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Radar and Imaging Sensors

RADAR = RAdio Detection And Ranging

e emits and receives electromagnetic waves,

e detects the presence of targets,

Detection maps ISAR Image SAR Image SAR Classification

e but also: estimates parameters (range, radial velocity, angles of presentation, acceleration, amplitude (related to Radar

Cross Section), etc.),
e images, classifies, recognizes.

Note: Almost all the conventional Statistical Signal Processing methodologies and background
modeling tools are based on the Gaussian hypothesis (standard conditions).
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Radar and Imaging Sensors - New challenges

facing the new

e Complex Environments: ground, dynamic environments (sea, ionosphere), heterogeneous, non-Gaussian,
reverberating.

e Complex targets: small RCS, extended targets, fluctuating, dispersive, anisotropic, off-grid targets.
e Sensor Diversity: temporal, spatial, polarimetric, interferometric, spectral.

e Improvement of sensor resolution: spatial, spectral, angular.

e Outliers, jamming

o Increase of the dimension and the size of signals to analyze.

élévation 30°

Non-Gaussianity

@ONERA SETHI

s o2 Sousbanded
Heterogeneous Non-Gaussian Non-Stationary Targets
Environments Environments and Environments
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Applicative Context

Finance

¢ Time Series

¢ Portofolio Optimization
¢ Risk Management

¢ Classification
¢ Prediction

Air, ground, sea Surveillance
¢ Radar D ion, Space-Time Adaptive P
¢ Synthetic Aperture Radar
¢ Sources Localization
¢ Interferometric, Polarimetric Classification . . oo
¢ Change Detection, Infrastructure Monitoring Big Data H
eA ly D jon in F Imaging ¢ Recognition .
¢ MIMO Radar ¢ Classification, Clustering N
¢ Tracking ¢ Dimension Reduction e
@ Machine Learning, Deep Learning .
¢ Graphes Analysis
¢ Learning Techniques .
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Methodological Context

Goals: Improvement of sensors performance and their processing

e To model thanks statistics the variability of the unknown environment and data,

e To estimate the spectral properties of the environment (ionosphere, sea, wind through forest, etc.),
e To elaborate estimators and detectors that are robust and adaptive to these environments,

e To regulate the False Alarm on these heterogeneous, non-stationary, non-Gaussian environments,

e To improve the classification, the clustering techniques.
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Methodological Context

Goals: Improvement of sensors performance and their processing
e To model thanks statistics the variability of the unknown environment and data,
e To estimate the spectral properties of the environment (ionosphere, sea, wind through forest, etc.),
e To elaborate estimators and detectors that are robust and adaptive to these environments,
e To regulate the False Alarm on these heterogeneous, non-stationary, non-Gaussian environments,

e To improve the classification, the clustering techniques.

Methods: Statistical Signal Processing

e Robust Estimation Techniques of spectral and statistic characteristics of the environment and targets:
adaptivity, statistic learning, cognitive, maximal exploitation of the a priori,

e Optimal Detection Schemes (Likelihood, Bayesian) for stealthy targets embedded in these complex
environments,

e Exploitation of emerging statistical Signal Processing techniques: Minimal Estimation Bounds,
Time-Frequency Analysis, Random Matrix Theory, Clustering, Compressive Sensing, Artificial Intelligence,
Riemannian and Differential Geometry, etc.
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Motivations and General Introduction
Tutorial Description

General Introduction

Survey on

e Background on conventional Gaussian statistical modeling: Radar modeling, Random
Noise Modeling, Maximum Likelihood Estimation, Detection Schemes, etc.

e Recent methodologies on more recent robust estimation and detection schemes: Complex
Elliptically Symmetric distributions, M-Estimators,

o If time left: more advanced techniques: Robust COMET (RCOMET), Random Matrix
Theory, Robust Low-Rank modeling, Riemannian Geometry, etc.

e Part A: Background on Statistical Processing for Radar, Array Processing, SAR and
Hyperspectral Imaging,

e Part B: Recent Methodologies on Robust Estimation and Detection in non-Gaussian
Environment - Applications and Results in Radar, STAP and Array Processing, SAR
Imaging, Hyperspectral Imaging
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Contents

= Part A:
Background on Statistical Processing for Radar, Array Processing, SAR and Hyperspectral
Imaging,

= Part B:
Recent Methodologies on Robust Estimation and Detection in non-Gaussian Environment
- Applications and Results in Radar, STAP and Array Processing, SAR Imaging,
Hyperspectral Imaging
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Motivations for mor

Part A

Background on Statistical Processing for Radar,
Array Processing, SAR and Hyperspectral Imaging
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Part A: Contents

Radar basis
Conventional Radar and Imaging Processing
Some Background on Detection Theory

Motivations for more robust detection schemes
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Parameter Estimation

Electromagnetic wave propagates with speed light c. The two-way propagation delay up to the

distance D is T = —
c

Emitter -
-
Receiver Hf ~ —

—
aay =22
iy 1= 2

SCOPE PPL
(Panoramic Plane Indicator)

e Radar emitted signal: s.(t) = u(t) exp (2i7tfy t) where fy is the carrier frequency, and
u(.) the baseband signal,

e Radar received signal: s,(t) = ase(t —T) + b(t) where o is the backscattering amplitude
of the target and b(.) is an additive noise.

s (t) = ase (t— 2) + b(t).

c
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Parameter Estimation

Parameter Estimation - Velocity Measurement

Let us consider an illuminated moving target located for time t at range D(t) = Do + v t where
v is the radial target velocity.

If T(t) is the two-way delay of the received signal at time t, the signal has been reflected at
time t — t(t)/2 and the range D(t) has to verify the following equation:

c1(t)=2D(t—%> .

and the model relative to signal return is:

— 2 D
s,(t):ocse<c Yo 0>+b(t).
c+v c+v

2D0—|—Vt

We obtain t(t) = o

The moving target is characterized in the signal return by a time-shift-compression/dilation of
the emitted signal: action of Affine Group.
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Parameter Estimation

Parameter Estimation - Velocity Measurement

Under the so-called narrow-band assumptions:
e fy >> B, where B is the bandwidth of baseband signal u(.),

o v <<<C¢,

e 2B T << ¢/v,
- 2D

We have: s, (t) = ocse<c Y O)—l—b(t),
c+v c+v

2 D 2
ocexp(id))u(t—?o) exp (2iTtfhy t) exp (—Qiﬂvabt) + b(t).

s (t) =o' se (t— 2—50) exp (—2imtfyt) + b(t).

2v
where |o'| = |«| and where f; = — fy is called the Doppler frequency corresponding to moving
c

target. The moving target is so characterized in the signal return by a time-shift/frequency
shift of the emitted signal: action of Heisenberg Group .
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Parameter Estimation

Distance criterion - Ambiguity function and Matched Filter

One of the most important problem arising in radar theory is to separate targets in range and
Doppler spaces. A £?(R) distance R between two signals X and Y can be defined:

R? = rw IX(t) — Y(t)]? dt.

—00
Minimizing this distance leads to maximize the inner product between X and Y (also known as
Matched Filter):

+oo
J X(t) Y*(t) dt.
According to the physical transformation of X, we obtain the so-called Ambiguity functions

[Woodward 53, Kelly 65].
+o0
o Example: Y(t) =X(t—1)e? ™V A(T,v) :J X(t)X*(t—T1)e 2™ dt,

—0o0

o Example: Y(t) =L X (a't—b)): Ala,b) = % J+Oo X(t)X* (a7t t—b)) dt.
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Radar basis
and Imaging Processing Parameter Estimation

Link with the so-called Matched Filter and Pulse Compression

Let us consider a linear time-invariant filter of impulse response h(t). The filter input x(t) consists of a pulse
signal g(t) corrupted by additive zero mean white noise w(t) (with Power Spectral Density @, (f) = Np/2).
The output is y(t) = go(t) + n(t), the signal and noise components of the input x(t) for 0 <t < T.

Signal X O L) SNR — go(T)? _ leo(T)P
9 Sample at G% E [nz(t)] ,
White noise Linear receiver timet=T where |go(T)[? is the power of the filtered signal g(t) at t =
w(t) T,and 02 =E [n2(t)] is the power of the filtered noise.

Since |go(t)]? = JG(f) H(f)e>™ df

expression for the output SNR is:

2
N, .
and 02 = R,,(0) where R,(1) = J ?" IH(f)? 2™ df, the final

U H(f) G(f)e&>™T df

No
2

‘ 2

SNR = < 2 JIG(f)F df .

j|H(f)F df No

The SNR output is maximized only for the particular impulse response h(t) that verifies:
’ H(f) = k G*(f) e 27T Yk € C, or h(t) — kg*(T —t).
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Parameter Estimation

Range resolution

Let us suppose N targets with amplitude {oc,-}l.e[LN] located in range space at distance
CcT;
{d,- = —'} . The received signal s,(t) is:
2 Jien

)

N N
s (t) = Z(X,’Se(t—’ti) 205 (f) = ZO"' S.(F)e2imfT
i=1 i—1

The radar processing leads to evaluate for all T, the following expression:

—+00 N —+00
R(7) :J s(t)si(t—1) dt =L R(1) = Zoc,-J [Se(F)? €2 F i) df .
—oo i=1 —o0
N
o When S,(f) =1 for f €] — o0, +oo[, R(T) = ) a;8(t—),
i=1

N .
o When S,(f) =1 for f € [-B/2,+B/2], R(t) = Y_ & W

i=1
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Radar basis
tional Radar and Ima Processing Parameter Estimation

Deux réflecteurs bien séparés en distance Deux réflecteurs presque indiscernables Deux réflecteurs non résolus
o1o[[— Modul do a oncton e s — Modul do a fonction cle
Roponso réflctaur 1 Reponse efectou 1
Reponso éfectour 2 Réponse réfctour 2

e 1a fonction cible

Module If ()l de la fonction cible
Module If (x)l de Ia fonction cible

H
R A 7 vomaineradalx(m) 0 ™ vomaineradalxm 0
(a) Distance réflecteurs : 4 m  (b) Distance réflecteurs : 13 cm (c) Distance réflecteurs : 12.5 cm.

(a la limite de résolution dz = 12.5 ¢m)

Figure: Here: 8D = 0.125m and B = 1.210° Hz

The range resolution 8D (so-called Range Bin) is proportional to the inverse of the emitted
signal bandwidth B:
cl

D =—-—.
2 B
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Parameter Estimation

Velocity resolution

2
Let us suppose N targets with amplitude {a};(; y, with Doppler {v,- =— f[)} . The
i€[1,N]

received signal S,(f) is:

N N
Sr(f):ZOC,'Se(f—V,-) g Sf(t):Z(xise(t) e2i7'rv,‘t.
i=1

i=1
The radar processing leads to evaluate for all v, the following expression:

+o0 N +o0

R(V) :J Sr(f) 5:(1‘-—'\/) df ;g R(‘v) = ZOC"J |Se(t)|2 672int[v7v;) dt .

—oo =1 —o0

The velocity resolution 8V (so-called Doppler Bin) is proportional to the inverse of the emitted
signal duration (or integration time) T:
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Parameter Estimation

Joint range and Velocity resolution

Let us suppose N targets with amplitude {a;};c(; 5y moving at velocity {v;};c; 5, and located in

/'['.
range space at distance {d; = %} o The received signal S,(f) is:
iel1,N

N
s (t) = Z o so(t — ;) e Vit
i=1

The radar processing (Matched Filter) leads to evaluate for all (T,v), the following expression:

+oo
R(T,v):J s (t)si(t—T)e 2 mVidt,

—00
This last equation is the superposition of the ambiguity functions [Rihaczek 1969] centered at
{(Th ‘vi)},’e[]_’N]

R(t,v) = o A(T— T, v—v;).

™M=
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Radar basis

Conventional Radar and Imaging Processing
Some Background on Detection Theory
Motivations for more robust detection schemes

Parameter Estimation
Noi i Clutter in Radar

Some examples of Ambiguity Functions

. I Diagramme Ambiguite
Diagramme Ambiguite

Vitesse
Vitesse

3 -30 -25 -20 -5 -10 -5 0 8 3 -25 20 -5 -0 -5 0
Retard Retard

e Best radar waveforms are those which look like a thumbtack form (A(t,v) = 6(t) §(v))

but they definitely don't exist :-)
e Range and Doppler sidelobes can be troublesome for high density targets detection
because of their superposition at different ranges and Doppler [Rihaczek 1969)].
14 / 85
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Parameter Estimation

e Let us define the second order moments (centered) of the signal
+oo +oo
o2 :J t? |se(8)]* dt ~ T2, 02 :J £2 |S.(f)P? df ~ B? and the modulation index

2, range

-1 e ds;(t) . . o .
m= s Im Se(t) g dt. Under white Gaussian noise with variance o

and doppler accuracies are given by the following Cramer-Rao Bounds [Kay 93, Kay 98]:

02 02 o2 1
Ef(v—9) = i = 1
(v =977 4?2 0207 — (m—tofy)? ~ 4m? &2 02’ ()
02 o2 o2 1
E[(t—%)?] = t > — 2
[ —27] 4?2 x? 0207 — (m—tofo)? ~ 4m2 o2 02’ @)

. 02 m—tyfy

e Radar uses to emit signal characterized with high time-bandwidth product B T.
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Radar basis

m Noise and Clutter in Radar
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Motivations for more robust detection schemes

Noise and Clutter in Radar

Thermal noise

Thermal noise for most radars corresponds to additive complex white Gaussian noise
CN(0,,,1,,). This noise is generated by electronic devices in radar receivers.

What is the clutter?

Clutter refers to radio frequency (RF) echoes returned from targets which are uninteresting to
the radar operators and interfere with the observation of useful signals.

Such targets include natural objects such as ground, sea, precipitations (rain, snow or hail),
sand storms, animals (especially birds), atmospheric turbulence, and other atmospheric effects,
such as ionosphere reflections and meteor trails.

Clutter may also be returned from man-made objects such as buildings and, intentionally, by
radar countermeasures such as chaff.

A statistical model for the clutter is necessary: can we consider the clutter as Gaussian process,
non-Gaussian process, iid, correlated, stationary 7777
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ion schemes

Example of clutter map for different azimuth resolutions

resolution 3° resolution 1°




Range-Doppler Radar Processing
Conventional Radar and Imaging Processing
S on Detection Theory

Outline

Conventional Radar and Imaging Processing
m Range-Doppler Radar Processing
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Radar hwx Range-Doppler Radar Processing

ground on Detec
more robust detection Lh'—Vﬂ&S

Range-Doppler Radar Processing

e The cross-correlation operation is closely related to the so-called Matched Filter (filter
which maximizes the SNR at its output). This is also known as the pulse compression
processing. This matched filter offers the gain B T on the noise power o2,

e The Doppler resolution is inversely proportional to the integration time. For monostatic
radar (both emission and reception on the same antenna), radar prefers to cut off this long
integration time into m pulses of duration T with Pulse Repetition Frequency (PRF)

F, =1/T, (total integration time m T,):

m—1
s(t) = Se(t—kT,).
k=0
Considering the signal return s,(t), the radar processing consists in evaluating:
+o00 m—1 T,
R(T,V)ZJ s (t)s*(t—1) e*2"””dt:Ze*2””"T’ J si(u+nT,)s (u—7) == du.
- n=0 0

Neglecting the Doppler into the pulse duration leads to adapting the processing to the
0-Doppler: missing high-speed targets, bias in range estimation due to the ambiguity.
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Radar basis Range-Doppler Radar Processing

Conventional Radar and Imaging Processing
Some Backgroun Detection Thec

Motivations for more robust detection schemes

Range-Doppler Radar Processing
When supposing non migrating target and neglecting the Doppler variation in the pulse, we can
rewrite the processing as:

m—1 T,
R(t,v)=) e ?mvnl J sf(u+ nT,+7)s:(u)du=p"z,
n=0 0
z,(7)
, , T
where z = (z(T), z1 (1), .. .,zm,l(T))T and p = (17 ey T . g2y (m—1) T’) .
time 0 swath time T, swath "me KT swath
pulse 0 pulse 1 H pulse k I-‘)
D, 2\ D, D: /1 D, Dy /. D;
20(T) 21(7) ()

e For each range bin ct/2 (time T, can be sampled at resolution 6t = 1/B) on the range support [D1, D,]
of the analyzed swath, compute z,(t) corresponding to the time correlation between received signal and
emitted pulse s¢(t) at time n T},

e For each range bin ¢ t/2, compute the Discrete Fourier Transform (p'’ z) over the m coefficients
{Z”(T]}nE[O,m—l] to characterize Doppler spectrum in the spectral support v € [0,1/T,].

