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Abstract—Change detection remains a classic but essential
problem in Synthetic Aperture Radar (SAR) imagery. When
designing statistical change detection schemes, SAR data are
typically modeled as Gaussian random vectors, and the corre-
sponding tests have been designed using Gaussian distributions.
Considering the heterogeneous nature of SAR images, SAR data
were then extended to a mixture of scaled Gaussian distributions
where the unknown scaling parameter (usually called texture)
acts in the model on the whole information vector. This paper
proposes to extend the conventional model by designing a new
robust detector based on the Generalized Likelihood Ratio Test
(GLRT) technique for multi-band change detection. In our model,
different textures are considered to characterize the different
bands. The Constant False Alarm Rate (CFAR) behavior has
been analyzed, and simulation and experimental SAR data show
promising results.

Index Terms—Change Detection, GLRT, Mixture of Scaled
Gaussian Distributions, Robust Estimation, SAR Imaging

I. INTRODUCTION

In the last few years, change detection using SAR imagery
has developed considerably with the availability of Earth
satellite imagery from Sentinel-1, TerraSAR-X, etc., and the
proliferation of related applications such as structure moni-
toring, forest, glacier, and soil classification, among others.
The considerable progress in terms of resolution of the new
imaging systems and the significant contribution of diversity
(polarimetric, temporal, spectral, azimuthal) require the de-
velopment of new processing tools. Traditional techniques for
detecting coherent changes are based solely on the comparison
of empirical covariance matrices (Sample Covariance Matrix)
associated to the Gaussian hypothesis of SAR signals [1], [2].
A complete review of these classical detectors can be found
in [3].

Complex Elliptically Symmetric (CES) distributions have
recently been investigated for clutter modeling [4], [5]. They
account for the non-Gaussianity and heterogeneity of the SAR
data, providing a heavy-tailed alternative to the multivariate
Normal model. They allow, for example, to model the clutter
power through a random (CES) or deterministic (mixture of
scaled-Gaussian distributions) scalar variable called the texture
[6], [7].

We propose in this paper to extend the model introduced in
[6] to multi-band SAR change detection. In [6], the texture is
considered the same on the signal vector. So when additional
diversity, such as multiple frequency bands, is available, this
model is no longer accurate. The method proposed in this

paper assumes different textures for characterizing each band.
This approach has already been studied in [8] for concatenat-
ing two signal returns from two collocated antennas for Sonar
target detection. Here, we propose using this methodology to
develop a new GLRT for change detection based on the texture
and the covariance matrix equality.

The rest of the article is organized as follows: Section II
presents the general model and the theoretical solution to this
problem (GLRT solution) with some extended proofs in Ap-
pendix. Section III illustrates the performance of the proposed
method on Monte-Carlo trials and a SAR experimental dataset.

Notations: Italic type indicates a scalar quantity, lower
case boldface indicates a vector quantity, and upper case
boldface indicates a matrix. The transpose conjugate operator
is H . tr{·} and | · | are respectively the trace and the
determinant operators. x ∼ CN (µ,Σ) is a complex-valued
circular random Normal vector of mean µ and covariance
matrix Σ. Ip and 0p are the identity matrix and the null matrix
of size p× p, respectively.

II. DERIVATION OF THE GLRT

This section first describes the model used to represent the
random vectors of multi-band SAR images, followed by the
derivation of our GLRT from a binary hypothesis test.

A. Model

Let us consider x1, x2, . . ., xm pixels from the m frequency
bands (m ≥ 1) in polarimetric SAR images. Each pixel
xi is a p-vector (p polarizations) distributed according to
CN (0, τi Φi) where the deterministic scalars {τi}i∈[1,m] ∈
R+ and the matrices {Φi}i∈[1,m] ∈ SHp (set of Hermitian
semi-definite matrices of size p×p) represent the unknown tex-
tures and covariance matrices for each band, respectively. Such
a model is referred to as a mixture of scaled Gaussian distribu-
tions [9]. In this paper, we stack, for a given pixel location, the
different frequency bands such that x =

[
xT
1 ,x

T
2 , . . . ,x

T
m

]T
.

The vector x ∈ Cmp is then distributed as CN (0,Σ):

px(x,Σ) =
1

πmp |Σ|
exp

(
−xH Σ−1 x

)
, (1)

where the covariance matrix Σ = E(xxH) can be put in the
compact form: Σ = TΦT, where the matrix Φ and T are
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defined as:

Φ =


Φ1 E

(
x1x

H
2

)
. . . E

(
x1x

H
m

)
E
(
x2x

H
1

)
Φ2 . . . E

(
x2x

H
m

)
...

...
. . .

...
E
(
xmxH

1

)
E
(
xmxH

2

)
. . . Φm

 ,

T =


√
τ1 Ip 0p . . . 0p

0p
√
τ2 Ip . . . 0p

...
...

