓ = 5. Having only
a single image, a change is to be simulated on the image
in order to compute the change detection algorithms. For
simplicity’s sake, only punctual targets are added on the

Exploitation of the diversity
Each pixel i of the mono-channel SAR image can now be characterized by a N-vector
xi =

[
W i

1,1, . . . ,W i
Nf ,Nθ

]T of information (N = Nf Nθ) related to dispersion in frequency
domain and anisotropy in angular domain. Which multivariate statistic can characterize the
vector xi?
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Analysis of Performance
• Evaluation of the CFAR property of the AMF and ANMF detectors,
• Comparison of the target detection performance between AMF and ANMF.

Dataset from SANDIA National Laboratories Artificial embedded target

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: FA Regulation with ANMF-Tyler. Right: FA Regula-
tion with AMF-SCM. N✓ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: FA Regulation with ANMF-Tyler. Right: FA Regula-
tion with AMF-SCM. N✓ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Left: Original SAR Image without target. Right:
SAR image with the specific embedded target.

Left: SAR Image of the target. Right: True target
response p in angular and spectral spaces (Nθ = 5

sub-looks, Nf = 5 sub-bands).
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Detection Performance on SAR Image
Perfect PFA regulation with ANMF-Tyler but poor PFA regulation for AMF-SCM

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: FA Regulation with ANMF-Tyler. Right: FA Regula-
tion with AMF-SCM. N✓ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Left: FA Regulation with ANMF-Tyler. Right: FA Regulation with AMF-SCM. Nθ = 5, Nf = 5, K = 88.

Better target detection for ANMF-Tyler [Ovarlez 17, Mian 19]

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: FA Regulation with ANMF-Tyler. Right: FA Regula-
tion with AMF-SCM. N✓ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: FA Regulation with ANMF-Tyler. Right: FA Regula-
tion with AMF-SCM. N✓ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Left: Full AMF-SCM detection test, Pfa = 1. Right: AMF-SCM
detection test, Pfa = 2.6 10−3.

Left: ANMF-Tyler detection test, Pfa = 1. Right: ANMF-Tyler
detection test, Pfa = 2.6 10−3.
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Change Detection on SAR Image Time Series
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Example of Polarimetric Repartition in the H − α plane

(a) Classification results (b) Repartition

Figure: SCM, Euclidean mean, Wishart distance
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Example of Polarimetric Repartition in the H − α plane

(a) Classification results (b) Repartition

Figure: Tyler, Euclidean mean, Wishart distance
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Example of Polarimetric Repartition in the H − α plane

(a) Classification results (b) Repartition

Figure: Tyler, Riemannian mean, Wishart distance
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Outline
1 Robust Estimation and Detection

Going to Robust Adaptive Detection
Modeling the Background
Robust Estimation
Robust Detection
Robustness of M-estimators

2 Other Refinements
Exploiting Prior Information: Covariance Structure
Low Rank Detectors
Shrinkage of M-estimator
Riemannian manifolds
RMT Theory and M-Estimator based Detectors

RMT key ideas
Radar Detection Schemes for Joint Time and Spatial Correlated Clutter

3 Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
Surveillance Radar against Ground and Sea Clutter
Detection Performance on STAP Data
Detection Performance on SAR Image
Hyperspectral Imaging: Detection and Anomaly Detection
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Hyperspectral Imaging

20 40 60 80 100
0

0.1

0.2

0.3

0.4

Wavelength

Re
fle

ct
an

ce

• Anomaly Detection
To detect all that is "different" from the background (Mahalanobis distance) -
No information about the targets of interest available [Frontera 16].

• "Pure" Detection
To detect targets characterized by a given spectral signature p - Regulation of False Alarm [Ovarlez 11,
Frontera 17].
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Problem: the statistical mean is non null ⇒ M-estimator of the mean is required

µ̂ =

n∑
i=1

u1(ti) zi

n∑
i=1

u1(ti)

and Σ̂ =
1
n

n∑
i=1

u2
(
t2
i
)
(zi − µ̂) (zi − µ̂)

H
,

where ti =
(
(zi − µ̂)

H
Σ̂

−1
(zi − µ̂)

)1/2
and u1(.), u2(.) denote any real-valued weight

functions (following the conditions of Maronna).