TO3 Tutorial - Conference Radar 2024
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Radar basis Range-Doppler Radar Processing

Distance

080 W0 1000 1100 1200 130
Viesse

Example of the so-called Range-Doppler map of the processing data.
e Coherent Doppler processing brings an improvement of m on the Doppler resolution with regards to the
one pulse processing (6v =1/(m T,)) as well as a gain m in SNR.
e Range resolution does not change. Always related by the pulse bandwidth,
e Appearance of the range ambiguities at ranges c k T,/2,
e Appearance of the Doppler ambiguities at Doppler frequency k/T,.
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Outline

Conventional Radar and Imaging Processing

m Array and Space-Time Adaptive Processing
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Radar basis

Conventional Radar and Imaging Processing Array and Space-Time Adaptive Processing
Some Background on Det Theory
Motivations for more robust detectiol 5

Array and Space-Time Adaptive Processing

Source locating in azimuth 0, at Doppler v and in range bin ¢ t/2

If the radar receives a signal on an antenna array, each antenna is collecting s,(t) delayed by
the time shift T = nd sin 0/c depending on its spatial position nd (n € [0, Ni]) on the array.
Supposing that the array is non-dispersive (Ns dsin® << ¢/B) , the concatenated

Ns x m-observation vector y collected by the radar on the antenna array for a given range bin
¢ T/2 and Doppler v is then:

y=Ap® (1,e2iﬂfodSine/57._.7e2iﬂfo(stl]dsinG/c)T 1b.

Signal arrival

wavefront
dsin6
b
P 0.
— d— I dsin 6
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Outline

Conventional Radar and Imaging Processing

m SAR Image Processing
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Radar basis

Conventional Radar and Imaging Processing
Son ackground on Detection Theory SAR Image Processing

Motivations for more robust detection schemes

Background on SAR and Radar Imaging

ONERA ISAR Image

~ ONERA RAMSES Image

RAMSES Image

Radar Imaging [Mensa 81, Soumekh 94, 99] allows to build more and more complex images:
e Current use of very high spectral bandwidth and very high angular bandwidth leading to

very high spatial resolution,
e Application to monitoring (detection, change detection), classification, 3D reconstruction,

EM analysis, etc.

These applications require some physical diversity to reach good performances.

TO3 Tutorial - Conference Radar 2024

J.-P. Ovarlez



Radar basis

Conventional Radar and Imaging Processing
Sol ckground on Detection Theory SAR Image Processing

Motivations for more robust detection schemes

Detection in monochannel SAR Images

Conventional SAR detection framework on a mono-channel SAR image mainly consists in
locally comparing the complex amplitude of pixel x;. In Gaussian homogeneous environment:

H
e Global thresholding A(x;) = |x;|? 21 A, leads to A = —0? log P,

Ho
. kP B ~1/N
e Local thresholding A(x;)) = ————— Z Aleadsto A =N (Pfa — 1).
1 & e
N Z Xk
kti i
e Statistic-based thresholding (other distributions): A(x;) = g(x;) = A leads to A = f(Pg).

Ho
Detection scheme on mono-channel SAR image only consists in thresholding the intensity pixel
of the image.
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SAR Image Processing

Multi-channel SAR images automatically propose this diversity through:

e polarimetric channels (POLSAR), interferometric channels (INSAR), polarimetric and
interferometric channels (POLINSAR),
e multi-temporal, multi-bands, multi-passes SAR Image, etc.

Pauii Decomposition

i

%00 200 00 200 -300

100 0 -
Cross-range Y, meters

EM behavior of the terrain Estimation of the height Analysis of the structures displacement in
in POLSAR images in POLINSAR images Shangai with multi-temporal SAR images
(@Telespazio)

Almost all the conventional techniques of detection, parameters estimation, speckle filtering
techniques, classification in multi-channel SAR images (e.g. polarimetric covariance matrix,
interferometric coherency matrix) are based on the multivariate statistic.
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Conventional Radar and Imaging Processing
S on Detection Theory
Hyperspectral Image Processing

Outline

Conventional Radar and Imaging Processing

m Hyperspectral Image Processing
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Conventional Radar and Imaging Processing
S on Detection Theory

Hyperspectral Image Processing
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Radar basis
Conventional Radar and Imaging Processing
Sor groun
Motivations fi ore robust detection schemes Hyperspectral Image Processing

Hyperspectral Imaging (HSI)

0.3

Reflectance

20 40 60 80 100
Wavelength

Spatal dimension Spatial imersion

e Anomaly Detection
To detect all that is "different" from the background (Mahalanobis distance) - No
information (steering vector p) about the targets of interest available. [Frontera 16].

e "Pure'" Detection
To detect targets characterized by a given spectral signature p - Regulation of False Alarm
[Frontera-Pons 17].
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Radar basis

Conventional Radar and Imaging Processing

Sor ackground on Detection Theory
Motivations for more robust detection schemes Hyperspectral Image Processing

Detection and Steering vector modeling

Many detection problems can be viewed as a "simple" problem of detection of the information
vector p characterizing the target:

Radar

m p can model range information, Doppler frequency, direction of arrival, joint content of all these
informations (STAP), multi-band, etc.

SAR

m p can model polarimetric, interferometric, joint polarimetric and interferometric informations, multi-band,
sub-look and sub-band behavior, etc.

Hyperspectral

= p can model any material characterized by its given spectral signature (spectroscopy).

= p can be also unknown (Anomaly detection)

We can then develop adaptive multivariate detection schemes using modeling the so-called
target information steering vector p
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Problem Statement
Conventional Radar and Imaging
Some Background on Detection Theory
Motivations for more robust detection schemes

Outline

Some Background on Detection Theory
m Problem Statement
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Radar basis

Conventional Radar and Imaging Processing
Some Background on Detection Theory
Motivations for more robust detection schemes

General Formulation of All the Detection Problems

Set of two binary hypotheses
Ho :z=D>b
Hi:z=Ap+b
e 7z is a m-vector of data collected in a given measurement support. It can be range support,
spatial support (Imaging), etc.

, where

e The complex amplitude A of the target to detect is considered here deterministic (no
fluctuation)

e The m-vector b represents the additive noise (thermal noise, photon noise, clutter, jam,
etc.) characterized by a known (or unknown) PDF.

e The m-vector p represents the so-called deterministic steering vector: it can be relative to

Doppler, Polarimetry, Interferomety, Wavelength, Spatial, time, joint Angular and Spectral
information (STAP).

The problem here consists in choosing between H; hypothesis and Hy hypothesis.
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Radar s Problem Statement
Conventional Radar and Imaging Processing

Some Background on Detection Theory
Motivations for more robust detectiol es

Problem Statement

® In a m-vector z, detecting an unknown complex deterministic signal s = Ap embedded in an
additive noise y can be written as the following statistical test:

Hypothesis Hy: z =Yy zi=y: i=1...,n
Hypothesis H;: z=s+y zi=y; i=1,...,n |

where the z;'s are n "signal-free" independent secondary data used to estimate the noise
parameters. = Neyman-Pearson criterion [Kay 93, Kay 98]

m Detection test: comparison between the Likelihood Ratio A(z) and a detection threshold A:

m Probability of False Alarm (type-l error): Pr = P(A(z) > A/Ho)
m Probability of Detection: Py = P(A(z) > A/H,) for different Signal-to-Noise Ratios (SNR),

J.-P. Ovarlez TO3 Tutorial - Conference Radar 2024




Conventional Radar and Imag

Problem Statement

Some Background on Detection Theory

ions for more ro

1emes

PFA
Target

T PFA for Threshold 1

Power level
Noiser TV PD for Threshold 1
Clutier
Target
D
Power level

Detected Target

N\

‘ Missed

Target (T2)

Nosse/
4 Clutter
3
2
Detection !
Threshold o

”

PFA for Threshold 2

Target
FA

max

TO3 Tutorial - Conference Ra

0
Pawer level

max

————— T2 72 PD for Threshold 2
Nowse'
4 Clutser
iy ™ Rms
«— Noise 1 Target
' | | Level o
{ 2
1
0
o
Power level

Pd = ]P(/\(Z) > A/Hl) .




Problem Statement

ome Background on
Motivations for more robust detec

a. threshold is set too high: Probability of Detection = 20%

b. threshold is set optimal: Probability of Detection = 80%

But one false alarm arises!

False alarm rate =1 /666 = 1,5 - 103
c. threshold is set too low: a large number of false alarms arises!
d. threshold is set variable: constant false-alarm rate

CFAR Property

A detector is said Constant False Alarm Rate (CFAR property) if the PDF of the test is
independent on the noise parameter (mean, covariance, variance, statistic) under Hy hypothesis.
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Multivariate Gaussian distribution

Definition
Let x = (x1,...,Xn) " be a random vector. The vector x is Gaussian if and only if, for any
sequence a = (ay,...am)" € R™ of real numbers, the scalar random variable
m
z=alx= E a; x; is a Gaussian variable.
i=1

We note n = E(x) its mean and X = E [(x —u) (x—u) T} its covariance matrix.

Its PDF that is noted A/(u, X) is given by
1 x—pw)'Z ' (x—p)

)= T T 2

The covariance matrix is modeling the correlation existing withing the components of the
observation vector x

J.-P. Ovarlez TO3 Tutorial - Conference Radar 2024



Rad
Conventional Radar and Imaging Processi
Some Background on Detection Th
Motivations for more robust detection schemes

Complex Gaussian distribution

A random vector z = x + jy is complex Gaussian distributed z ~ CN (u, £,,P,) iif
X m(u)] {Zx 2% D
~ N , y
[y] <[j(”) I Xy
with £, =FE [(z —u)(z— p)"’] =X +X, +j(Zx—Z,) and
P,=E [(Z —u)(z— H)T] =X — X, +j(Zyx + Zy)

Circularity Property

z=x+jy € C™is circularly symmetric z ~ CN (u, X,) iif z L el®(z— ) Vo € [0; 27
Notably, Xy, =X, and £, =%, =0& X, =2%, and P, =0.

pu(2) exp (—(z— W' (z — )

G
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Noise distribution

Central limit theorem

X1y, X2y 0oy Xn uen random vari i.i.d. wi inite mean
Let x1,x2,...,X, be a sequence of random variable i.i.d. with finite mea
p and variance o, then

VX, 23 N(0,0%) with x, =Xt tXn

n—oo n

A Gaussian/Normal random variable has the largest entropy among all ran-

dom variables of equal variance. n
Speckle noise (Goodman 1976) The Galton board
P 2P (top), Random
= . i©;: ~ 2 - _ 1= walk (bottom)
z Za, expjo; = z~CN(0,0%), p(2) T exp( 202).

i=1
This explains why the Gaussian distribution is often used to model
the in-phase return of a large number of i.i.d. backscatterers in a radar resolution cell.
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The Power Spectral Density @ (f) characterizes, in a given range bin, the spectral (Doppler)
fluctuations of a process z = (2o, ..., 2Zn_1)" collected from pulse to pulse.

e Examples of some PSD models with —1/(2T,) < f <1/(2T,):

(F) = Do exp <—u) L o(f) = — 20

2 AR
207 1+(_>
fe

RCS (dBsm)

e Autocorrelation function (Wiener-Khintchine Theorem):

+o0
P(T)=J @(f) exp (2itf 1) df.
60 —00
e : : ; p(0) ceopllm=1)T)
eune a2 v e X = e Covariance Matrix: £ = E [z ZH] - : N :
[Billingsley 1993 o(m—1)T,) ... 0(0)
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Link Between Covariance Matrix and Power Spectral Density 2/2

Examples of PSD modeling and their associated covariance matrices:

e O(f) = Ny € RT that corresponds to a white noise leads to the CM equal to £ = Ny B1,
where B is the bandwidth of the receiver and I is the identity matrix.

e The exponential PSD ®(f) = Py exp (—«|f]), with o« € R corresponds to the CM equal

to {p(k Tr) =2 Py (o + 472 (k T,)2)‘1/2}ke[o .
ji—Jl

e For any 0 < |pg| < 1, the practical covariance model X; ; = {po leads to the

}iu‘e[l,m—l]
1— po exp (2itfmT,)

PSD [@(f)] = 1 — po exp (2infT,)
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General Detection Theory

When some parameters (noise, target) are unknown:

e GLRT Detection test: comparison between the Generalized Likelihood Ratio A(z) and a
detection threshold A:
TaX max Pa/ky (2,0, 1) 1

Alz) = > A
( ) mE'sz/Ho(zv H) ’jo

where © and u represent respectively the unknown target parameter vector and the unknown
noise parameter vector.

CFAR Property

A GLRT detector is said Constant False Alarm Rate (CFAR property) if the PDF of the GLRT
test is independent on the noise parameter (mean, covariance, variance, statistic) under Hy
hypothesis.
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Problem Statement

General Estimation Theory: unknown deterministic parameters

e Maximum Likelihood Estimation (MLE) scheme: maximize the PDF with respect to the
unknown parameter. Ex for noise parameter pu:
p= AIGMAX Pyt (2, 1) -
where z; ~CN (0,,,X) where X is an

unknown covariance matrix. The MLE §,, is set by solving

) u 5 B N B
Eloggpz(z,-,Z): sy <n log |27} =) 2’z 1z,-> =0.