. . .
...

0p 0p . . .
√
τm Ip

 .

B. Hypothesis test and derivation of GLRT

1) Hypothesis test: For each pixel under test, the change
detection problem in SAR images acquired at two dates t = 1
and t = 2 can be formulated as:{

H0 : θ1 = θ2

H1 : θ1 ̸= θ2
(2)

with ∀t ∈ {1, 2}, θt = {Tt,Φt}. Under H0, we note that
θ1 = θ2 = θ = {T,Φ}. Under H1, we note θt = {Tt,Φt }.
For the two SAR images 1 and 2, we can define a spatial
boxcar centered around each pixel x under test with N
secondary data and note these secondary data as {xt

k}k∈[1,N ]
for the image at date t.

2) Derivation of the GLRT: The detector can be derived
using the Maximum Likelihood procedure when the texture
and covariance matrices are unknown:

ΛB(x) =

L1

({{
xt
k,T

t
k

}
k∈[1,N ]

,Φt

}
t∈[1,2]

)
L0

({{
xt
k

}
k∈[1,N ]

}
t∈[1,2]

, {Tk}k∈[1,N ] ,Φ

) ,

(3)
where

L1

({{
xt
k,T

t
k

}
k
,Φt

}
t

)
=

k=N
t=2∏
k=1
t=1

px
(
xt
k,T

t
k Φt T

t
k

)
, (4)

and

L0

({{
xt
k

}
k

}
t
, {Tk}k ,Φ

)
=

k=N
t=2∏
k=1
t=1

px
(
xt
k,Tk ΦTk

)
. (5)

This likelihood function is then maximized with respect to
the unknown parameters.

Proposition 2.1: the GLRT under the binary hypothesis test
presented in (2) can be expressed as follows:

Λ̂B(x) =

∣∣∣Φ̂∣∣∣2N
2∏

t=1

∣∣∣Φ̂t

∣∣∣N
N∏

k=1

∣∣∣T̂k

∣∣∣4
2∏

t=1

∣∣∣T̂t
k

∣∣∣2
H1

≷
H0

λ , (6)

where λ is the detection threshold and where the un-
known parameters Φ̂,

{
T̂k

}
k∈[1,N ]

,
{
T̂t

k

}
k∈[1,N ],t∈{1,2}

and
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Fig. 1. Matrix and Texture CFARness, PFA vs λ with N = 16. a) and
b): Proposed method. c) and d): Method proposed in [6]. e) and f): Method
proposed in [1].

{
Φ̂t

}
t∈{1,2}

are given, under each hypothesis, by the follow-

ing joint fixed point equations:
• under H0,

T̂k =
1

2

2∑
t=1

Re
(
Φ̂

−1
T̂−1

k xt
k x

tH
k

)
, ∀k ∈ [1, N ] ,

Φ̂ =
1

2N

k=N
t=2∑
k=1
t=1

T̂−1
k xt

k x
tH
k T̂−1

k .

(7)

• under H1,
T̂t

k = Re

(
Φ̂

−1

t

(
T̂t

k

)−1

xt
k x

tH
k

)
, ∀k ∈ [1, N ],∀t ∈ {1, 2}

Φ̂t =
1

N

N∑
k=1

(
T̂t

k

)−1

xt
k x

tH
k

(
T̂t

k

)−1

, ∀t ∈ {1, 2}

(8)
Proof: Please see Appendix.

The joint fixed point equations (7) and (8) are solved by
recursive iterations

(
Φ̂
)
n+1

= f1

((
Φ̂
)
n
,
(
T̂k

)
n

)
,(

T̂k

)
n+1

= f2

((
Φ̂
)
n
,
(
T̂k

)
n

)
,

and


(
Φ̂t

)
n+1

= f3

((
Φ̂t

)
n
,
(
T̂t

k

)
n

)
,(

T̂t
k

)
n+1

= f4

((
Φ̂t

)
n
,
(
T̂t

k

)
n

)
,

, with starting

points
(
Φ̂t

)
0
=

(
Φ̂
)
0
= Imp and

(
T̂t

k

)
0
=

(
T̂k

)
0
= Imp.

The functions f1 to f4 are given in (7) and (8). The conver-
gence is here reached only for the matrices Φ̂ and Φ̂t.

For only m = 2, an analytical expression for the textures
T̂k and T̂t

k can be derived in the same way as in [8] for
target detection. For identifiability purpose, a normalization
constraint tr

(
Φ̂
)
= mp is imposed on Φ̂.
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Fig. 2. L and X band SETHI intensity polarimetric SAR images in Pauli basis
in RGB color composition (red for HH −V V , green for (HV +V H)/

√
2

and blue for HH + V V for two different date t1 and t2.