Joint estimation of location and scale [Bilodeau 08]
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Hyperspectral Imaging
ANMF and M-estimates for Hyperspectral target detection [Frontera 14]

Λ(c) =

∣∣∣pH Σ̂
−1 (

c − µ̂
)∣∣∣

2

(pH Σ̂
−1

p)
((

c − µ̂
)H

Σ̂
−1 (

c − µ̂
))

H1
≷
H0
λ

Pfa = (1 − λ)
n−1
σ1

−m+1
2F1

(n − 1
σ1

− m + 2, n − 1
σ1

− m + 1; n − 1
σ1

− 1; λ
)
, where σ1 = (m + 1)/m .

This two-step GLRT test is homogeneous of degree 0: it
is independent of any particular Elliptical distribution:
CFAR texture and CFAR Matrix properties,
Under homogeneous Gaussian region, it achieves the
same performance as the detector built with the SCM
estimate. 33

ADAPTIVE DETECTION IN ELLIPTICAL  
BACKGROUND

 This two-step GLRT test is homogeneous of degree 0: it 
is independent of any particular Elliptical distribution: 
CFAR texture and CFAR Matrix properties, 

 Under homogeneous Gaussian region, it reaches the 
same performance than those of the detector built with 
the SCM estimate.

ADAPTIVE NORMALIZED MATCHED FILTER BUILT WITH ANY M-ESTIMATES

where the parameter s1 is very close to 1 but depends 
on the M-estimator:

Ex: for the Fixed Point, s1=(m+1)/m 

⇤(c) =
|pH M̂�1 (c � µ̂)|2

(pH M̂�1p)
⇣
(c � µ̂)H M̂�1 (c � µ̂)

⌘
H1

?
H0

�.
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Hyperspectral Imaging

37

Original data set

Non-Gaussian region

Extracted region :  
‣100 x 100 pixels, 
‣5 bands, 
‣Sliding Window: 19x19

Selected bands
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Hyperspectral Imaging
GLRT RX Anomaly Detector: Mahalanobis Distance [Reed 90]

Binary Hypotheses test:
{

H0 : c = b c1, . . . , cn
H1 : c = A p + b c1, . . . , cn

where b ∼ CN (0m,Σ) and ci ∼ CN (0m,Σ), A
known and p unknown

36

[I.S. Reed and X. Yu, 90]

 Derived and valid only under Gaussian hypotheses,  
 Its false alarm rate is independent of the covariance matrix: CFAR-matrix property in homogeneous 

Gaussian data.

GLRT RX ANOMALY DETECTOR: Mahalanobis Distance

(Hotelling’s T-squared distributed)

Binary Hypotheses test
⇢

H0 : c = b, c1, c2, . . . , cK

H1 : c = b + Ap, c1, c2, . . . , cK

fc(c) =
1

⇡m |M|exp
�
�(c � µ)H M�1 (c � µ)

�

A known, p unknown

⇤(c) = (c � µ̂SCM )H M̂�1
SCM (c � µ̂SCM )

H1

?
H0

�

4 CHAPTER 1. PRELIMINARY NOTIONS
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Figure 1.1: Graphical interpretation in two-dimensional space for the ⇤KellyAD detector.

samples. Hence, N +1 vectors are available in the latter and ⇤KellyAD ⌃̂ does not represent anymore
a benchmark structure.

The quadratic form in (1.15) corresponds to the Mahalanobis distance detailed in Mahalanobis
(1936). It performs statistically as an outlier detector. When Gaussian assumption is valid, the
quadratic form (x�µ)H ⌃�1 (x�µ) follows a �2 distribution for ⌃ and µ perfectly known. In case
the parameter ⌃ is replaced by its MLE, (??), the distribution of the quadratic form:

⇤KellyAD ⌃̂ = (x � µ)H ⌃̂
�1

SCM (x � µ) ⇠ T 2 , (1.16)

becomes a Hotelling T 2 distribution and thus,

N � m + 1

m N
⇤KellyAD ⌃̂ ⇠ Fm,N�m+1 (1.17)

where Fm,N�m+1 is the non-central F -distribution with m and N � m + 1 degrees of freedom
Weisstein (2010). For high values of N, (N > 10 m), the distribution can be approximated by the
�2 distribution.