Example: Suppose n target-free i.i.d. m-vectors {z;},_; ,

i=1

Recalling that %log |Z7H =% and 5;_1 (2 =7 2) = (2 zf’)T, we obtain:

Sample Covariance Matrix: MLE of the Gaussian problem
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Outline

Some Background on Detection Theory

= Modeling Homogeneous Gaussian Noise/Clutter
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Modeling Homogeneous Gaussian Noise/Clutter

Problem to solve in Gaussian environment

{Ho: Z=Yy zi=y; i=1,...,n

Hi: z=s+y z;=y;, i=1,...,n

where s = Ap, y and y; ~CN (0, X), i.e. p,(z) = exp (—ZH ! z)

nm |Z|
Goal: to choose the best hypothesis while minimizing the risk of being wrong (False Alarm)
from an observation vector z

= All is known for Gaussian assumption!
Sample Covariance Matrix (SCM)

PN 12
When X is unknown, the Gaussian environment is modeled through the SCM: S, = EZZ"Z:'LI'
i=1
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Properties of the SCM in homogeneous Gaussian noise/clutter

environment

m Simple Covariance Matrix estimator,
m Very tractable,
m Wishart distributed,
m Well-known statistical properties: unbiased and efficient.
Then, v/nvec (g,, — Z) A, CN (0,2,C,P),

C=X®X)

where b (5% %) Ko

where K, , is the m x m commutation matrix transforming any m-vector vec (A) into
vec (AT).
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Under Gaussian assumptions CN'(0,,, Z), the Sample Covariance Matrix (SCM) is the most
likely covariance matrix estimate (MLE) and is the empirical mean of the cross-correlation of n
m-vectors zy:

m This estimate is unbiased, efficient, Wishart distributed,

E n can represent any samples support called the secondary data: in time, spatial, angular
domain, zx a vector of any information collected in any domain:

= in Radar Detection, it can represent the time returns collected in a given range bin of
interest, n is here the range bin support

= in Array Processing, it can represent the spatial information collected by the antenna array
at a given time, n is here the time support,

= in Space-Time Adaptive Processing, it can represent the joint spatial and time information
collected in a given range bin of interest, n is here the range bin support,

m in SAR or Hyperspectral imaging, it can represent the polarimetric and/or interferometric,
or spectral information collected for a given pixel of the spatial image, n is here the spatial
support.
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Example 0 - Detection Schemes in Range Doppler map

® In a scalar measurement z, detecting an unknown complex deterministic signal s embedded in an

additive noise y can be written as the following statistical test: I —_—
=3 H I f
_ _ . =
Hypothesis Hy: z =y, zi=y; i=1,...,n ‘ [ ”" | e — he——
Hypothesis Hi: z=s+y, z=y; i=1,...,n e = T

\/

usecans

where the z's are n "signal-free" independent secondary data used to estimate the noise
parameters. = Neyman-Pearson criterion [Kay 93, Kay 98]
Conventional detection framework on a mono-channel radar data mainly consists of locally comparing
the complex amplitude of pixel z. In Gaussian homogeneous environment, i.e. y ~ CN(0, 2):

Hi
o Known power ¢?: global thresholding — A(z) = [z]> = A, leads to A = —0” log P, ,
Ho
2. . o ‘Z|2 H o ~1/N
e Unknown power ¢°: local thresholding — A(z) = m Z Aleadsto A =N (Pfa — 1).
1 2 Ho
N Z ||
ki

The detection scheme only consists of thresholding the intensity of each map pixel.

J.-P. Ovarlez TO3 Tutorial - Conference Radar 2024



Examples of Detector Derivations

Example 1 - Detection Schemes in Gaussian Noise

Hypothesis Hy: z=Db

Problem under study: { Hypothesis Hi: z = Ap+b

where A # 0 is a known complex scalar amplitude, p is the known steering vector and
b ~CN(0,,,X) with known covariance matrix X. The probability density functions of the
received m-vector z under each hypothesis are given by:

1 _ _
Pz/Ho(Z) = 71’"—|Z| exp (—ZH z lz) Pz/H, (z,A) = 7T'"—|Z| exp (—(Z - AP)H z 1(2 - AP)) .

T . Pz/H, (Z) . e . Hs—1 H
The Log-Likelihood function log ——=—— can be simplified as: | A(z) = Re (p" Z "z) = .

pz/Ho (Z Ho
The statistic of the test becomes:

A(z) ~N (0,p" Z7'p) under Hy |and | A(z) ~ N (Re (A" p" Z7'p),p" Z7'p) under H
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Example 2 - Matched Filter (1)

Hypothesis Hy: z=b,

Problem under study: { Hypothesis H;: z=Ap+b

where A is unknown complex scalar amplitude, p is the known steering vector and
b ~CN(0,,,X) with known covariance matrix X. The probability density functions of the
received m-vector z under each hypothesis are given by:

1 Hg—1 1 Hg—1
Pa/H, (2) = 71'"—IZI exp (—Z z Z), Pa/ty (2, A) = nm—IZI exp (—(Z —Ap)"E (2 — AP)) .
o . piI 'z o
Maximizing p,/m, (2, A) with respect to A leads to the MLE A A= Ty Replacing it in
b P

the Log-Likelihood Ratio test, we obtain the well-known Matched Filter:

max Pa/ty (2, A) p" Z_1z|2 Hy
Awr(z) = log =

- — <
pz/Ho(Z) pHZ 1p Ho
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Example 2 - Matched Filter - Derivation of Performances (2)

Let SNR = |A p" Z7 p be the Signal to Noise Ratio of the target to be detected.
1
Under Hy hypothesis, z ~ CN (0, Z) and Ape(z) ~ 5)(2(2). We have:

+oo
Pta =P (Amr(z) > Avr/Ho) = J e " du=exp(—AuF),

AmME

’7\MF = —log Pr, .

1
Under H; hypothesis, z ~ CN(Ap, X) and /\Mp(z,ﬁ) ~ 5)(2 (2,2SNR). We have:

Py =P (Amr(z,A) > Ar/Hi) = 1— Fe(as) (2AmF) |

where Fy2(5 5)(.) is the cumulative x2(2,8) density function with non-centrality parameter
5§ =2SNR=2A2p" L 'p.
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Example 3 - Normalized Matched Filter (1)

Hypothesis Hy: z=Db,

Hypothesis H;: z=Ap—+b,

where A is unknown complex scalar amplitude, p is the known steering vector and

b ~CN(0,,, 0% ) with known covariance matrix £ but unknown variance 2. The probability
density functions of the received m-vector z under each hypothesis are given by:

9 1 2"z 71z 1 (z—Ap)"Z Yz— Ap)
Pa/H, (2, 0°) = mexp T2 Pa/Hy (2, A) = mexp - 02 .

"L 1y

Problem under study: {

o Maximizing p,,/p, (z, 0%) with respect to 02 leads to the MLE: 62 =

m
e Maximizing p,,p, (2, 02, A) with respect to o2 and with respect to A leads to the MLEs:

12 .
6221 (zHZ_lz—M> and,ﬁ:pHZ—lz_
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Replacing it in the Log-Likelihood Ratio test, we obtain the well-known Normalized Matched

Filter:

Anwr(z) =1 maXNAX Py (3 0%, A) prs e
e (z) = Og — — — < NMF
max py (2, %) (PHZ ') (&I 2) W

We can note that the NMF is invariant with respect to a change scale for p, z or X. Let
SNR = |AR p" Z7 ! p be the Signal to Noise Ratio of the target to be detected. Under Ho
hypothesis, z ~ CN(0,,, 0°> £) and A(z) ~ B(1, m —1). We have:

P, = P (Anmr(z) > Anmr/Ho) = (1 —Anme)™

A=1—pym Y

We can note that the threshold Ayye does not depend on unknown variance 02. The test is
CFAR under Hy hypothesis.
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Example 4 - Kelly and Adaptive Matched Filter (1)

Hypothesis Hy: z=Db, zi=b;, i=1...,n,

Problem under study: { Hypothesis H;: z=Ap+b, z =b;, i=1...,n.

where the z;'s are n "signal-free" independent secondary data used to estimate the noise
parameters, where A is unknown complex scalar amplitude, p is the known steering vector and
b ~ CN(0,,,X) with unknown covariance matrix £. The probability density function of the
received m-vector z under hypothesis Hy is given by:

1 -1 H . H

5 log|= 7Y STy § Tr (£7'B)

With formulas ————— — =B", we obtain:
o0X o0x

1 H . H
argmgxpz,{zk}k,;/Ho(z) :m <zz +;zkzk .
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Example 4 - Kelly and Adaptive Matched Filter (2)

The probability density function of the received m-vector z under hypothesis H; is given by:

1 —1 H . H
Payfa), 2,4 H (2) = 7'["’("+1—)|Z|"+1 exp (—Tr (Z ((Z—Ap) (z— Ap) —|—sz zk>>> .

k=1

. H
—A — A S
By denoting S = )z, z;, we obtain AIGIIAX Py, (5], £.A/ 1 (2) = (z—Ap) (Z p) +

and replacing thes&%to expressions in the Generallzed Log Likekihood Gatio Ieads to:

|zzH—|—S| Hy
<

If we note z; = S~ 1/2z and p; = S~ 1/2p, we have:
|(2—Ap) (z—Ap)" + 8| =8| | (2. — Ap.) (zs—Aps)”Hm] — I8/ (ll2s — ApsIP + 1)

. 2
and min S| <||z5 —Aps||2 + 1) =S (HP;‘S ZSH + 1) where P}J;s —pspH/pt ps.
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Example 4 - Kelly and Adaptive Matched Filter (3)

We obtain the following Generalized Likelihood Ratio test, known as the so-called Kelly's test
[Kelly 86].

Haq—1,]2 n
PS4 o Z H
ey (5) = (pHS~1p) (1+2"S 12) I%o Aty where . k=1 e

This detector has good properties but is often (usually) replaced by a simpler one (so-called
two-step), the Adaptive Matched Filter [Robey 92].

—~ 2
Hq-1
‘p Sn Z|  H ~ 1 &
/\AMF(Z) = ﬁ 2 }\AMF where Sn = — E Zy ZkH .
p"S,'p Ho L

= 1
The covariance matrix estimate S, = — S is the empirical covariance matrix of the secondary

n
data {zx}, [y, and is called Sample Covariance Matrix estimate.
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Example 5 - Adaptive Normalized Matched Filter (1)

Detection in quasi-homogeneous Gaussian Noise: Problem under study:
Hypothesis Hy: z=Db, zi=b;, i=1...,n,
Hypothesis Hy: z=Ap+b, z;=b;,, i=1...,n,

where the z;'s are n "signal-free" independent secondary data used to estimate the noise
parameters, where A is unknown complex scalar amplitude, p is the known steering vector,
where b; ~CN(0,,,Z) and b ~ CN(0,,, 6> £) with unknown covariance matrix £ and unknown
variance 02. The PDF under each hypothesis is given by [Bandiera 09]:

1 Hs—1 . H¢—1
Pafaid £/ Ho (2) = o) gt P <—Z Il ) sl E e,
T k=1
1 z—Ap"Z ' (z—Ap) & he
pz,{zk}k,}:,o'Q,A/Hl(Z) = (1) g2m |Z|"+1 exp (— . + gzk Xz .

J.-P. Ovarlez TO3 Tutorial - Conference Radar 2024



entional Radar and Imag

g
ome Background on Detection Examples of Detector Derivations
Motivations for more robust detection scl

The corresponding detector [Scharf 94, Kraut 99] is homogeneous of degree 0 with the
variables p, S, and z and is named Adaptive Normalized Matched Filter (ANMF):

2
s 1
— ! — 21 AanmE  Where S, = — sz z,‘:’.
p/ 5,711’) (ZH S,TIZ) Ho i

ANMF and Cosine Estimate

This detector is often called a Cosine Estimator as it has the dimension of a cosine squared
between the steering vector p and the observation z:

Aanmr (z) = (

Aanmr(z) = cos® (p, z) .

Unlike the AMF which characterizes the power of a scalar product, the ANMF measures an
angle. It is so more sensible to a possible mismatch between p and z ([P. Develter 23)).
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Example 6 - Persymmetric Adaptive Matched Filter (1)

Many applications can result in a clutter covariance matrix that exhibits some particular
structure. For example, radars that use a symmetrically spaced linear array for spatial domain
processing, or a symmetrically spaced pulse train for temporal domain processing.

m In these systems, the clutter covariance matrix £ has the persymmetric property:
>=J,ZJ,,

where J,, is the m-dimensional antidiagonal matrix having 1 as non-zero elements.
m The signal vector is also persymmetric, i.e. it satisfies: p = J,, p*.

m The persymmetric structure of £ can be exploited to improve its estimation accuracy
compared to the SCM.
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Example 6 - Persymmetric Adaptive Matched Filter (2)

We can build a two-step AMF built with the persymmetric Maximum Likelihood (ML) estimate
of the clutter covariance matrix instead of the SCM. Problem under study:

Hypothesis Hy: x=Tz=Tb, x;=Tz =Tb;, i=1,...
Hypothesis H;: x=Tz=ATp+Tb, x; =Tz =Tb;,, i=1,...,n,

where T is the unitary matrix defined by:

L Im/2 Imy2 for m even
2\ il =3

1 [ Ymvz 0 Jmaype
7 0 V2 0 for m odd.
iLm1)2 0 —idim-1),2

Through this unitary transformation, secondary data x; ~ CA (0,R) where R = TZ T/ is a
real covariance matrix
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Example 6 - Persymmetric Adaptive Matched Filter (3)

Let us now investigate the ML estimate of the real covariance matrix R from the n transformed
secondary data xx. The ML estimate R of real matrix R is unbiased and is given by:

R = Re(R,),
where Re(.) stands for the real part, and where:

~

:—Zxkxk =T8S, T" where S,
k=1

kZy -

:IH
=
Il
w
N

~ 1
m nR is real Wishart distributed with 2n degrees of freedom with parameter 5 R,

m This result could be retrieved by the COvariance Matching Estimation Technique
(COMET) procedure [Ottersen 98]!
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The distribution of this new detector under hypothesis Hy can be derived. Replacing R in the
AMF (two-step procedure) leads to the following detection test, called the P-AMF:

sTR x| 4
L—"—

= Z APAMF

sTR s H

where s = Tp. In terms of the original data, we have, equivalently:

ApamF =

pH TH [Re (T§n TH)Tl Tz

ApamvF =

~ —1
pH TH [Re (TS,,TH” Tp '

In the ML estimation procedure, taking into account the real structure of R, or equivalently,
the persymmetric structure of X, virtually doubles the amount of secondary data.
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2n—m+1 2n—m+2 2n+1' )\PAMF)

Theoretical A/ Py, relationship: P = 2F; , , ;
2 2 2 n

0

10’ === =s oo o
107} Timimig 3
~ .
£
K
= S
w 10 “F E| g'
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3
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3
=]
107 ; ; ; 1
—— OGD
- - —AMF
PAMF o>
4 =
10 N i L L -30 -20 -10 [ 10 20 30
0 2 4 6 8 10 Signal to Noise Ratio (dB)

Detection Threshold A (linear)

m Left figure: Threshold decreasing brought by the P-AMF compared to the AMF for n = 25 and m = 20.
m Right figure: Improvement of about 7dB in terms of detection for the PAMF compared to the AMF for
this set of parameters.
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Example 7 - Anomaly Detector (1)

Hypothesis Hp: : x; = b;, = ..,n
Model : ) ) where p,
Hypothesis Hy: : x; = o;p+Db;, ,i=1,...,n
{titic,m are unknown and {bi}; ~ CN(0,X).
x1(1) ... x,(1)

If we note x =
(01, . 00)" and X = : . : The RXD GLRT
x1(m) ... x,(m)
test (Reed and Yu, 90) is defined as: H .
(Xa™)" (XXH) " (XaxT)

Arxp(X) = oy

NI/

secondary data x;

Taking a particular &« = [0,...,0,1,0,...,0]", a more simple and well-known RXD version

yields (the signal under test x; is present in the covariance estimation!):

Ha-1. &
Arxp(x;) =xI 8, x; = A
Ho

J.-P. Ovarlez
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Example 7 - Anomaly Detector (2)

vector under text x
|

:x=Db ,':b,'-,':].,..., )
Model : { 0 X =D o i =bily, i " where (b}, ~ "
Hi:x=ap+b, , {x;=bj},,i=1...,n
CN(0,Z), « and p are unknown. The Kelly GLRT test (Frontera, 14) N !
is defined as: //
/

secondary data xi

~ H,
—
/\RXD(X)—X Sn X’%}\
0

that corresponds to the Mahalanobis distance.
n—m

The Kelly test is Hotelling T2 distributed: mn+1)

RXDSCM(C/HO) ~ Fm,n—m-
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Synthesis of CFAR Detection Schemes Under Gaussian Noise

Synthesis of CFAR Detection Schemes Under Gaussian Noise (1)

e Adaptive Matched Filter [Robey 92]:

e 2
Aamr(z) ‘pHS;lZ F>’1>\
AMF\Z) = = < NAMF
p"S,lp Ho

A
P = 2h ("—m+1,n—m+2;n+1;_ A:””) :

o Adaptive Kelly Filter [Kelly 86].