III. RESULTS

In this section, we present the results obtained by our
detector compared to the state-of-the-art approaches on both
simulations and real data.

A. Results on simulations

In this section, the CFARness behavior of our detector
and the one proposed in [6] has been studied for Monte-
Carlo simulations when two frequency bands are concate-
nated. We generate two textured Gaussian random vectors,
where the textures are Γ-distributed according to Γ(µ, 1/µ)
distribution within each band at times t = 1 and t = 2,
we note µ1 and µ2 each parameter respectively. The CFAR
property is analyzed under H0, that is when the covariance
and texture matrices are equal at times t = 1 and t = 2.
The covariance matrices chosen in this paper are Toeplitz
structured with the form Φ1 =

{
ρ
|i−j|
1

}
1≤i,j≤p

for the first

band and Φ2 =
{
ρ
|i−j|
2

}
1≤i,j≤p

for second band. We have

modeled inter-band correlation through ρ0 ×1p where ρ0 is a
fixed degree of inter-band cross-correlation factor to ensure
the invertibility of the full-band covariance matrix Σ. We
investigate the CFAR behavior of the proposed GLRT detector
(6) and the Λ̂MT detector proposed in [6]-Prop. IV.1 when
the two bands are concatenated (and the same texture acting
over the two bands). Figure 1 shows the PFA vs threshold
λ relationships, obtained through 5 × 105 Monte-Carlo trials
with different matrix and texture parameters. We can observe,
in a) that the proposed detector (6) and Λ̂G are CFAR-matrix
while the detector Λ̂MT , in c), is not. Unlike our detector,
which provides good Pfa regulation, figures 1-d) and f) show
a poor false alarm regulation for the Λ̂MT detector and the
conventional Gaussian detector Λ̂G [1], [10] built with the

Fig. 3. Ground truth of the studied scene.

Sample Covariance Matrix estimate. Moreover, curves a) and
b) relative to matrix and texture CFAR look the same and span
the same support, meaning that (6) fully adheres to the CFAR
property regarding textures and covariance matrices.

B. Results on real data

We illustrate in this section preliminary results obtained
on real data. Figure 2 presents the polarimetric SAR dataset
evaluated in this section. The SAR images were acquired over
an area in the south of France in July 2021 by the ONERA
SETHI system [11]. The dataset is composed of images two
bands (L and X) and at two different dates t1 and t2.

The ground truth is described in Figure 3. Objects in
white colors are calibration instruments and remain unchanged
between the two acquisitions. Objects in blue colors (except
for a few cars at the bottom that moved) remain unchanged,
too. Objects in green and red are changes that occur between
the two acquisitions.

Figures 4 and 5 show the results of the detectors Λ̂MT and
Λ̂G proposed respectively in [6] and [1] between t1 and t2
for Pfa = 10−2 and Pfa = 10−3 for the mono bands X and
L. Both detectors detect the changes of the moved cars (at
the bottom) on both frequency bands X and L. Motorcyclists,
in the middle, are also detectable on the L frequency band.
Figures 6 and 7 present the results of the Λ̂B detector proposed
in (6) and the two state-of-the-art detectors proposed in [6] and
[1] between t1 and t2 for Pfa = 10−2 and Pfa = 10−3 for
the combination of frequency bands (X-L). Preliminary results
suggest encouraging performances of our approach. Further
work is needed to fully assess the performance on real data.

IV. CONCLUSION

In this paper, we have developed a new change detection
scheme considering the concatenation of fully polarimetric
SAR images from different center frequency bands modeled
by a scaled Gaussian mixture with different textures. Analysis
of the false alarm regulation of the GLRT test shows that the
CFAR property is verified concerning the covariance matrix
and the texture. This new Multi-band polarimetric SAR change
detection scheme has been applied to experimental data.
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Fig. 4. Detected changes in the X and L bands for the tests Λ̂MT and Λ̂G

proposed in [6] and [1], respectively. Here, we choose Pfa = 10−2.

APPENDIX: DERIVATION OF THE GLRT

The GLRT can be defined by the optimization of (3) with
respect to the unknown parameters. To maximize the two
likelihoods L0 and L1 defined in (5) and (4) respectively,
we have to deal with the following operations:({

T̂k

}
k
, Φ̂

)
= argmax
({Tk}k,Φ)

L0

({{
xt
k

}
k

}
t
, {Tk}k ,Φ

)
,({{

T̂t
k

}
k
, Φ̂t

}
t

)
= argmax(
{{Tt

k}k
,Φt}

t

)L1

({{
xt
k,T

t
k

}
k
,Φt

}
t

)
,

where
({

T̂k

}
k
, Φ̂

)
are the estimated parameters under H0

and
({{

T̂t
k

}
k
, Φ̂t

}
t

)
are those under H1. Under each

hypothesis, each parameter will be estimated separately assum-
ing the other remaining constant, reintroducing the estimated
parameters as necessary.