As discussed above, when both covariance matrix and mean vector are unknown, they can be
replaced by their estimates leading to:

⇤KellyAD ⌃̂,µ̂ = (x � µ̂)T ⌃̂
�1

(x � µ̂)
H1

?
H0

� . (1.18)

The distribution of this detection test is given in the next Proposition.

K�m
m (K+1) ⇤(c) ⇠ Fm,K�m

(When K tends to infinity, this test becomes chi-squared distributed)

denoting µ̂ =
1
n

n∑
i=1

ci

RXDSCM(c) =
(

c − µ̂
)H Ŝ−1

n
(

c − µ̂
) H1
≷
H0
λ

(Hotelling T 2 distributed)
n − m

m (n + 1)
RXDSCM(c) ∼ Fm,n−m

Derived and valid only under Gaussian hypotheses,
Its false alarm rate is independent of the covariance matrix: CFAR-matrix property in homogeneous
Gaussian data.
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Hyperspectral Imaging
Extended GLRT RX Anomaly Detector: Mahalanobis Distance [Frontera 14]

Binary Hypotheses test:
{

H0 : c = b c1, . . . , cn
H1 : c = A p + b c1, . . . , cn

where b ∼ CE(µ,Σ, gz) and ci ∼ CE(µ,Σ, gz), A
known and p unknown

36

[I.S. Reed and X. Yu, 90]

 Derived and valid only under Gaussian hypotheses,  
 Its false alarm rate is independent of the covariance matrix: CFAR-matrix property in homogeneous 

Gaussian data.

GLRT RX ANOMALY DETECTOR: Mahalanobis Distance

(Hotelling’s T-squared distributed)

Binary Hypotheses test
⇢

H0 : c = b, c1, c2, . . . , cK

H1 : c = b + Ap, c1, c2, . . . , cK

fc(c) =
1

⇡m |M|exp
�
�(c � µ)H M�1 (c � µ)

�

A known, p unknown

⇤(c) = (c � µ̂SCM )H M̂�1
SCM (c � µ̂SCM )
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?
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�
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Figure 1.1: Graphical interpretation in two-dimensional space for the ⇤KellyAD detector.

samples. Hence, N +1 vectors are available in the latter and ⇤KellyAD ⌃̂ does not represent anymore
a benchmark structure.

The quadratic form in (1.15) corresponds to the Mahalanobis distance detailed in Mahalanobis
(1936). It performs statistically as an outlier detector. When Gaussian assumption is valid, the
quadratic form (x�µ)H ⌃�1 (x�µ) follows a �2 distribution for ⌃ and µ perfectly known. In case
the parameter ⌃ is replaced by its MLE, (??), the distribution of the quadratic form:

⇤KellyAD ⌃̂ = (x � µ)H ⌃̂
�1

SCM (x � µ) ⇠ T 2 , (1.16)

becomes a Hotelling T 2 distribution and thus,

N � m + 1

m N
⇤KellyAD ⌃̂ ⇠ Fm,N�m+1 (1.17)

where Fm,N�m+1 is the non-central F -distribution with m and N � m + 1 degrees of freedom
Weisstein (2010). For high values of N, (N > 10 m), the distribution can be approximated by the
�2 distribution.

As discussed above, when both covariance matrix and mean vector are unknown, they can be
replaced by their estimates leading to:

⇤KellyAD ⌃̂,µ̂ = (x � µ̂)T ⌃̂
�1

(x � µ̂)
H1

?
H0

� . (1.18)

The distribution of this detection test is given in the next Proposition.

K�m
m (K+1) ⇤(c) ⇠ Fm,K�m

(When K tends to infinity, this test becomes chi-squared distributed)

RXDM−est (c) =
(

c − µ̂
)H

Σ̂
−1 (

c − µ̂
) H1
≷
H0
λ

where Σ̂ and µ̂ are M-estimates
of the location and scale

Derived and valid for any Elliptical Contoured Distributions,
Its false alarm rate depends on the texture statistic of the data.