Akelly(2) =
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Some Background on Detection Theory
Motivations for more robust detection schemes Synthesis of CFAR Detection Schemes Under Gaussian Noise

Synthesis of CFAR Detection Schemes Under Gaussian Noise (2)

o Adaptive Normalized Matched Filter [Scharf 94, Kraut 99].

~ 2
‘pH S z’ "
Aanmr(z) = — — Z MNMF -
) ()

Po=(1—Aanmr)" " 2F1(n—m+2,n—m+ 10+ 1; Aanmr) -
m Persymmetric Adaptive Matched Filter [Pailloux 09]:

. 1 2
’pH TH [Re (T S, TH)} Tz

Hy

— = 2 ApAMF -
pH TH {Re (TS,,TH)} Tp o

Apamr =

2n—m+1 2n—m+2 2n+1  Apamr
PfaZZFl 2 ) 2 ) 2 T = o

J.-P. Ovarlez
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Conventional Radar and Imag
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Motivations for more robust dete s Synthesis of CFAR Detection Schemes Under Gaussian Noise

The particular case of conventional Range Doppler 1/2

If we assume the noise if white Gaussian with known covariance matrix £ = o2 I, then the

X i {pH Zil Z|2 Hy
conventional detection scheme Ayr(z) = T 2 Aur leads to the well known
. P7Z D H
simplified test:
2
|P z|” H 2
Awr(z) = 2 0 AmF
p''p Ho '

The test consists, for each range bin, in comparing the normalized Discrete Fourier Transform
of the vector z acquired for m pulses to a threshold. The corresponding PFA /threshold
relationship is defined as:

7\/\///: = 70‘2 log Pfa.
The conventional Range Doppler algorithm makes implicitly assumption that the noise is white.

In clutter environment, this processing is not optimal and we generally do not known the power
02 of the noise.
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The particular case of conventional Range Doppler 2/2

conventional detection scheme AayrF(z) = 2 Aamr. For particular white noise

H S 1 p HO
with unknown power 02 we can build a simp//f/ed two-step detection scheme, assuming that
§,, =021 where 62 = — Z |p zk| The new detection test becomes:
M=
Aamr(z) = Ip Z| 2 G2 Aawmr
0

The test consists, for each range bin, in comparing the normalized Discrete Fourier Transform
of the vector z acquired for m pulses to a adaptive threshold built with secondary data
{Zk}ici1,m- The corresponding PFA /threshold relationship is defined as:

Mawe = m (PH"—1) .

This threshold tends to Ayr for large value m of secondary data.
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Some Background on D
Motivations for more robust detection schemes

Examples of Gaussian Hypothesis Failure

High Resolution Radars

e Small number of scatterers in the cell under test - Varying number of scatterers from cell to cell - Central Limit Theorem
non valid = non-Gaussianity [Jakeman 80]

e No validity of conventional tools based on Gaussian statistics [Farina 87, Gini 00, Jay 02].

Low-Grazing angles Illlumination Radar

e Microshadowing = impulsive clutter [Billingsley 93]

e Transitions of clutter areas, heterogeneity of spatial area under test = difficulty to set up the detection test Aop and the
Probability of False Alarm depending on the area.

D Likelinood Ratio

| Thermal Noise o tico esnots| Impulsive Noise
o
[ —

T 8 !

ot Scse

FuaTerain
o et
= anreier

[ omuwozs
02510050

Likinood

Lobin
Free Space) N+~ *
[ Y& |
g N | Depression
i ¢

Angle
Multipath

Probabllty That F* < Abscissa

. = o frax (RRTTARIC AT

~%> L. ] | 0 T A
™ Microshadowing ) N Fhmgewer’ T T g™

Low-Grazing angle surveillance Non-Gaussian behavior False Alarm regulation problem

Please refer to [F. Gini, A. Farina and M. S. Greco 2001]
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Examples of Gaussian Hypothesis Failure

m The SAR images are more and more complex, detailed, heterogeneous. The spatial statistic of
SAR images is not at all Gaussian,

= In polarimetry research field, almost all Non-Coherent Polarimetric Decomposition and
classification techniques [Lee 09, Formont 2012] are generally based on conventional covariance
matrix estimate (covariance or coherency matrix), typically the Sample Covariance Matrix (SCM),
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Examples of Gaussian Hypothesis Failure

RXD CDF
o 100 F
© Ly Cauchy N
% 10 [ Blocks_
B E ixture of t-Distributions|| =
s §
w
5 3 . -
£ F NN =
i \ —
-10 g 3 7
E(x2(144)) Trees N ?:
F Grass <
1 | L 1 | I T t
15 0 100 200 300 400 500 600 700 800 900 1000
Mahalanobis Distance
4
DSO data 2010 [Manolakis 2002]

Bad regulation of False Alarm rate for Anomaly Detector [Reed 1990, Manolakis 2002, Ovarlez
2011, Frontera-Pons 2016] and detectors of targets [Frontera-Pons 2017] in Hyperspectral
Images when they are based on conventional SCM estimate.
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Need of Better Approaches

= Better Covariance Matrix Estimation

Requirements:

m Background modeling: Compound Gaussian, SIRV (K-distribution, Weibull, etc.), CES
(Multidimensional Generalized Gaussian Distributions, etc.),

m Estimation procedure: ML-based approaches, M-estimation, LS-based methods, etc.
m Adaptive detectors derivation and adaptive performance evaluation.

Some solutions will be proposed in Part B
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Robust Estimation

Applications and R

Contents

= Part A:
Background on Statistical Processing for Radar, Array Processing, SAR and Hyperspectral
Imaging,

= Part B:
Recent Methodologies on Robust Estimation and Detection in non-Gaussian Environment
- Applications and Results in Radar, STAP and Array Processing, SAR Imaging,
Hyperspectral Imaging.
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Part B

Recent Methodologies on Robust Estimation and
Detection in non-Gaussian Environment

Applications and Results in Radar, STAP and
Array Processing, SAR Imaging, Hyperspectral
Imaging
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Part B: Contents

Robust Estimation and Detection
Other Refinements

Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
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Robust Estimation and Detection Modeling the Background
Other Refinements Robust Estimation
Applications and Results in Radar . Robust Detectic

Robustness o

Going to Robust Adaptive Detection

Generally, some parameters (e.g. second order statistic Z) are unknown
and cannot be estimated through Gaussian methodology

= +
y yN <o

~— ~—~ )
Heavy tailed Gaussian Non Gaussian

= Robust Covariance Matrix Estimation

Requirements: ‘
m Background modeling: Spherically Invariant Random Vectors (K-distribution, Weibull, etc.)
[Conte 87, Barnard 96], Compound Gaussian [Conte 98, Sangston 12, 15], Complex Elliptically
Symmetric (Multidimensional Generalized Gaussian Distributions, etc.) [Kelker 70, Frahm 04],
m Estimation procedure: ML-based approaches, M-estimation, etc.

m Adaptive detectors derivation and adaptive performance evaluation.
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Robust Estimation and Detection

m Modeling the Background
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Robust Estimation and Detection Modeling the Background
Other Refinements
Applications and Results in Radar .

Modeling the Background

Complex Elliptically Symmetric (CES) distributions:

Let z be a complex circular random vector of length m. z has a Complex Elliptically Symmetric (CES)
distribution (CES, (1, X, g;)) if its PDF is [Mahot 12, Ollila 12]:

fz) = 5ty —um) fr ith bmg = | " gu(t)d
%(2) = m,gnm—mgl ((Z—H) (Z—H)) WIth Om,g = . t" g (t)dt,

where g, : [0,00) — [0, 00) is the density generator, where p is the statistical mean (generally known or
=0m) and X is the scatter matrix. In general, E [z zH] = aX where « is known.

m Large class of distributions: Gaussian (g;(z) = exp(—2z), SIRV, MGGD (g (z) = exp (—z%)),
etc. Validated through several experiments [Billingsley 93, Ovarlez 95, Ovarlez 96],

m Closed under affine transformations (e.g. matched filter),

= Stochastic representation theorem: ‘z =4 U+ RAu ‘

where the m-vector u*) is uniformly distributed on the sphere of radius 1, where R > 0,
independent of u¥) and £ = A A" is a factorization of X, where A € C™** with k = rank(Z).
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Applications and Results in Radar .

Example of CES

Gaussian | Generalized Gaussian t-distribution W-distribution K-distribution
CNp CGN s, Ctmyd CWins,b CKmyv
g(t) | exp(—t) | exp(—t5/b) 5,b>0 | (1+t/d)" "™ d>0 | = Texp(—t/b) 5,b>0 | V' "Ky-m (2vVE) V>0
s m sT(m)b—™/% T(m+d) sT(m)b (m¥s—1175 2v(v+ml 2
e T (m/s) mdmr(d) T ((m+s—1)/s) T (v)

Gaussian
— Student : d= 0.1

[ ——— Student : d= 0.5
o Student : d=1
o

— Student : d=5




Robust Estimation and Detection Modeling the Background
Other Refinements
Applications and Results in Radar .

Example of CES

Gaussian | Generalized Gaussian t-distribution W-distribution K-distribution
CNm CGN m,s,b Ctpmyg CWmys,b CKm,v
g(t) | exp(—t) | exp(—t5/b) s,b>0 | (1+1t/d) "™ d>0 | tsLexp(—t5/b) 5,b6>0 | VI "Ky-m (2\/\/1‘) v>0
s J- sC(m)b=m/s Nm+d) sT(m)b~ (mFs=11/s 2\/“’*’"] 2
™8 7T (m/s) mdmr(d) T ((m+s—1)/s) T (v)
0.4 - - Gaussian
. ——GG:s=1,b=
[y
© ——GG:s=1,b=3
2 GG:s=2,b=1
0.2 - | ——GG:s=2,b=
0
—5 5
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Modeling the Background

Spherically Invariant Random Vector: a CES subclass

The m-vector z is a complex Spherically Invariant Random Vector [Yao 73, Jay 02] if its PDF can be
put in the following form:

g:(2) L riexp ((Z_”)H X’ (Z_p)) p<(T) dt, (1)

:nml}:\ g T T

where p- : [0,00) — [0, 00) is the texture generator.

m Large class of distributions: Gaussian (p(t) = §(t — 1)), K-distribution (p. gamma), Weibull
(no closed form), Student-t (p: inverse gamma), etc.
Main Gaussian Kernel: closed under affine transformations,

m The texture random scalar T is modeling the variation of the power of the Gaussian vector x along
his support (e.g., heterogeneity of the noise along range bins, time, spectral, spatial domain, etc.),

m Exploitation of the spectral information using the covariance matrix (scatter matrix) X,

= Stochastic representation theorem: |z =, 1 + /T A x |, where T > 0 is the texture, independent

of x and x ~ CN (0, I).
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Modeling the Background

Compound-Gaussian Distribution

It can be assumed here that the n available secondary data are such that zx = /T« xx where
xk ~ CN(0m, Z) and where the textures {Tx}xecp1,n are deterministic and unknown scalar variables to be

estimated.
(z) = 1 ox P M
ng - m TT |Z| Y Tx .

m Conditionally to the bin k, the observed vector xx is Gaussian-distributed, i.e. zx ~ CN (0m, Tk ),

m The covariance matrix represents the spectral distribution of the noise through the support k,

= The deterministic texture scalar T is modeling the variation of the power of the Gaussian vector x
along his support (e.g., heterogeneity of the noise along range bins, time, spectral, spatial
domain, etc.).
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Modeling the Background

Normalization of a CES vector ~-» same underlying distribution

Z

Z~C58m(0,z,g) = Za:m

~CAE, (X) forz#0.

Complex Angular Elliptical (CAE) distribution:
= Probability density function [Greco & Gini 2013]:  f(z,,Z) o |Z|7" (zg’}:flza)_m
v/ Free from unknown density generator ~-»  robustness
X Scale ambiguity on & ~»  additional constraint required
~  shape matrix: V =
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Robust Estimation and Detection
Other Refinements Robust Estimation
Applications and Results in Radar .

Estimating the Covariance/Scatter Matrix: Conventional Estimators

Assuming n available SIRV secondary data zx = /Tx xx where xx ~ CN'(0,,, ) and where T4 scalar
random variable.

m The Sample Covariance Matrix (SCM) may be a poor estimate of the Elliptical /SIRV
Scatter/Covariance Matrix because of the texture contamination:

12 12 12
. H H H
S,,f—g zkzkf—g Tk Xk Xj #—E Xk Xy
n n n
k=1 k=1 k=1

m The Normalized Sample Covariance Matrix (NSCM) may be a good candidate of the Elliptical
SIRV Scatter/Covariance Matrix:

Zy Zk Xk Xk
Tscm = — E == E
Zk Zy Xk xk

This estimate does not depend on the texture Tk, but it is biased and shares the same
eigenvectors but has different eigenvalues, with the same ordering [Bausson 07].
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Other Refinements Robust Estimation
Applications and Results in Radar .

Maximum Likelihood Estimate of the Covariance/Scatter Matrix

ML E-estimators:

Example: Suppose n target-free i.i.d. m-vectors {z;} where z; ~ CEp, (0, X, gz) Where g,(.) is

i=1,n

known and where Z is an unknown scatter matrix. The MLE Z is set by solving

5 - 8 _ - _
Elogggz(z;) =550 (n logiZ 1| +Zloghz (z,'-"}: 1z,-)> =

i=1
g’ (z,- 1 zf")
g(zZ 'al)

Recalling that % log |Zfl} =27 and 626_1 log h, (zf" ! z,-) = (z,- z,H)T, we

obtain:

M-Estimator as MLE of the CES problem
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Estimating the Covariance/Scatter Matrix

M-estimators:

Let (z1,...,2,) be a n-sample ~ CE (0m, X, g;) (Secondary data).
n 78_1/ (Z,H 271 Z,')
7 <1\

i=1 & (zf’Z z;)

PDF g,(.) not specified: M-estimator of X: T = % Z u (zf—' 271 z,-) zizl,

i=1

H
ZiZ; ,

S|

PDF g,(.) specified: MaximumLikelihood-estimator of X: .

