

General Feature Extraction in SAR Target Classification: A Contrastive Learning Approach Across Sensor Types

Max MUZEAU^{1,2}, Joana FRONTERA-PONS², Chengfang REN¹, Jean-Philippe OVARLEZ^{1,2}

¹SONDRA, CentraleSupélec ²ONERA

Synthetic Aperture Radar

Data type

Sethi X-band image

Synthetic Aperture Radar

- Self-supervised learning:
 - Huge amount of data (TSX, Sentinel 1, UAVSAR, Biomass ...)
 - Almost no ground truth label

Number of satellites active from 1957 to 2022

Objective

- Extract meaningfull features from image
- From unknown and known sensors

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).

Caron, Mathilde, et al. "Emerging properties in self-supervised vision transformers." Proceedings of the IEEE/CVF international conference on computer vision. 2021.

Chiu, Li-Ling, and Shang-Hong Lai. "Self-Supervised Normalizing Flows for Image Anomaly Detection and Localization." IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

Siamese Networks

- Generate two augmented views of an image X
- Two networks encode in in a vector z
- These vector dimension have to be similar

Siamese Networks

- One teacher and one student network
- Both trained from scratch

Augmentations

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal parameters (e.g. rotation degree, noise level). Note that we *only* test these operators in ablation, the *augmentation policy used to train our models* only includes *random crop (with flip and resize)*, *color distortion*, and *Gaussian blur*. (Original image cc-by: Von.grzanka)

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

Augmentations

- Despeckling
- Global / local crop
- Masking
- Sub-bands/Sub-looks
- Intensity shift

Trained only on SETHI data

Student

Teacher

Despeckling - MERLIN

$$\underset{z}{\operatorname{argmin}} \mathbb{E}_{y} \{ L(z, y) \} \longrightarrow z = \mathbb{E}_{y} \{ y \}$$

DALSASSO, Emanuele, DENIS, Loïc, et TUPIN, Florence. As if by magic: self-supervised training of deep despeckling networks with MERLIN. *IEEE Transactions on Geoscience and Remote Sensing*, 2021, vol. 60, p. 1-13.

DALSASSO, Emanuele, DENIS, Loïc, MUZEAU, Max, et al. Self-supervised training strategies for SAR image despeckling with deep neural networks. In: EUSAR 2022

Despeckling - MERLIN

Denoised

Masking tokens

- Random mask
- Transformer tokens
- Better scalability

Assran, Mahmoud, et al. "Masked siamese networks for label-efficient learning." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022.

Sub-aperture

Intensity shift

- Rely less on intensity
- More on structure information
- Parameter values depend on the use case

$$\mathbf{x}_{shifted} = \mathbf{x} + B$$
 ,where $B \sim \mathcal{U}(a,b)$

Augmentations

- Despeckling
- Global / local crop
- Masking
- Sub-bands/Sub-looks
- Intensity shift

Trained only on SETHI data

Student

Architecture

Sethi X and L images for training

- Projection on a set of prototypes :
 - Force clustering
 - Few-shot learning

$$\mathbf{p} = \operatorname{softmax}\left(rac{\mathbf{s}}{ au}
ight) \operatorname{with} \left\{\mathbf{s}_i = rac{\mathbf{q}_i^T \mathbf{h}}{\left\|\mathbf{q}_i
ight\|_2 \left\|\mathbf{h}
ight\|_2}
ight\}_{i \in [1,n]},$$

- Training losses:
 - Cross entropy

$$L_{ce} = rac{1}{b \ (k-1)} \sum_{i=1}^{b} \sum_{j=2}^{k} \sum_{l=1}^{n} -\mathbf{p}_{i,1}^{l} \ \log \mathbf{p}_{i,j}^{l} \, ,$$

- Training losses:
 - Cross entropy
 - mean-entropy maximization regularizer

$$R = -\sum_{l=1}^n \overline{\mathbf{p}}^l \; \log \; \overline{\mathbf{p}}^l \; ext{with} \; \overline{\mathbf{p}} = rac{1}{b \; (k-1)} \sum_{i=1}^b \sum_{j=2}^k \mathbf{p}_{i,j} \, ,$$

- Update network weights
 - Backpropagation for the student
 - Moving average update for the teacher

$$g_{\theta_{student}}$$

$$g_{\theta_{teacher}}$$

$$\theta_{teacher} \leftarrow m \, \theta_{teacher} + (1-m) \, \theta_{student}.$$

Experiences

Target classification

- Quantitative evaluation on MSTAR dataset
- k-NN on extracted features
- Comparison with a PCA and a ResNet-34

MSTAR dataset

Class	2S1	BRDM_2	BTR_60	D7
Number	1664	1282	451	573
Class	T62	ZIL131	ZSU_23_4	SLICY
Number	572	573	1401	2539

Experiences

Target classification

- Few-shot classification
- For 10 labels/class the accuracy is:
 - 43,7% higher than a ResNet
 - 25,9% higher than a PCA

Experiences

Features visualisation

- Not trained on MSTAR
- t-SNE visualisation

Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." *Journal of machine learning research* 9.11 (2008)

Open source code

SAR feature extraction: https://github.com/muzmax/MSTAR_feature_extraction

Under apache 2.0 license

Journal paper

 Extended journal article (segmentation, visualisation, pattern detection) https://arxiv.org/abs/2407.00851

SAFE: a SAR Feature Extractor based on self-supervised learning and masked Siamese ViTs

Questions, comments, discussions?

Contact: max.muzeau@centralesupelec.fr