J.-P. Ovarlez T03 Tutorial - Conference Radar 2024 115 / 133



Robust Estimation and Detection
Other Refinements

Applications and Results in Radar ...

Surveillance Radar against Ground and Sea Clutter
Detection Performance on STAP Data
Detection Performance on SAR Image
Hyperspectral Imaging: Detection and Anomaly Detection

Anomaly Detection Results on Artificial Targets

39

Results obtained with artificial targets

Original image (Forest Region) Target Spectrum 

50 x 50 pixels, 126 spectral bands
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Anomaly Detection Results on Artificial Targets

Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 9, n = 80, PFA = 0.03).

Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 126, n = 288, PFA =
0.03).
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Galaxies Anomaly Detection Results on MUSE data
Problem of detecting galaxies in HS MUSE (Multi Unit Spectroscopic Explorer) data (465-930 nm)

Classical RXD Muse Image Extended RXD

MULTI UNIT SPECTROSCOPIC EXPLORER (MUSE)

41

(a) MUSE data cube (b) Classical RX detector (c) RX detector built the FP estimates

Fig. 3. Classical and Fixed-point anomaly detection in a hyperspectral image of 300⇥ 300 in 3578 channels. See details in the
text of Section 5.
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Better detection and False Alarm regulation with Tyler estimate (same Pfa).
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Conclusions

When the background is non-Gaussian and/or heterogeneous, the conventional detectors (AMF or
sub-optimal CFAR tests) are not at all optimal and lead to poor false alarm regulation and poor detection
performance,
The SIRV and CES background modeling allows us to take into account the background complexity: the
non-Gaussianity, the temporal background fluctuations, and the spatial background power fluctuations,
Using this model, the ANMF detector built with the Fixed Point (or other M-estimators) background
covariance matrix estimator is shown to be CFAR-texture, CFAR-matrix and exhibits nice properties
(robustness) and excellent detection performance,
Taking into account additional a priori properties on the covariance matrix structure (low rank,
persymmetry, Toeplitz, etc.) can lead to an appreciable gain for small numbers of secondary data,
These methods have been applied for many problems involving covariance matrix estimation: STAP
detection, SAR detection (FOPEN), Polarimetric/Interferometric SAR detection and classification, SAR
and Hyperspectral Change Detection, SAR and Hyperspectral time-series analysis, Financial Portfolio
Optimization, Hyperspectral Anomaly detection, Hyperspectral detection.
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On-going works and Perspectives
Link with Random Matrix Theory: for high dimensionality data (ex: hyperspectral, STAP), strong statistical connection
with Robust Estimation theory [R. Couillet, and F. Pascal, J.-P. Ovarlez, E. Terreaux],
Robust estimation of structured covariance matrices, Low-Rank covariance matrices [Y. Sun, D. P. Palomar, A. Breloy, G.
Ginolhac, F. Pascal, J.-P. Ovarlez, C. Ren, P. Forster, B. Mériaux 2020]: persymmetric, Toeplitz, Bloc Toeplitz,
Low-Rank matrices, etc.,
Joint location and scale with M-Estimators: non-centered multivariate data, e.g. hyperspectral data [J. Frontera, F.
Pascal, J.-P. Ovarlez],
How to deal with non i.i.d secondary data? RMT approach [R. Couillet, F. Pascal, J.-P. Ovarlez], VARMA approach: [W.
Ben-Abdallah, P. Bondon, J.-P. Ovarlez],
No secondary data: [C. Ren, N. El-Korso, P. Forster, A. Breloy, J.-P. Ovarlez, B. Mériaux],
M-Estimators and Riemannian Geometry: [F. Barbaresco], [P. Formont, F. Pascal, G. Ginolhac, A. Renaux, A. Collas,
J.-P. Ovarlez, F. Bouchard],
Shrinkage of M-Estimators: [A. Wiesel, Y. Abramovitch, O. Besson, F. Pascal, E. Ollila, etc.], [Q. Hoarau, G. Ginolhac],
Sparsity and high dimension: [A. Bitar, J.-P. Ovarlez].
Performance of Estimation : [A. Renaux, B. Mériaux, S. Fortunati]
Neural Network for improving classification: [A. Barrachina 22] for complex-valued Neural Networks, Spectral Clustering
and Transfer Learning in high dimension [C. Doz], Neural Network for detection [A. Rouzoumka]and Anomaly Detection
[M. Muzeau], Neural Network for SAR: Complex GAN for SAR [Q. Gabot].
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Former ONERA/SONDRA Ph.D. students linked to this tutorial (1)
• A. Rouzoumka, Deep Learning Applied to the Robust Detection of Radar Targets, Ph.D. Thesis 2023-2026, Paris Saclay