[Maronna 76, Kent 91, Maronna 06, Pascal 08, Mahot 13]
m Existence, Uniqueness, Asymptotic Properties,
m Convergence of the recursive algorithm, etc.
m Several PhD ONERA thesis: [Jay 02, Pascal 06, Mahot 12, Terreaux 18].
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Other Refinements Robust Estimation
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Examples of M-Estimators

SCM: Huber's M-estimator:
o= 0 ={ kit s
u(n u(r)
1 Kie

m Huber = mix between SCM and Tyler [Huber 64],
m Tyler and SCM are “not" (theoretically) M-estimators,

m Tyler is the most robust while SCM is the most efficient.
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Estimating the Covariance Matrix: Tyler's M-Estimators

Let (z1,...,2n) be a n-sample ~ CEp, (0m, X, g2(.)) (Secondary data).

Tyler Estimator ([Tyler 87, Gini 02, Pascal 08])
2 2))
Trpe = — Z k

1z ZFPE Zk

m The Tyler M-estimator does not depend on the texture (SIRV or CES distributions),

H
m Convergence of the algorithm: X,.; =f (Zn> with f(X) = o Zk and Zo =1In.
n k=1 ZHZ Zk

Existence, Uniqueness,
m X rpe is the true Maximum Likelihood Estimate when considering textures {Tk}ke[l a) @S unknown

deterministic parameters. In that case, the joint texture estimation leads to
~—1
H
z, LrpEZ
R, — Zk ZFPE %k
m
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Robust Estimation

Some Weighting Functions of M-estimators

Weighting functions for K-distribution Weighting functions for student- distribution
10! 10!
100 B
%
Y
%
T
s A\
S \=
N\
~.
N
10!
T ——
i N
102 10°
0 50 100150 200 250 300 350 400 0 50 100 150 200 250 300
1 t

U(t) _ (p(t) _ ﬁ Kv—m—l (4V t)

t Ky_m(dvt)’

We have lim £ = i,:p,_: and lim £ = §,,
v—0 v—00
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Asymptotic distribution of complex M-estimators

Using the results of Tyler, we derived the following results [Mahot 2012, Mahot 2013]:

/1 vec (i _ z) 45 CN 2 (0,2, C, P), (2)

where CA is the complex Gaussian distribution, C the CM and P the pseudo CM:
C=o0y (Z*® L)+ 0y vec (Z)vec(Z)",
P=01 (Z*®Z) Kz me + 02 vec (Z) vec(Z)T,

where K, 1, is the m x m commutation matrix transforming any m-vector vec (A) into
vec (AT) and where the constant o1 and 07 are completely defined.
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An important property of complex M-estimators

= Let T an estimate of Hermitian positive-definite matrix X that satisfies
J/n (vec (2 - z)) 4, CN (0,7, C, P), (3)

_ { C=viI*®Z+ v,vec(Z)vec(X)",
with

h d |
P=v (Z*®Z) Kpe, e + vavec (Z) vec(Z)” where vy and vy are any rea

numbers.
SCM M-estimators FPE
e Vi 1 01 (m + 1)/m
& Vo 0 02 —(m+1)/m2
More accurate More robust

Known asymptotic behavior: Any M-estimator behaves exactly as SCM but with o; more
secondary data (o7 = (m+ 1)/m times more for Tyler): It implies that, in Gaussian case,
SCM can be replaced by any M-estimate in previous detectors without changing performance
(finite distance).

J.-P. Ovarlez
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An important property of Tyler estimator

n H
. < m Zy Ty
Tyler M-estimator: X rpg = — E —
n
k=1 2} Zpp 7

vn (EFPE _§n> 5 CN (0, Cep, Prp)

where Crp and Pgp are defined as

—1
Cep = 1 <ZT®Z> + m 5— vec (X) vec(Z)H s
m m
1 p—
Prr = — (ZT ®Z> Ko me + mizvec (X) vec (Z)H .
m m

o~

Conclusion: <2FPE — S,,) goes faster to 0 than (EFPE — Z) and then )EFPE behavior is

better approximated by the Wishart distribution than by its asymptotic properties!
[Draskovic 2019].
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Tyler covariance matrix and SCM comparison in the presence of outliers

L& = N o N I )
-] S oo &) = o
L& - N0 ] I @

L& = N o N I )
-] S oo &) = o
L& - N0 ] I @
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An important property of complex M-estimators

m Let H(.) be a r-multivariate function on the set of Hermitian positive-definite matrices,
with continuous first partial derivatives and such as H(V) = H(«V) for all « > 0, e.g. the
ANMF statistic, the MUSIC statistic, etc [Mahot 13, Ovarlez 15].

[Theorem 3: (Asymptotic disribution of HE)) |
Vi (H(Z)—H(E)) -5 CN (0, Cn,Ph), (4)
where Cy and Pp are defined as
Ch=viH (£) (£To%) H' (£),
Pyu=viH (L) (ZT QL) Kpoe H' (Z)7,

where H' (X) = (Lm)

Ovec(X)
H(SCM) and H(M-estimators) share the same asymptotic distribution (differs from vy)
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lllustration with the two-step GLRT ANMF

2

H (2) = AanmrF (Z, 2) = = = Z AANMF
(p"’}: p) (z"’Z z) Ho

where I stands for any M-estimators [Conte 95, Kraut 99].
m The ANMF is scale-invariant (homogeneous of degree 0), i.e.
Vo, B € R, Aawmir(az, B Z) = Aanwr (2, Z).
m lts asymptotic distribution (conditionally to z!) is known [Pascal 15, Ovarlez 15].

Vi (H(E) = HE)) =% CN (0,2vi HZ) (H(E) - 1)) .

Recall for SCM:y/n (H (§) - H(Z)) 5N (0, 2H(E) (H(Z)— 1)) .
m It is CFAR w.r.t the covariance/scatter matrix,
m It is CFAR w.r.t the texture.
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[[lustrations of the Result on the ANMF

m A =var (H (f) — H(Z)). Here T = complex Huber's M-estimator.
m Figure 1: Gaussian context, here o; = 1.066.
m Figure 2: K-distributed clutter (shape parameter: v = 0.1 and 0.01).

‘ ‘ ‘ ‘ N =+ =var(Agu), v = 0.01
245 == var(A ) 05 ——var(Asca), v = 0.01
—var(Ascu) — - = =var(Aup). v = 0.1
= 4t
+ var(Agy) for N data = var(Ascy), v =0.1
g
o =15
=}
E
=
£
5
o -2.5r s
2 Tl
BREE: T
38} = = IRRSLEEEE RS
- 200 20 % 30 1000 =% 200 400 600 800 1000
Num?aer of snaps%ots n Number of snapshots n
Validation of theorem (even for small n) Interest of the M-estimators

Performances are slightly the same in the Gaussian case but are better in the

non-Gaussian case.
J.-P. Ovarlez
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lllustrations of the Result on Py,

m Figure 1: Gaussian context :
Pa=(1—=Aanmr)" " 2F1 (n—m+2,n—m+1;n+ L Aanwr) -
m Figure 2: K-distributed clutter (shape parameter: v =0.1), here o; = 1.066 :

Pr = (1 —Aanme)” O™ 5F (n/o1 — m+2,n/01 — m+1;n/01 + 1; Aanmr) -

o S i N T i =
e
' it it i ) it S B it gt i

L L L L = L
g o7 08 05 t o or 02 03

L L L L L
0 05 o 0r 05 o8
Detection threshold A Detection threshold A

Interest of the M-estimators for False Alarm

Validation of theorem (even for small n)

regulation
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lllustration of the Results on MUItiple Signal Classification (MUSIC)
method

K (known) direction of arrival 8; on m antennas

Gaussian stationary narrowband signal with additive noise.

the DoA [Bienvenu 1979, Schmidt 1986] is estimated from n snapshots, using the SCM,
the Huber's M-estimator and the Tyler's estimator.

y(t) = A(Bo) s(t) + w(t).

80 = (01,0,...,0k)",

the steering matrix A(0) = (a (01),a(0,),...,a(0k)),
s(t) = (s1(t), s2(t)y ..., sk(1) T signal vector,

w(t) stationary additive noise.

Z =E [yy"] = A(6o) E [ss"] AH(80) + 0?1 =EsDsEY + 0?Ey El}, ,

where Es (resp. Ey) are the signal (resp. noise) subspace eigenvectors.
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The MUSIC statistic is

where €; are the eigenvectors of X.

This function respects the assumptions of Theorem 3!

The Mean Square Error (MSE) between the estimated angle 0 and the exact angles © can then
be computed (case of one source).

m A m = 3 uniform linear array (ULA) with half wavelength sensors spacing is used,
m Gaussian stationary narrowband signal with DoA 20° plus additive noise.

m the DoA is estimated from n snapshots, using the SCM, the Huber's M-estimator and the
Tyler's estimator.
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0 T T
1o ----SCM 1 ----SCM
----Huber ] [ - -~~~ Huber [
-==-Tyler B 07 Tl -==-Tyler
--%-- Huber with 07 n data 3 -------
-+ Tyler with 212 p data 102 ;'.‘
B

MSE

10"

MSE

102

I I I I
100 200 300 400 500

Numer n of observations

(a) White additive Gaussian noise

I I I I
100 200 300 400 500

Number n of observations

(b) K-distributed additive noise (v = 0.1)

Figure: MSE of 9 for a number n of observations, with m = 3.

Similar conclusions for detection can be drawn...
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lllustration of the ANMF CFAR Properties For CES Noise

False Alarm regulation for ANMF built with Tyler's estimate

o CFAR-texture property for the ANMF with Tyler's est. CFAR-matrix property for the ANMF with the Tyler's est.
N : : - T e
\\ — - Gaussian
N — K-distribution
N ent.
\ ~ Cauchy S
N ©  Laplace \K\‘
N — Z estimated, n=40, m=10
o N — - 3 known (NMF) 1
" ol
N \
< N
& N £
N o
N
102 N ]
N
AN 102k
\
\
\\ 9
107 \\ 4
N y
10° u‘)‘ u‘)‘ 1‘03 - 1‘05 o :o" o . ‘u’ “n’ 10°
Detection threshold Detection threshold

(a) CFAR-texture

(b) CFAR-matrix

Figure: Illustration of the CFAR properties of the ANMF built with Tyler's estimator, for a Toeplitz CM whose

(i,j)-entries are pli=il,
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Properties of ANMF-Tyler Detector on Clutter Transitions

Réalisations de 5 K-distributions Transitions spatiales pour S K-distributions
T 45 T T
| |
v ve | = = 4
9 vs 2 U V05 v=0.1 4 s } vz vt w05 v
|
8 | !
35 !
! I
7 | |
|
I
I
I
|

10 20 30 40 80 70 80 0 100

50
Cases Distance

m Five K-distributed clutter range transitions: from Gaussian to impulsive noise,

m Estimating the covariance matrix with secondary data in a sliding window.
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Robustness of M

Properties of ANMF-Tyler Detector on Clutter Transitions

Probability of Detection for Pfa = 0.001 - ANMF-Tyler

Probability of False Alarm - ANMF-Tyler log10(Pta)
- WY | 0

Detection Threshold (log1o)

30 ) 50 60
. 50 60
Range bins Range bins
Probability of False Alarm — AMF-SCM - "
Probability of Detection for Pfa = 0.001 - AMF-SCM

Detection Threshold (logto)

a0

50 50
Range bins 40 70 80 %0

50
Range bins

m ANMF-Tyler: The same detection threshold is guaranteed for a chosen Py, whatever the clutter
area,

m ANMF-Tyler: Performance in terms of detection is kept for moderate non-Gaussian clutter and
improved for spiky clutter.
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m Robustness of M-estimators
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Robustness of the M-estimators

Let us suppose that {y;}i—1,n—1 ~ CN'(0m, Z) and that the last secondary data y, contains
outlier po:
m Sample Covariance Matrix case:

1< 1 n—1_ 1
Sp'=—D vy +-ponf,  E[S)]=-——Z+ Epop(]-
k=1
The power of the outlier pg has a significant impact on the quality of the SCM estimation.

m Tyler (or FP) Covariance Matrix case:

n H H

- ~ 1 1

% Fpepol = — E Y E|Eepep| =2+ 1| R Po -——X.

n He ! n pHzlp m
k=1Y} ZFpepol Yk 0 0

The power of the outlier pg has no significant impact on the quality of the Tyler estimate.
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Robustness of M-estimators

Robustness of M-estimators

Gaussian vectors y polluted by outliers
1 ¢ s m e Ykyr
S, == z YeYk, Zere=— E —==k
n n H Z
k=1 k=1 Y ~Fpe Yk

m=10,n=200

80) 60
45
50
0
40
3
0 30
20
20
10
o
-10
20 -5 -0 -5 o s 10 s 20

Percentage of contaminated range cells
Percentage of contaminated range cells

Power of contamination (dB) Power of contamination (dB)

Plot of the error (dB) between the covariance matrix estimated with and without outliers.
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Robustness of ANMF: Impact on detection performance

Same target yx = po (SNR 20dB) than those in the cell under test in the reference cells
(case of convoy for example)

SCM Fixed Point
! Uncontaminated SCM ! Vi ——— Uncontaminated FP_
—— Conamnasdson  Conammre
0s / - i 0 Il
o8 / 08 J
[ True SCM
o o True FPE 4
2os | : ‘ 2os J
0 / Contaminated SCM o4
/ Contaminated FPE
03 \[ 03 B
/
- / . ]
/
4,4%//1/
% ED 0 5 ) o % I o o o w )
SNR (dB) SNR (dB)
AMF + SCM ANMF + FPE

The SCM can whiten the target to detect. The ANMF built with FPE is more robust.
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Motivations

The estimation of X does not take into account any prior knowledge of the covariance matrix:

How to improve detection performance by exploiting prior information on X 7

Toeplitz: [Burg 82] for estimation,

known rank r < m (ex: subspace detector) [Kirsteins 94, Haimovich 96, Rangaswamy 03],
Persymmetry: [Nitzberg 80] for estimation, [Cai 92] for detection in Gaussian case, [De
Maio 03, Conte 03, Pailloux 11] in non-Gaussian noise.

Shrinkage: when the number n of available secondary data does guarantee the inversion of
the covariance matrix estimate (n < m). [Abramovich 07, Chen 11, Abramovich 13,
Besson 13, Couillet 14, Wiesel 14, Pascal 14]

In high dimension regime, some RMT-based results [Couillet 11, 14, 15] for detection
schemes

COvariance Matching Estimation techniques (COMET) [Ottersten 98] and its robust
versions SESAME and RCOMET [Meriaux 19, 20]
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Covariance Matrix Convex Structure

Problem setup:
= [N i.i.d., m-dimensional, centered CES distributed observations:
Vn=1,...,N z,~CES,,(0,Re,g) ~ pz(z,Re)

= R, € S: convex subset of Hermitian matrices

v There exists a one-to-one differentiable mapping  — R (0) from Se C RP to S

1= Unknown parameter of interest: © with exact value 0. and Re = R (0.)
Working hypothesis:

== True distribution unknown in practice = g unknown

1= Assumed model: CESy, (0, R (0), Gmod) ~  fz(2n;0)
with gmod(t) possibly different from g(t) for all t € R"

TO3 Tutorial - Conference Radar 2024
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SESAME Algorithm

SESAME (StructurEd ScAtter Matrix Estimator): two-step procedure
Unstructured estimate of R N

. 1 .
HH -1 H
R, = N Z Umnod (zn R,, z,,) ZnZ,, ,
1

Projection on the subset S

0 = argminJx ~(0) with,
ge R R

2

Ja. 72(0) = ki Tr (F“l (ﬁm _R(e))m e [Tr (ﬁ_l (ﬁ’" —R“”))] ’
E |2

o (16E)] d )
m(m+1) with ¢ ~ m( y )gmod) an 1-l"mod(s)—sumod(s)

R any consistent estimator of R, up to a scale factor, e.g., f{m

where Ki =Ky +1=

Strictly convex in R (0) + one-to-one mapping = unique solution for ©.
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SESAME asymptotic performance

[Mériaux et al., 2019] Let Oy be the SESAME estimate based on N i.i.d. observations,
zn ~ CES,, (0,Re, g) but with an assumed model of CES,, (0, R (1), gmod). Then, we obtain

1= the consistency: 6,\, L 0. suchthat R.2R(0.)=01R(0.)
15 the asymptotic distribution: VN (6,\, — ec) £ N (0,T)
To = (kiC + k2D) ' (B1C + B2D) (k1€ + kD),

with { € =7 (0.)" (ReT @ R:Y) T (8c), D = T (8) vec (R?) vec (R:Y)" 7 (0c)

B1 = 01K3, B2 = 01Kz (2K1 + mK2) + 02 (K1 + mK2)?
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Structured shape matrix estimator in CAE framework

RCOMET: Robust COvariance Matching Estimation Technique
(&, 6) = argminTr ((ﬁFpE — ocR(G)) ﬁ_l (ﬁFpE — ocR(B)) ﬁ,_l) y

«,0

where o > 0 and R refers to any consistent estimator of R up to a scale factor, e.g.,
R = Repe.