By denoting C = −2mpN log(π), the logarithm of (5),
under H0, is given by:

log(L0) = C −

k=N
t=2∑
k=1
t=1

log (|Φ|) + 2

k=N
t=2∑
k=1
t=1

log
(∣∣T−1

k

∣∣)

−

k=N
t=2∑
k=1
t=1

(
xtH
k T−1

k Φ−1T−1
k xt

k

)
. (9)

Now, we proceed by taking the derivative with respect to
T−1

k . Then, ∀k ∈ [1, N ],

∂ log(L0)

∂T−1
k

= 4

k=N∑
k=1

Tk−2

k=N
t=2∑
k=1
t=1

Re
(
(ΦTk)

−1xt
kx

tH
k

)
= 0mp .
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Fig. 5. Detected changes in the X and L bands for the tests Λ̂MT and Λ̂G

proposed in [6] and [1], respectively. Here, we choose Pfa = 10−3.
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Fig. 6. Detected changes for Pfa = 10−2 in the concatenated (X-L) bands
for Λ̂B and the tests Λ̂MT and Λ̂G proposed in [6] and [1], respectively.

As
∂ log

(∣∣T−1
k

∣∣)
∂T−1

k

= Tk and xtH
k (TkΦTk)

−1 xt
k is a positive

real scalar, then,

xtH
k (TkΦTk)

−1 xt
k = Re

(
tr
(
T−1

k Φ−1T−1
k xt

k x
tH
k

))
.

Referring to Eq. (117) in [12], we obtain,

∂tr
(
T−1

k Φ−1T−1
k xt

k x
tH
k

)
∂T−1

k

= 2Re
(
Φ−1 T−1

k xt
k x

tH
k

)
.
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Fig. 7. Detected changes for Pfa = 10−3 in the concatenated (X-L) bands
for Λ̂B and the tests Λ̂MT and Λ̂G proposed in [6] and [1], respectively.

Optimizing each T̂k individually results in:

∀k ∈ [1, N ], T̂k =
1

2

t=2∑
t=1

Re
(
Φ−1T̂−1

k xt
kx

tH
k

)
.

Let us estimate Φ by deriving log(L0) with respect
to Φ−1. This involves by deriving the trace of
(xtH

k T−1
k )Φ−1(T−1

k xt
k) with respect to Φ−1 (see Eq.

(101) in [12]):

∂ log(L0)

∂Φ−1 = 2NΦ−

k=N
t=2∑
k=1
t=1

T−1
k xt

kx
tH
k T−1

k = 0mp .

We finally obtain: Φ̂ =
1

2N

k=N
t=2∑
k=1
t=1

T̂−1
k xt

kx
tH
k T̂−1

k .

The same approach is used for H1: the texture parameters
and the covariance parameter are optimized separately:

log(L1) = C −

k=N
t=2∑
k=1
t=1

log (|Φt|) + 2

k=N
t=2∑
k=1
t=1

log
(∣∣∣(Tt

k

)−1
∣∣∣)

−

k=N
t=2∑
k=1
t=1

(
xtH
k

(
Tt

k

)−1
Φ−1

t

(
Tt

k

)−1
xt
k

)
. (10)

Similarly to H0, let us derive log(L1) with respect to
(Tt

k)
−1 and Φ−1

t :

∂ log(L1)

∂ (Tt
k)

−1 = 2

k=N
t=2∑
k=1
t=1

Tt
k − 2

k=N
t=2∑
k=1
t=1

Re
(
Φ−1

t

(
Tt

k

)−1
xt
k x

tH
k

)
,

∂ log(L1)

∂Φ−1
t

=

k=N
t=2∑
k=1
t=1

Φt −

k=N
t=2∑
k=1
t=1

T−1
tk xt

kx
tH
k T−1

tk ,

Letting the two previous equations be equal to 0mp leads
to the following joint fixed point equations:

T̂t
k = Re

(
Φ̂

−1

t

(
T̂t

k

)−1

xt
kx

tH
k

)
,

Φ̂t =
1

N

k=N∑
k=1

(
T̂t

k

)−1

xt
kx

tH
k

(
T̂t

k

)−1

.
(11)

Please note that, ∀t ∈ {1, 2} and both hypotheses,
xtHT̂−1

t Φ̂
−1

t T̂−1
t xt is a positive real scalar:

xtH
(
T̂tΦ̂tT̂t

)−1

xt = Re

(
tr

((
T̂tΦ̂tT̂t

)−1

xtxtH

))
,

= tr
(
T̂−1

t Re
(
Φ̂

−1

t T̂−1
t xtxtH

))
,

= mp .

Plugging the estimated parameters leads to the statistic Λ̂B(x)
given by (6).
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