University,
• Q. Gabot, Generative Adversarial Networks for SAR Imaging, Ph.D. Thesis 2023-2026, Paris Saclay University,
• M. Muzeau, Anomaly Detection Schemes for SAR Imaging, Ph.D. Thesis 2021-2024, Paris Saclay University,
• H. Brehier, Detection and Classification for Radar Through The Wall from subspaces model, Ph.D. Thesis 2021-2024,

Paris Saclay University,
• O. Lerda, Sonar Detection, Estimation and Classification for Targets in Complex Environnement, Ph.D. Thesis

2020-2024, Annecy University,
• P. Develter, New Radar Processing Robust to Mismatch Models: Case of off-grid targets, Ph.D. Thesis 2020-2023, Paris

Saclay University,
• C. Doz, Spectral clustering Based Methods for Unsupervised Classification in Radar Imaging Applications, Ph.D. Thesis

2019-2023, Paris Saclay University,
• J. A. Barrrachina, Complex Valued Neural Networks for Radar Applications, Ph.D. Thesis 2019-2022, Paris Saclay

University,
• A. Mian, Exploitation of SAR and Hyperspectral Time Series Analysis, Ph.D. Thesis 2016-2019, Paris Saclay University,
• B. Mériaux, Contributions to robust signal processing for multi-sensor systems, Ph.D. Thesis 2017-2020, Paris Saclay

University,
• E. Terreaux, Robust model order selection using Random Matrix Theory, Ph.D. Thesis 2015-2018, Paris Saclay University,
• A. Bitar, Exploitation of Sparsity for Hyperspectral Target Detection, Ph.D. Thesis 2015-2018, Paris Saclay University,
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Former Ph.D. students linked to this tutorial (2)
• U. H. Tan, Colocated MIMO Radar Waveform Optimization, Ph.D. Thesis 2014-2017, Paris Saclay University,
• A. Combernoux, Low-rank detection and estimation using random matrix theory approaches for antenna array processing,

Ph.D. Thesis 2013-2016, Paris Saclay University,
• J. Frontera-Pons, Robust Detection and Classification for Hyperspectral Imaging, Ph.D. Thesis 2011-2014, Paris Saclay

University,
• M. Mahot, Robust Covariance Matrix Estimation in Signal Processing, Ph.D. Thesis 2009-2012, ENS Paris Saclay,
• P. Formont, Statistical and Geometric Tools for the Classification of Highly Textured Polarimetric SAR Images, Ph.D.

Thesis 2009-2012, Paris Saclay University,
• C. Y. Chong, Signal Processing for MIMO Radars: Detection Under Gaussian and non-Gaussian Environments and

Application to STAP, Ph.D. Thesis 2008-2011, Paris Saclay University,
• G. Pailloux, Noise Structured Covariance Estimation in Adaptive Detection, Ph.D. Thesis 2007-2009, Paris Saclay

University,
• M. Duquenoy, Time-Frequency Analysis Applied to Polarimetric SAR Imaging, Ph.D. Thesis 2004-2007, Paris Saclay

University,
• F. Pascal, Detection and Estimation in non-Gaussian Environment, Ph.D. Thesis 2003-2006, Nanterre University,
• M. Tria, Analysis of SAR Images using Continuous Multidimensional Wavelet Transform, Ph.D. Thesis 2001-2003, Paris

Saclay University,
• E. Jay, Detection in non-Gaussian Environment, Ph.D. Thesis 1998-2001, Cergy-Pontoise University.
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