Convex problem w.r.t. «R(0) + one-to-one mapping = unique solution for ©

Theorem (Mériaux et al., 2017, Mériaux et al., 2019)

Let © the RCOMET estimate of 0. based on N i.i.d. observations, y, ~ U, (R(0)). 0is
consistent, asymptotically efficient, and Gaussian:

VN (6 _ ee) % N (0, CRBcag)

1
with CRBcag — "~ CRBg, where CRB¢ = CRB on 0 of the problem 7, ~ CA” (0, aeR(6¢))
m
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Recursive RCOMET

In the same way, we can define Recursive RCOMET

m A recursive procedure naturally follows

for k=1,..., N, 6( - argminTr

«,0

such that Tr [R (ékﬂ =m

m Leading to R-RCOMET estimate: §R-RCOMET = 6

m Same asymptotic properties as RCOMET, but the asymptotic regime is reached faster
(numerical ascertainment).

m A more elaborated stopping rule in practice, e.g., a combination of k < N;; and
Hek — 9#1” < €tol 9#1”-
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Using Persymmetry Property

Under persymmetric considerations (ex: symmetrically spaced linear array, symmetrically
spaced pulse train, etc.), the Hermitian covariance matrix Z verifies Z =J,, £* J,,, where J,, is

the m-dimensional antidiagonal matrix having one as non-zero elements. If the unitary matrix
T is defined by:

1 Im/2 Jm/2 )
— . . for m even
\/5 ( IIm/2 —IJm/2 r v
T= 5
1 Iim—1),2 \?_ J(m-1)/2 ®)
— 0 2 0 for m odd
\/E )

iIm12 0 —=idim1),2

then:

e s=Tpis a real vector (if p is centrosymmetric, i.e. p=J,,p*),
e R=TZT" is a real symmetric matrix.

J.-P. Ovarlez
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Equivalent Detection Problem

Using previous transformation T, the original problem can be reformulated as:

Hol
H1:

Original Problem
y=¢ Cly..-yCn
y=Ap+¢, c1,...,Cpy

T

—

{

Equivalent Problem

Hy:z =n,
Hi:z=As+n,

ni,
n1,

RN | S
..o.,n,

where

mz=TyecC"
B n=./Tx and n, = \/Tx X, with x,x, ~ CAV(0,,,R) where R is an unknown real
symmetric matrix,

m s = Tp is a real vector.

The main motivation for introducing the transformed data is that the original persymmetric
complex covariance matrix of the Gaussian speckle X is transformed through T onto a real
covariance matrix R.

J.-P. Ovarlez
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The Persymmetric FP Covariance Matrix Estimate

From the estimate f{,:p of the real covariance matrix R, solution of the following equation:

n H
=~ m ngn
R:_z _ KTk

g )
n Hp-1
o R7ing

The persymmetric Fixed-Point Covariance Matrix Estimate has been first empirically defined as:

Rprp = Re(Rep) -

Statistical performance of f{p,:p [Pailloux 08, 10 and 11].

° ﬁppp is a consistent and unbiased estimate of R when n tends to infinity,

e Its asymptotic distribution is the same as the asymptotic distribution of a real Wishart
matrix with 2nm/(m + 1) 2 n degrees of freedom,

e RCOMET technique [Mériaux 19 and 20] gives exactly the same result for persymmetric
structure.

Rprp estimate can be considered as the true Maximum Likelihood Estimate.
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The Persymmetric Adaptive Normalized Matched Filter

The resulting P-ANMF for the transformed problem is based on the PFP estimate and can be
defined as:

TR-L

‘S RPFPZ‘ Hy
> A

TR-1 HR=1 H

s' Rprps) (2" Rprpz ) Ho

A (ﬁPFP) =

Properties:
m A(Rprp) is texture-CFAR,
[ /\(f{ppp) is matrix-CFAR,
m The use of PFP estimate in the ANMF allows to virtually double the number n of
secondary data and improve the performance of the ANMF detector built with the FP
matrix estimate.

A (ﬁppp) is SIRV-CFAR and is called the P-ANMF.

More recent works can be found in [Mériaux 19 and 20]
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Conventional Low-Rank Detectors

Principle of Low-Rank Matched Filter approaches found, for example, in [Kirsteins 94]
(Principal Component Inverse) and [Haimovich 96] (Eigencanceler) and [Rangaswamy 04].

Let suppose that the rank r of clutter covariance matrix X is known:
m Example of sidelooking STAP with M pulses measurements and N sensors,
r=N-+(M—1)p (Brennan's rule) where p =2v T,/d.
The idea is to project the data onto the orthogonal subspace of the clutter.

s _1¢ 0
=g Lwd = (g ) w,

If we denote by ﬁSCM = U, U the projector onto the clutter subspace, the Low-Rank ANMF

detector is given by: )pH (I A ) . 2
— Tscm
ALR—ANMF—scm(2) = (pH (I—ﬁSCM) p) (z” (I—ﬁSCM) Z) 507\.
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Extended Low-Rank Detectors

In the case of heterogeneous and non-Gaussian clutter, we know that Sscy or TTscy are not
good estimates. If we denote the Normalized Sample Covariance Matrix by:

X, 0
Znsem = — Zykyk = (U, Uo) < 0 Z, ) (U, Uy)"
— 1yk Y«

[Ginolhac 12 and 13] proved that TTyscy = U, Uf’ is a consistent estimate projector onto the
clutter subspace. We can define the extended Low-Rank ANMF-NSCM:

‘ 2

‘PH (I — ﬁ/vscm) z Hy
ALr—anmF—nscm(y) = — = 2 A
(PH (I*HNSCM) P) (ZH (I*”NSCM) Z) Ho

This detector is found to be texture-CFAR and is asymptotically X-CFAR. Moreover, he has
another nice robustness property when outliers and targets are present in the secondary data.
The Normalized Sample Covariance Matrix is a good candidate for the adaptive version of
Rangaswami's Low-Rank Matched Filter and Low-Rank Normalized Matched Filter.
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Shrinkage of Tyler's estimators

Case of a few observations or under-sampling n < m: matrix is not invertible = Problem when
using M-estimators or Tyler's estimator!

H

Ec=(1-B) =) ———+BI

Hy—1
Pt AP Mol 7

subject to the constraint Tr (X¢) = m and for 3 € (0, 1].

m Originally introduced in [Abramovich 07],
m Existence, uniqueness and algorithm convergence proved in [Chen 11],
m Active research [Abramovich 13, Besson 13, Couillet 14, Wiesel 14, Pascal 14]
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Shrinkage Tyler's estimators

n H
m 77
Sp=(1-B)—Y ———+pI
P=(=B)TY G+

subject to the no trace constraint but for B € (B, 1], where  := max (0,1 — n/m).
m Xp (naturally) verifies Tr (Z;l) =m for all € (0,1],

m Existence, uniqueness and algorithm convergence proved,
m The main challenge is to find the optimal B! [Couillet 14].
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Riemannian Geometry

m Hermitian covariance matrices are definite-positive and belong to a Riemannian
manifold: conventional Euclidean space is not at all adapted to this space,

m for characterizing the barycenter of covariance matrices; for example, in K-means
classification, the arithmetical mean is not recommended. Please see the H/x SAR
polarimetric classification application.

Euclidean mean (arithmetic)

n

arg min d(M,M;)?, where d (M,M;) = |[M — M, ||,
MeP(m) =

Riemannian mean (geometric)

n

arg min d (M, M;)?, where d(M,M;) =?
MeP(m) =
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Riemannian Geometry

x5 o o

Mo
Kooy = AEMin Y xx,
x,0 L=

Oxs
Euclidean Geometry
The mean M, in the Euclidean sense of n given

positive-definite Hermitian matrices My, ..., M, in P(p)
is defined as:

Riemannian Geometry
The mean M, in the Riemannian sense of n given
positive-definite Hermitian matrices My, ..., M, in P(p)
is defined as:

n n
My = Majge;r;i(r;) kZ=1 [[Myg — Mw”?: My = Majgergi(r;) kZ=1 ||log (M;l Mw) ||i_

, 1 o , 1o
leading to M, = - ; M,. leading to M, such that - Z log (M,, ! Mw) =0.

k=1
J.-P. Ovarlez
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Some RMT-based results for detection schemes

The RMT (ex: [Couillet]) allows 1) to understand the statistical behavior of expressions
involving estimate of large covariance matrices (ex: quadratic forms, ratios of the quadratic
forms, SNIR Loss, performances of detection tests as ANMF, LR-ANMF, etc.) and 2) to
correct it. The corrected results are often valid at a finite distance (practical m, N values).

m Sources localisation applications [F. Pascal, R. Couillet, etc.]: the based-RMT Music
algorithm (G-Music) is known to have higher performance than conventional algorithms
when using all the eigenvalues of the covariance matrix.

m MIMO-STAP: the goal of A. Combernoux’s PHD thesis [Combernoux] was to
analyze/improve the detection and filtering performances of low-rank detectors.

m Adaptive Radar Detection: when secondary data are correlated [Couillet].

m Hyperspectral Anomaly Detection - Unmixing: the goal of E. Terreaux PhD thesis
[Terreaux] is to better analyse the rank of the anomalies space (model order selection) in

Hyperspectral Imaging (high dimensional problem) for heterogeneous, correlated
non-Gaussian environment.
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RMT key ideas (1)

Let {y,-},.e[l’,\” be independent and distributed according to CN (0,,,M). The Maximum
Likelihood Estimate of M is the Sample Covariance Matrix given by

I\A/I:iiy-yH:iYYH
NPT TN ‘

Asymptotic Regime

If N — oo, then the strong law of large numbers says (or equivalently, in spectral norm):

HM—M‘ 25,0,

Random Matrix Regime

= No longer valid if m, N — oo with m/N — ¢ € [0, ool HI\A/I—MH - 0,

m For practical large m, N with m ~ N, it can lead to dramatically wrong conclusions (even
m = N/100).
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RMT key ideas (2)

Let {n;};(; v be distributed according to CA (0, C = 0°L,). We analyze the eigenvalues

L1 1
C . . o H H .
distribution of C = N E n;n;’ = —NNN where ¢ = m/N € [0, oo

| ”
—

Random Matrix Regime

The distribution of the eigenvalues of C tends almost surely toward the Marcenko-Pastur

distribution
plx) = X X

where A_ =02 (1— \/E)z and Ap =02 (1+ \/2)2

Not restricted to Gaussian statistics !
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RMT Examples (1): classical asymptotic regime

35

05

J.-P. Ovarlez

N =1000, m =10, ¢ =0.01

N =1000, m =10, ¢ = 0.01
T T

N = 10000, m =100, ¢ = 0.01

N =10000, m = 100, ¢ = 0.01
T T

Histogram
—— Marcenko-Pastur

35 T

Histogram
—— Marcenko-Pastur

05 1

0 L L L

05 1 15 2
Eigenvalues support

Eigenvalues support for white
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RMT Examples (2): same RMT regime
N =100, m = 95, ¢ = 0.95 N = 1000, m = 950, ¢ = 0.95

=100, m =95, c = 0.95 N =1000, m = 950, ¢ = 0.95
1877 T T T T T T T T T T T T

T T T 187 T T T

0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
Eigenvalues support Eigenvalues support

Eigenvalues support for white Gaussian noise (02 =1, C = 0 1,,).
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RMT Theory and M-Estimator based Detectors

RMT Examples (3): from where does the RMT regime start?

N=10, m=4 N=25 m=10 N = 1000, m = 400

N=10m=4c=04 N=%m=10c=04 N = 1000, m = 400, ¢ =04

05 05
05 0s

2 g
04 n

05 1 15 2 25
Eigenvalues support

15 2 25 3 35 4 15 2 25 3 35 4

Eigenvalues support Eigenvalues support

Eigenvalues support for white Gaussian noise (02 =1, C = 0°1,,) and ¢ = 0.4.
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Key ideas (3)

The behavior of the spectral measure brings information about the vast majority of the
eigenvalues but is not affected by some individual eigenvalues behavior (like sources !).
Whatever the perturbations (sources), the spectral measure converges toward the

Marcenko-Pastur distribution.
N =100, m=80,c=0.8 N =1000, m=2800, c =0.8

N =100, m = 80.c = 08 N = 1000, m = 800, ¢ = 0.8

Fisiogram
Marcenko Pastr

0 1 2 3 4 5 6 ) 1 2 3
Eigenvalues support Eigenvalues support

SCM eigenvalues support for white Gaussian noise (02 =1, C = 0°1,,) and sources.
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Source Detection with RMT

We consider N observations {yk =V0u+ nk}k . with [Ju|| = 1. If the power 0 of the
ell,

1
source is large enough, then the limit of Aax <— YYH> is strictly larger than the right edge

N
of the bulk.
m if 0 < 02./c, then

1 H a.s. 2 2
Amax (NYY > N,E)oo o’ (1++¢)",

m if 0 > 02./c, then
1 a.s.
?\max<—YYH) 2% 62 (1+0) (1+£)202 (1+\/E)2.

N,m—oo 0

1
Above the threshold o? V€, Amax (N YYH> asymptotically separates from the bulk.
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Source Detection with RMT

1000, m = 550, ¢ = 0.55, 0 = [1,3,10,15], A = [3.10,4.73,11.60, 16.5§] N =1000, m = 550, ¢ = 0.55, 0 = [3,4,7,8], A = [4.73,5.68,8.62,9.61]
T T T T T T T T T T T T T T T
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Radar Detection Schemes for Joint Time and Spatial Correlated Clutter

Motivations: Adaptive radar detection and estimation schemes are often based on the
independence of the secondary data used for building estimators and detectors. This
independence allows to build Likelihood functions.

Example: estimating a covariance matrix M

With a given set of n independent m-dimensional vectors {y,-}ie[l’n] distributed according to
CN (0, M), the corresponding Likelihood function A can be built as

n n
1
/\(Y1>Y2>-- -)y"| M) = HP(YI) = H 7Tm_|N[| €xp (_y'HM_l Yi) .
i=1 i=1

The Maximum Likelihood Estimate M of M is the zero of the partial derivative of
A(¥1,¥2y.-+,¥n| M) with respect to M leading to the well known SCM.
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Motivations

In many radar and imagery applications, data {y;}

ic[1,n €an be viewed as a joint spatial and
temporal process:

m For high-resolution radar, the sea clutter is jointly spatially and temporally correlated,

S
3
3

Range (m)
Sea clutter spatial correlation, IPIX radar [Greco].

J.-P. Ovarlez
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Motivations

m In multichannel (polarimetric, interferometric or multi-temporal) SAR imaging, the
multivariate vector characterizing each spatial pixel of the image is correlated over the
channels. Still, it can also be strongly correlated with those of neighborhood pixels,

m When a radar signal with bandwidth B is oversampled (Fe = k B, k > 1), the associated
range bins can be spatially correlated and the measurements are not independent anymore.

In the radar community, one generally supposes that the vectors of information collected over
spatial support are identically and independently distributed.
This problem could be, for example, addressed using Multidimensional Space-time ARMA

modeling.

This work aims to relax this hypothesis through the use
of recent Random Matrix Theory results.
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Problem formulation

Detection of a complex signal corrupted by an additive Gaussian noise ¢ ~ CN(0,,, M) in a
N-dimensional complex observation vector y:

Hy:y=c yi=c¢ i=1...,n
Hi:y=ap+c yi=c¢; i=1...,n"’

where p is a perfectly known complex steering vector, « is the unknown signal amplitude and
where the ¢; ~ CN(0,,,M) are n signal-free non independent measurements. The covariance
matrix M characterizes the temporal or spectral correlation within the components of the noise
vectors.

To model the spatial dependency between the secondary data, from the Gaussian assumption
on ¢;, we may write the m x n-matrix C = [cy, ..., c,] under the following form:

C=M/2XTV?
where M € C™*™ and T € C™*" are both nonnegative definite, X is standard Gaussian

. 1
CN(0,,1,,), and where T satisfies the normalization — tr(T) = 1.
n
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Problem formulation

The matrix T is considered Toeplitz, i.e., for all i,j, T;; = t;_j for to =1 and t, € C, and

n—1
positive definite. Besides, Z |ty] < 00.
k=0
Example: m=2, n=3
1/2 T ts t 1/2
o t t
(1 p X1,1 X1,2  X1,3
C= 1 % X « ti7 th bt .
p 2,1 X22 X23 t t to

Temporal correlation

Spatial correlation

Temporal or Spectral Measurements
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Some RMT results

Proposition: Consistent Estimation for T [Couillet, 15]

As m,n — oo such that m/n — ¢ € [0, 00, and for every 3 < 1,

mP HT[l C”C} — <ltr M) T
m m

1
where T[] is the Toeplitzification operator: (T [X]); = - Z Xk kil -
k=1

a.s.
— 0,
F

Up to a constant, a consistent estimator T of the spatial covariance T characterizing data
{¢i};c(1. is therefore defined as T oc 7 [L CH C] and the associated time whitened sample

covariance matrix estimate M of M is defined as M o Lop-tch.
This technique has been extended in the framework of robust M-estimators.
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Gaussian and non-Gaussian scenarios

Simulated Data: joint spatial and time correlated Gaussian or K-distributed (v = 0.5) data
characterized by m = 10 pulses, n = 20 secondary data where:

M — ( |,-,J~|) T— ( \H\) ith py = 0.5, pr = 0.9.
M) e 1) e M PM or

To evaluate the detection performance of the Aanpnr test statistic, we have compared three
approaches:
e M is unknown but T is assumed to be known: the covariance estimate M is either given

1
by ;C T—1C" (SCM) or the Tyler's estimate of the true spatial-whitened data C T—1/2,
o T is assumed to be unknown and is estimated through T o 7 [ C" C]: the covariance
_ 1
estimate M is either given by - CT 1 C" (SCM) or the Tyler's estimate of the

spatial-whitened data CT—1/2,
e the classical approach that does not take into account the space correlation: the

~ 1
covariance estimate M is either given by —C C" (SCM) or Tyler's estimate of the data C.
n
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False Alarm Regulation - Gaussian Case

ANMF-SCM ANME-Tyler

*P,,threshold relationship with space correlation - Gaussian case - ANMF-SCM *P,,-threshold" relationship with space correlation - Gaussian case - ANMF-Tyler

10 T T T T T T T T T 10

s e
~
py
o
\\
1o ™ E 10!
\s'
.
102 ™, E 10?
\,

5 L L L L L L L L L 105 L L L L L L L L L
% o1 02 03 07 08 09 1 g ot 02 03

0 4 06
Detection threshold A Detection threshold A

Same False Alarm Regulation performance for ANMF-SCM and ANMF-Tyler (Gaussian case)
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Associated Detection Performance - Gaussian Case

ANMF-SCM ANMEF-Tyler

*P, threshold""P-SNR" relationship i ANMF-Tyler "P,,-threshold""P -SNR" relationship with space correlation - Gaussian case - ANMF-Tyler

1 T T T 1 - . - o "

= Gptma, T known (K= 20]
i, Tknown (K=20]
Monte Carlo( =20) 0 Worte Calo (K =20)
09 Monte Carlo + whiering (K =20) 3 — — Monte Carlo + whiering (K =20)
08 08
07 07
06 06
2% 05 a® 05

04 04
03 03
02 02
01 01

0 . 0

20 -10 0 10 20 30 40 20 -10 0 10 EY 40

SNR (dB) SNR (dB)

e Same Probability of Detection performance.
e Around 3dB gain improvement with RMT whitening procedure
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False Alarm Regulation - K-distributed Case
ANMF-SCM ANMF-Tyler

*P,,-threshold" relationship with space correlation - K-dist (nu=0.5) - ANMF-Tyler

"P,,-threshold" relationship with space correlation - K-dist (nu=0.5) - ANMF-SCM

10° T T T T T T
TR
2
~—

. 1

o 10
2
107 10
o o
10° 10°
10 10
0% . . . . . . I . I 0% | . | . . . . . .
0 ot 02 03 DA ; ‘ZS 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
etection threshold

Detection threshold A

e Better False Alarm regulation performance for ANMF-FP (Non-Gaussian case).
e Better False Alarm regulation with RMT whitening procedure
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Associated Detection Performance - K-distributed Case

ANMF-SCM ANMEF-Tyler

"P -SNR" relationship with space correlation - K-dist (nu=0.5) - ANMF-SCM "P"SNR" relationship with space correlation - K-dist (nu=0.5) - ANMF-Tyler
T T = 1 T T T T

=

Optimal, T known (K =20)
Monte Carlo (K =20)
fone Carl + whitening (K =20)

<esses Optimal, T known (K=20)
09 Monte Carlo(K = 20)
— — Monte Carlo + wnrenng (K =20)

20 10 0 10 20 30 40 20 10 0 10 20 30 40
SNR (dB) SNR (dB)

e Better performances in terms of Probability of Detection performance for ANMF-Tyler.
e Around 3dB gain improvement with RMT whitening procedure
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Outline

Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
m Surveillance Radar against Ground and Sea Clutter
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False Alarm Regulation on THALES Ground Clutter

Data Description

m "Range-azimuth" map from ground clutter data collected by radar from THALES Air
Defense, placed 13 meters above ground and illuminating area at a low grazing angle.

m Ground clutter complex echoes collected in 868 range bins for 70 different azimuth angles
and for m = 8 pulses.

Pulse n° 1

ynwizy
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False Alarm Regulation on THALES Ground Clutter

m Rectangular CFAR mask 5 x 5 for 0 < k < m different steering vectors py.

Cell under test: y

7 1
2imt(k—1)
m

2imt(k—1)2
I Pk = €xp m

\ .
\ B
\/ exp (2,71(/(7'113 (mfl))

Reference cells (CFAR mask)

o

m For each z, computation of associated detectors /\ANMF(ETy,e,) and /\ANMF(ENSCM)
m Mask moving all over the map.

J.-P. Ovarlez
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False Alarm Regulation on THALES Ground Clutter

Clutter map

Curves "PFA-threshold" — CFAR property

|
o
\ —— Mhat
wl — Maown
. N\ .
w NN
£ 30 \\
H = N\ Theoretical
3 k O\
© \ NSCM
50 \ N
True M
w
N\
70 . 107! B L
400 500 10' 10° 10° 10° 10 10° 10’
Range bins threshold .
Azimut/range bins map Relationship " P;,-threshold"

Figure: ANMF with Tyler's M-estimate - False alarm regulation for pp = (1...1)7.

Black curve fits red curve until PFA =103 [Ovarlez et al. 16].
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False Alarm Regulation on THALES Ground Clutter

1 T T T T T = T 3
i theo, ANME 0t - 1
~ ANME e —— ,
~. o08f i 4
N~ L ‘
107 07} i ]
& o6l ./ ANMF-PFP S ]
/ " ANMF
of Bost 4 S §
0.4} ; o ]
107 , B K
03f - ]
— ANMF K
— ANMF-PFP 02 s . 1
—theo. NMF M Ki the ! 2t
—o—theo. ANMF M known o1l ; ]
theo. ANMF-PFP Pl
10 ; I 2 , . . . . .
10° 10" 10° 10° 10° 20 15 -0 5 5 15 20 25 30
Threshold SNR (dB)

Persymmetric Tyler-ANMF and Tyler ANMF on THALES dataset - m =8, n = 8
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False Alarm Regulation on THALES Ground Clutter

m=8etK=20

07
& } ANMF-PFP -,/ ANMF
\ 06 i i
o . \\\ ‘thieo. ANMF Tost ',". |
b 0.4f h 1
10 . \ \ o 0
— ANMF \\ i
— ANMF-PFP " | |
——theo. NMF M known theo. NMI " \ 0.2
—o—theo. ANMF M known \ N\ gt |
theo. ANMF-PFP \
m:c“ 15‘ 10° 10° m“ 10° E: ‘ 5 ‘ 5 20 2 30
SNR (dB)

Threshold

Persymmetric Tyler-ANMF and Tyler ANMF on THALES dataset - m = 8, n = 20
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D 1 Performance on SAR Imag;

Hyperspectral Imaging: Detection and Anomaly Detection
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Detection in very Heterogeneous Environment

Simulation: Spatially and Spectrally Heterogeneous Strong Clutter

SNR (dB) ANMF_PSCM Detection ANMF-PFP Detection

Speed (m/s)

L o:

Range (km) Range (km

o
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Anomaly Detection

T @ 10
Doppler B Doppier B

Shrinkage Classical FP

Detection of 3 targets for the Shrinkage BUT
only 1 for the FP

Detection of 2 targets BUT
Improvement of Shrinkage
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Detection Performance on STAP Data

Outline

Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging

m Detection Performance on STAP Data
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Detection Performance on STAP Data

Detection Performance on STAP Data

Problem

Using joint spatial and time measurements, estimate the position (angle) and the Doppler
frequency (speed) of the target
= use of the ANMF with a particular steering vector [Ovarlez 2011]

Data parameters: experimental clutter with synthetic target

X-Band ~ 10° Hz, wavelength A = 0.03m, flight speed v =100m/s, distance to the scene
30km, 5deg of incidence, PRF (Pulse Repetition Frequency) of 1 kHz, inter-sensor distance
d = 0.3m, 12 trials with n = 410 range bins, M = 64 pulses and N = 4 sensors.

e This means observations of size m = N M = 256 while n < 410!

e Clutter more or less homogeneous BUT some targets (outliers) could be present in the
secondary data
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No target is present in the secondary data - homogeneous noise

STAP AMF+SCM, data 3, burst 6, range bin 255 STAP ANMF-FP, Essai 3, burst 6, range bin 255

0
§ I 2 -2
-4 -4
-6 -5
-8 -8
-10
-05 12 -05 —12
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Detection Performance on STAP Data

Figure: Doppler-angle map for the range bin 255 with n = 404 secondary data, m = 256 [Pailloux 10].
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Extended Low Rank Detectors [Ginolhac 11, 12 and 13]

No target-contamination, Target at 4 mis, 0 deg
AMF based based on the SCM

Q Only one target detection

@ Non contaminated secondary data

N =4, M =64, n =408
n<2MN, n>2r

Figure: Doppler-angle map for the range bin 255 with n = 100 < m secondary data and m = 256.
(guard cells are removed)
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Extended Low Rank Detectors [Ginolhac 11, 12 and 13]

Target-contamination, Target at 4 m/s, 0 deg

Q Only one target (4m/s) in the CUT -

@ Contaminated secondary data

two t: ts at 4m/: d -4m/s
(two targets at 4m/s and -4m/s) Classical STAP
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Figure: Doppler-angle map for the range bin 255 with n = 100 < m secondary data and m = 256.
(guard cells are removed)
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Outline

Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging

m Detection Performance on SAR Image
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Background on SAR and Radar Imaging

ONERA ISAR Image

RAMSES Image

ONERA RAMSES Image =
S\t = N a8
ONERA RAMSES Image

Radar Imaging allows to build more and more precise images:
e Current use of very high spectral bandwidth and very high angular bandwidth leading to

very high spatial resolution,
e Application to monitoring (detection, change detection), classification, 3D reconstruction,

EM analysis, etc.
These applications require some physical diversity to achieve good performance.
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Detection Performance on SAR Image

Multi-Channel SAR Images

Multi-channel SAR images automatically propose this diversity through:
e polarimetric channels (POLSAR), interferometric channels (INSAR), polarimetric and interferometric channels
(POLINSAR),

e multi-temporal, multi-passes SAR Image, etc.

Pauli Decomposition

Range X, meters

100 200 -300
Cross-range Y, meters

EM behavior of the terrain Estimation of the height Analysis of the structures displacement in
in POLSAR images in POLINSAR images Shangai with multi-temporal SAR images
(@Telespazio)

Almost all the conventional techniques of detection, parameters estimation, speckle filtering
techniques, and classification in multi-channel SAR images (e.g., polarimetric covariance
matrix, interferometric coherency matrix) are based on the multivariate statistic.
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Mono-Channel SAR Images

For mono-channel SAR Images, each pixel of the spatial image is only characterized by a

complex amplitude, and we don't have direct access to this diversity. Moreover,
e very high-resolution SAR images are more and more complex, detailed, heterogeneous,
e the spatial statistic of SAR images may be not at all Gaussian!
e SAR pixels may be dispersive (or colored) and anisotropic.

Non-Gaussianity

Spectral diversi

res < 0.5m

@ONERA SETHI
s

Sub-bad 1 éllb-band 2 Sub-band 3
Challenging Problems

e How to retrieve how to exploit this diversity (dispersive and anisotropic information) from
mono-channel SAR image?

e How to derive Multivariate Adaptive Detectors on a mono-channel complex SAR image?
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Detection Performance on SAR Image

Conventional Principle of Radar/SAR Imaging

Conventional Fourier Imaging (laboratory, SAR, ISAR):

e Assumptions of white and isotropic bright points

20 tmage

e |t does not exploit the potential non-stationarities or diversities P

of the scatterers

8

e Hypothesis of bright points modeling: all the scatterers localized in x and characterized by the complex spatial amplitude
2f
distribution /(x) have the same behavior for any wave vector k = — (cos 0, sin G)T. After some processing, the

c
backscattering coefficient H(k) acquired by the radar is related to the SAR image /(x) through:
H (k) :J I(x) exp (72i7'[kT x) dx
Dx
e The SAR image /(x) is then obtained through the Inverse Fourier Transform:

I(x) = L) H(k) exp (2ka x) dk
k

This model loses all information relative to frequency f and angle 8. Hence, spectral and
angular diversities are lost.
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Hyperspectral Imag

Time-Frequency Distributions for SAR Imaging - Key Idea

Time-frequency distributions are generally devoted to non-stationary time signals analysis (e.g.,
spectral components varying with time). They can be easily extended in 2D.
Key idea: In the context of SAR Imaging, Time-Frequency Analysis allows:
e to highlight the coloration and anisotropy properties of monodimensional SAR scatterers,
e to characterize each pixel of the complex SAR image with a vector of information related
to angular or/and frequency behaviors.

LTFD analysis and the physical group theory (Heisenberg or affine group) allow us to construct
hyperimages [Bertrand 91, Bertrand 94, Bertrand 96] through:

T(ro, ko) =< H(.), ¥ry () >= JD HIOYE , (k) dk,

To,ko

where W, i, (k) is a family of wavelet bases (Gabor, wavelet) generated from a mother wavelet
&(f,0) through the chosen physical group of transformation (translations, scale in frequency,
etc.) and where Dy is the spectral/angular support of the wavelet V.
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Detection Performance on SAR Image

Highlighting the Spectral and Angular Behaviors of Scatterers

Some examples of synthetic hyperimages /(rg, ko):

Frequency

Isotropic and white scatterers. Anisotropic and colored scatterers.

e An isotropic and white scatterer is mainly located on a pixel of SAR image,

e An anisotropic and colored scatterer may naturally spread out in the spatial domain.
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Example of N¢ = 3 sub-bands and Ny = 3 sub-looks image decomposition:

H =TF(I I

Exploitation of the diversity

Each pixel i of the mono-channel SAR image can now be characterized by a N-vector

Xj = [W]1,..., Wy, n,] of information (N = N¢ Np) related to dispersion in frequency
domain and anisotropy in angular domain. Which multivariate statistic can characterize the

vector x;?
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Detection Performance on SAR Image

Analysis of Performance
e Evaluation of the CFAR property of the AMF and ANMF detectors,
e Comparison of the target detection performance between AMF and ANMF.

Dataset from SANDIA National Laboratories Artificial embedded target

AR mage wih target n (16334204, 8.467102)

1 ¥

Left: Original SAR Image without target. Right: Left: SAR Image of the target. Right: True target
SAR image with the specific embedded target. response p in angular and spectral spaces (Np =5
sub-looks, Nf =5 sub-bands).
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Detection Performance on SAR Image

Perfect PFA regulation with ANMF-Tyler but poor PFA regulation for AMF-SCM

Left: FA Regulation with ANMF-Tyler. Right: FA Regulation with AMF-SCM. Ng = 5, Ny = 5, K = 88.

Better target detection for ANMF-Tyler [Ovarlez 17, Mian 19]

s tsosnat ooy 03 34518 =35s8

]

Left: Full AMF-SCM detection test, P, — 1. Right: AMF-SCM Left: ANMF-Tyler detection test, Py, — 1. Right: ANMF-Tyler
detection test, Pg, = 2.6107 . detection test, P, = 2.6107 .

e ey o Tt 147 3118 P25
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Detection Performance on SAR Image

Change Detection on SAR Image Time Series

Contributions to SAR Image Time Series
Analysis

Guillaume Ginolhac and Arnaud Breloy
RadarConf Tutorial - 26 September 2020

Joint work with: Ammar Mian (Univ. of Aalto),
Jean-Philippe Ovarlez (ONERA & SONDRA),
and Abdourrahmane M. Atto (LISTIC)

- LISTIC
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Example of Polarimetric Repartition in the H — o plane

(a) Classification results (b) Repartition

Figure: SCM, Euclidean mean, Wishart distance
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Example of Polarimetric Repartition in the H — o plane

(a) Classification results (b) Repartition

Figure: Tyler, Euclidean mean, Wishart distance
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Example of Polarimetric Repartition in the H — o plane

(a) Classification results (b) Repartition

Figure: Tyler, Riemannian mean, Wishart distance
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Outline

Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging

m Hyperspectral Imaging: Detection and Anomaly Detection
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Hyperspectral Imaging: Detection and Anomaly Detection

Spectral dimension

Reflectance

Spatial dimension

Spatial dimension
Wavelength

e Anomaly Detection
To detect all that is "different" from the background (Mahalanobis distance) -
No information about the targets of interest available [Frontera 16].
e "Pure" Detection
To detect targets characterized by a given spectral signature p - Regulation of False Alarm [Ovarlez 11,
Frontera 17].
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Hyperspectral Imaging: Detection and Anomaly Detection

~—1 1/2
where t; = ((z,- — ﬁ)H X (z— ﬁ)) and w1 (.), up(.) denote any real-valued weight

functions (following the conditions of Maronna).

Joint estimation of location and scale [Bilodeau 08]
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Hyperspectral Imaging: Detection and Anomaly Detection

Hyperspectral Imaging
il |2
T (c—n)

~—1 H ~—1 2 A

"z p) ((c—u) z (c—u)) Ho

o1 1 —1 1
Pp = (1—A) o1 ’"“zFl(" P N L P —1;?\),where o1=(m+1)/m.
o

Alc) =

1 01 01

m This two-step GLRT test is homogeneous of degree 0: it

is independent of any particular Elliptical distribution:

CFAR texture and CFAR Matrix properties, <

H scm

m Under homogeneous Gaussian region, it achieves the :

same performance as the detector built with the SCM . /

. . FP Huber
estimate. ”

6 8 10
Threshold (1)
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ral Imaging

Extracted region : g |
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»5 bands, ‘Adaptive Normalized Matched Fiker
»Sliding Window: 19x19 TheoretcaF SCM
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-05 Theoretical-FP
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2 . Non-Gaussian region :
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X
AN
o =25 N .
Original data set : \
3 N
o 0s 1 15 2 25 35
Threshold (dBs)
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Hyperspectral Imaging

GLRT RX maly Detec Mahalanobis Distance [Reed 90

Hy : c¢=b Cly..-yCn

Binary Hypotheses test: { Hi © c—Ap+b cr... cn where b ~ CN'(0m, X) and ¢; ~CN (0m, ), A

known and p unknown

600
n
500 - Anomalies + ¥ . ~ 1
. denoting u = — E cj
400 |- B n =1
z ~\H = N
I 1 RXDscule) = (¢~ 1) " 8;% (e 1) 2 A
200 |- Background B Ho
(Hotelling T2 distributed)
100 - 4 B
: o M RXDscml(e) ~ F,
oL | | | | | m(n+1) SCM m,n—m
400 500 600 700 800 900 1,000 1,100
Band 30
m Derived and valid only under Gaussian hypotheses,
u

Its false alarm rate is independent of the covariance matrix: CFAR-matrix property in homogeneous
Gaussian data.
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aly Detector: Mahalanobis Distance [Frontera 14]

Hy : c¢=b Cly...yCpn

A T T where b~ CE(u, X, g,) and ¢; ~ CE(u, X, gz), A

Binary Hypotheses test: {

known and p unknown

600
500 - Anomalies - %¥
400 - N
~H o1 \ H
] RXDy—ese(e) = (¢ =1) T~ (c—1) = A
& R Ho
or Beclground ] where £ and u are M-estimates
100 d ] of the location and scale
s ‘hreshold
0

I I I I I
400 500 600 700 800 900 1,000 1,100
Band 30

m Derived and valid for any Elliptical Contoured Distributions,

m lts false alarm rate depends on the texture statistic of the data.
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Anomaly Detection Results on Artificial Targets

Refiectance

20+
15+
10+
Sk
Saﬂ 360 WIJIDU 12‘I]I] 14‘00 WSII]D 1BlI]I] ZD‘DD ZZIUD 24hﬂ
‘Wavelength
Original image (Forest Region) Target Spectrum

50 x 50 pixels, 126 spectral bands
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Anomaly Detection Results on Artificial Targets

(a) Original (b) SCM (c) Shr-SCM (a) FP (b) Shr-FP

Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 9, n = 80, PFA = 0.03).

(@) Original (b) SCM (¢) Shr-SCM (a) FP (b) Shr-FP
Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 126, n = 288, PFA =
0.03).
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Galaxies Anomaly Detection Results on MUSE data

Problem of detecting galaxies in HS MUSE (Multi Unit Spectroscopic Explorer) data (465-930 nm)

Classical RXD Muse Image Extended RXD

RXDscpm(c) 300 x 300 pixels RXD1yjer ()
3578 spectral bands

Better detection and False Alarm regulation with Tyler estimate (same Pfa).
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Experimental Data from DSO Singapore
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Conclusions

m When the background is non-Gaussian and/or heterogeneous, the conventional detectors (AMF or
sub-optimal CFAR tests) are not at all optimal and lead to poor false alarm regulation and poor detection
performance,

m The SIRV and CES background modeling allows us to take into account the background complexity: the
non-Gaussianity, the temporal background fluctuations, and the spatial background power fluctuations,

m Using this model, the ANMF detector built with the Fixed Point (or other M-estimators) background
covariance matrix estimator is shown to be CFAR-texture, CFAR-matrix and exhibits nice properties
(robustness) and excellent detection performance,

= Taking into account additional a priori properties on the covariance matrix structure (low rank,
persymmetry, Toeplitz, etc.) can lead to an appreciable gain for small numbers of secondary data,

m These methods have been applied for many problems involving covariance matrix estimation: STAP
detection, SAR detection (FOPEN), Polarimetric/Interferometric SAR detection and classification, SAR
and Hyperspectral Change Detection, SAR and Hyperspectral time-series analysis, Financial Portfolio
Optimization, Hyperspectral Anomaly detection, Hyperspectral detection.
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On-going works and Perspectives

m Link with Random Matrix Theory: for high dimensionality data (ex: hyperspectral, STAP), strong statistical connection
with Robust Estimation theory [R. Couillet, and F. Pascal, J.-P. Ovarlez, E. Terreaux],

= Robust estimation of structured covariance matrices, Low-Rank covariance matrices [Y. Sun, D. P. Palomar, A. Breloy, G.
Ginolhac, F. Pascal, J.-P. Ovarlez, C. Ren, P. Forster, B. Mériaux 2020]: persymmetric, Toeplitz, Bloc Toeplitz,
Low-Rank matrices, etc.,

m Joint location and scale with M-Estimators: non-centered multivariate data, e.g. hyperspectral data [J. Frontera, F.
Pascal, J.-P. Ovarlez],

m How to deal with non i.i.d secondary data? RMT approach [R. Couillet, F. Pascal, J.-P. Ovarlez], VARMA approach: [W.
Ben-Abdallah, P. Bondon, J.-P. Ovarlez],

= No secondary data: [C. Ren, N. El-Korso, P. Forster, A. Breloy, J.-P. Ovarlez, B. Mériaux],

m M-Estimators and Riemannian Geometry: [F. Barbaresco], [P. Formont, F. Pascal, G. Ginolhac, A. Renaux, A. Collas,
J.-P. Ovarlez, F. Bouchard],

m Shrinkage of M-Estimators: [A. Wiesel, Y. Abramovitch, O. Besson, F. Pascal, E. Ollila, etc.], [Q. Hoarau, G. Ginolhac],
m Sparsity and high dimension: [A. Bitar, J.-P. Ovarlez].
m Performance of Estimation : [A. Renaux, B. Mériaux, S. Fortunati]

m Neural Network for improving classification: [A. Barrachina 22] for complex-valued Neural Networks, Spectral Clustering
and Transfer Learning in high dimension [C. Doz], Neural Network for detection [A. Rouzoumkaland Anomaly Detection
[M. Muzeau], Neural Network for SAR: Complex GAN for SAR [Q. Gabot].
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Former ONERA/SONDRA Ph.D. students linked to this tutorial (1)

e A. Rouzoumka, Deep Learning Applied to the Robust Detection of Radar Targets, Ph.D. Thesis 2023-2026, Paris Saclay
University,

e Q. Gabot, Generative Adversarial Networks for SAR Imaging, Ph.D. Thesis 2023-2026, Paris Saclay University,
e M. Muzeau, Anomaly Detection Schemes for SAR Imaging, Ph.D. Thesis 2021-2024, Paris Saclay University,

e H. Brehier, Detection and Classification for Radar Through The Wall from subspaces model, Ph.D. Thesis 2021-2024,
Paris Saclay University,

e O. Lerda, Sonar Detection, Estimation and Classification for Targets in Complex Environnement, Ph.D. Thesis
2020-2024, Annecy University,

e P. Develter, New Radar Processing Robust to Mismatch Models: Case of off-grid targets, Ph.D. Thesis 2020-2023, Paris
Saclay University,

e C. Doz, Spectral clustering Based Methods for Unsupervised Classification in Radar Imaging Applications, Ph.D. Thesis
2019-2023, Paris Saclay University,

e J. A. Barrrachina, Complex Valued Neural Networks for Radar Applications, Ph.D. Thesis 2019-2022, Paris Saclay
University,

e A. Mian, Exploitation of SAR and Hyperspectral Time Series Analysis, Ph.D. Thesis 2016-2019, Paris Saclay University,

e B. Mériaux, Contributions to robust signal processing for multi-sensor systems, Ph.D. Thesis 2017-2020, Paris Saclay
University,

e E. Terreaux, Robust model order selection using Random Matrix Theory, Ph.D. Thesis 2015-2018, Paris Saclay University,
e A. Bitar, Exploitation of Sparsity for Hyperspectral Target Detection, Ph.D. Thesis 2015-2018, Paris Saclay University,
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Former Ph.D. students linked to this tutorial (2)

e U. H. Tan, Colocated MIMO Radar Waveform Optimization, Ph.D. Thesis 2014-2017, Paris Saclay University,

e A. Combernoux, Low-rank detection and estimation using random matrix theory approaches for antenna array processing,
Ph.D. Thesis 2013-2016, Paris Saclay University,

e J. Frontera-Pons, Robust Detection and Classification for Hyperspectral Imaging, Ph.D. Thesis 2011-2014, Paris Saclay
University,

e M. Mahot, Robust Covariance Matrix Estimation in Signal Processing, Ph.D. Thesis 2009-2012, ENS Paris Saclay,

e P. Formont, Statistical and Geometric Tools for the Classification of Highly Textured Polarimetric SAR Images, Ph.D.
Thesis 2009-2012, Paris Saclay University,

e C.Y. Chong, Signal Processing for MIMO Radars: Detection Under Gaussian and non-Gaussian Environments and
Application to STAP, Ph.D. Thesis 2008-2011, Paris Saclay University,

e G. Pailloux, Noise Structured Covariance Estimation in Adaptive Detection, Ph.D. Thesis 2007-2009, Paris Saclay
University,

e M. Duquenoy, Time-Frequency Analysis Applied to Polarimetric SAR Imaging, Ph.D. Thesis 2004-2007, Paris Saclay
University,

e F. Pascal, Detection and Estimation in non-Gaussian Environment, Ph.D. Thesis 2003-2006, Nanterre University,

e M. Tria, Analysis of SAR Images using Continuous Multidimensional Wavelet Transform, Ph.D. Thesis 2001-2003, Paris
Saclay University,

e E. Jay, Detection in non-Gaussian Environment, Ph.D. Thesis 1998-2001, Cergy-Pontoise University.
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